
3910 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

Texture Classification in Extreme Scale
Variations Using GANet

Li Liu , Senior Member, IEEE, Jie Chen, Guoying Zhao , Paul Fieguth,

Xilin Chen, Fellow, IEEE, and Matti Pietikäinen , Fellow, IEEE

Abstract— Research in texture recognition often concentrates
on recognizing textures with intraclass variations, such as illumi-
nation, rotation, viewpoint, and small-scale changes. In contrast,
in real-world applications, a change in scale can have a dramatic
impact on texture appearance to the point of changing completely
from one texture category to another. As a result, texture
variations due to changes in scale are among the hardest to
handle. In this paper, we conduct the first study of classifying
textures with extreme variations in scale. To address this issue,
we first propose and then reduce scale proposals on the basis
of dominant texture patterns. Motivated by the challenges posed
by this problem, we propose a new GANet network where we
use a genetic algorithm to change the filters in the hidden layers
during network training in order to promote the learning of
more informative semantic texture patterns. Finally, we adopt
a Fisher vector pooling of a convolutional neural network filter
bank feature encoder for global texture representation. Because
extreme scale variations are not necessarily present in most
standard texture databases, to support the proposed extreme-
scale aspects of texture understanding, we are developing a new
dataset, the extreme scale variation textures (ESVaT), to test the
performance of our framework. It is demonstrated that the
proposed framework significantly outperforms the gold-standard
texture features by more than 10% on ESVaT. We also test the
performance of our proposed approach on the KTHTIPS2b and
OS datasets and a further dataset synthetically derived from
Forrest, showing the superior performance compared with the
state-of-the-art.

Manuscript received November 20, 2017; revised November 1, 2018 and
December 29, 2018; accepted February 26, 2019. Date of publication March 8,
2019; date of current version June 20, 2019. This work was supported in part
by the Center for Machine Vision and Signal Analysis at the University of
Oulu, in part by the Tekes Fidipro Program under Grant 1849/31/2015, in
part by the Business Finland Project under Grant 3116/31/2017, in part by
the Infotech Oulu, in part by the National Natural Science Foundation of China
under Grant 61872379, in part by the Academy of Finland for Project MiGA
under Grant 316765, in part by ICT 2023 Project (313600), in part by Project
ICONICAL under Grant 313467, and in part by 6Genesis Flagship under
Grant 318927. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Vishal Monga. (Corresponding
author: Li Liu.)

L. Liu is with the College of System Engineering, National University of
Defense Technology, Changsha 410073, China, and also with the Center for
Machine Vision and Signal Analysis, University of Oulu, 90014 Oulu, Finland
(e-mail: li.liu@oulu.fi).

J. Chen is with the Center for Machine Vision and Signal Analysis, Uni-
versity of Oulu, 90014 Oulu, Finland, and also with Peng Cheng Laboratory,
Shenzhen 518055, China.

G. Zhao and M. Pietikäinen are with the Center for Machine Vision
and Signal Analysis, University of Oulu, 90014 Oulu, Finland (e-mail:
guoying.zhao@oulu.fi; matti.pietikainen@oulu.fi).

P. Fieguth is with the Department of Systems Design Engineer-
ing, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
pfieguth@uwaterloo.ca).

X. Chen is with the Key Laboratory of Intelligent Information Process-
ing, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: xlchen@ict.ac.cn).

Digital Object Identifier 10.1109/TIP.2019.2903300

Index Terms— Texture descriptors, rotation invariance, local
binary pattern (LBP), feature extraction, texture analysis.

I. INTRODUCTION

TEXTURE analysis [1] plays a key role in computer
vision, supporting a great many applications: image and

scene classification, object detection and recognition, medical
image analysis, robot vision and autonomous navigation for
unmanned aerial vehicles. Research in texture recognition
[1]–[3] often concentrates on recognizing textures with intra-
class variations such as illumination, rotation, viewpoint, and
small scale changes. On the other hand, in many real world
applications the significant variations or changes of scale may
have a dramatic impact on the appearance of an underlying
texture, as resolved in some image. For example, as illustrated
in Fig. 1, as the scale becomes increasingly and substantially
coarser, from left to right, the corresponding texture category
also changes; for example, the top row (grasses) changes from
grass to lawn to a nearly featureless field. Particularly in appli-
cations such as robot vision or remote surveillance, extreme
scale changes can occur quite routinely (Fig. 1 (d)), when a
single image contains both near and far distances, meaning
that in contexts involving autonomous or machine vision it
becomes crucial to investigate texture analysis under extreme
scale variations. To the best of our knowledge no existing
texture classification methods can handle scale changes of
such magnitude. Our aim is to fill this gap and to develop
effective methods for classifying textures under the sorts of
scale changes illustrated in Fig. 1.

Much effort has been devoted to exploring and develop-
ing texture features that are robust to a variety of imaging
changes, particularly to illumination, rotation, viewpoint and
noise [4]–[10]. In terms of change-invariant features, scale
variations are amongst the hardest to handle and only modest
progress has been made in finding features invariant to even
small scale changes [2], [11], [12]. These methods have
demonstrated good performance on benchmark datasets such
as Brodatz [13], CUReT [14], UIUC [2] and KTHTIPS [15],
and more recently the OpenSurfaces (OS) dataset [16]; how-
ever all of these datasets exhibit rather modest scale variations,
not necessarily representative of the significantly harder prob-
lem of texture recognition in the presence of the extreme scale
variations of interest here.

Existing successful texture representation paradigms seek
to represent textured images statistically as histograms over
texels or textons [2], [12], [17], [18]. The fundamental question
is the scale of this image, in that texels may compactly

1057-7149 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2011-2873
https://orcid.org/0000-0003-3694-206X
https://orcid.org/0000-0003-2263-6731

LIU et al.: TEXTURE CLASSIFICATION IN EXTREME SCALE VARIATIONS USING GANET 3911

Fig. 1. A changing scale can have a dramatic impact on the appearance
of textures: (a) grasses, (b) wheat, and (c) trees, with the images from
significantly different viewpoints, essentially sampling the textures from a
broad extent of underlying continuous scale. Even more challenging (d) are
cases of continuous scale variations within a single image. Note that for the
last column of (a) (b) and (c), the images are basically textureless and only
show a region of a certain color. For the second last column of (a) (b) and (c),
the images show small scales and has quite different texture appearances as
those of the first, second and third column. For (d), each column has a different
texture, and shows continuous but extreme scale changes, containing textures
in both near and far distances. All images are collected from the Internet.

represented when computed at some certain scale, but not
at larger and/or smaller scales. The right scale is thus part
of the definition of the texture and plays an important role,
recognized early in the pioneering work of Julesz [19].

Motivated by the above, our method first searches scale
proposals and reduces the number of proposals by finding
the basic dominant texels that occur most frequently in the
image. Based on the challenges posed by this problem, we then
propose a new network GANet and adopt a FV-CNN feature
encoder for global texture representation. The main contribu-
tions of this work are summarized as follows:

• To the best of our knowledge, we conduct pioneering
investigation towards the problem of recognizing textures
exhibiting extreme scale variations, that is, with scale
variations of two or more orders of magnitude.

• When the scale of a texture changes, the category of the
resulting texture image also changes at some boundary,
boundaries which are important to identify in order to
label two images of the same physical material as differ-
ent texture classes. This paper offers the first investigation
of such scale boundaries.

• We propose a new network, which we refer to as GANet,
which can learn more informative texture patterns by
using a genetic algorithm to change the filters in the
hidden layers during network training.

• We contribute a large texture dataset consisting
of 15,747 texture images having substantial scale varia-
tions, in an effort to support the study of texture and scale.

II. RELATED WORK

Texture can be characterized by statistical distributions of
texels or textons, which are defined as repetitive local features
that are responsible for the preattentive discrimination of
textures [19]. The recent literature on texture analysis is vast,
and recent surveys can be found in [7], [18], [20], and [21].

The approach in this work is related to the texel size or tex-
ture scale. Lindeberg [22] investigated scale for texture
description, suggesting that texture characteristics strongly
depend upon it. Mirmehdi and Petrou [23] discussed scale
variations in real scenes and used them for the segmentation
of color textures. There is recent work focusing on the
estimation of the local or global scale of textured images
without explicitly extracting texture texels [2], [11]. To search
the scale proposals of a given texture image, we adopt the
binarized normed gradients (BING) algorithm [24], which has
been shown to be very efficient and powerful in proposing
local salient regions.

Recently, deep Convolutional Neural Networks
(CNN) [25]–[29] have demonstrated excellent results
in many domains of computer vision, including texture
recognition [6]–[8], [12], [30], [31]. For example,
Zhang et al. [48] proposed a Deep Texture Encoding
Network (DeepTEN) with a novel Encoding Layer integrated
on top of convolutional layers, which ports the entire
dictionary learning and encoding pipeline into a single model.
Different from other methods build from distinct components,
such as SIFT descriptors or pre-trained CNN features for
material recognition. DeepTEN provides an end-to-end
learning framework, where the inherent visual vocabularies
are learned directly from the loss function. The features,
dictionaries, encoding representation and the classifier are all
learned simultaneously. The representation is orderless and
therefore is useful for material and texture recognition. Dai
et al. [49] proposed an effective fusion architecture - FASON
that combines second order information flow and first order
information flow. FASON allows gradients to back- propagate
through both flows freely and can be trained effectively.
They build a multi-level deep architecture to exploit the first
and second order information within different convolutional
layers. Zhang 2018 et al. [28] proposed an effective and
scalable method for learning feature detectors for textures,
which combines an existing “ranking” loss with an efficient
fully-convolutional architecture as well as a new training-loss
term that maximizes the “peakedness” of the response map.
They demonstrated that their detector is more repeatable than
existing methods, leading to improvements in a real-world
texture-based localization application.

Xian et al. [29] investigated deep image synthesis guided
by sketch, color, and texture. They allowed a user to place a
texture patch on a sketch at arbitrary locations and scales to
control the desired output texture. Their generative network
learns to synthesize objects consistent with these texture sug-
gestions. To achieve this, they develop a local texture loss in
addition to adversarial and content loss to train the generative
network, TextureGAN.

However, it is a common belief that existing CNN architec-
tures are not robust to appearance variations such as rotation,
scale and noise [7] (see Section V for more details.), and the
texture recognition work on CNN mainly focuses on domain
transferability [6], [12].

In addition, there are other approaches proposed for tex-
ture analysis. Mehta and Egiazarian [47] presented a rota-
tion invariant and computationally efficient texture descriptor

3912 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

called Dominant Rotated Local Binary Pattern (DRLBP).
A rotation invariance is achieved by computing the descrip-
tor with respect to a reference in a local neighborhood.
A reference is fast to compute maintaining the computational
simplicity of the Local Binary Patterns(LBP). DRLBP not
only retains the complete structural information extracted
by LBP, but it also captures the complimentary information
by utilizing the magnitude information, thereby achieving
more discriminative power. Depeursinge et al. [46] presented
texture operators called SWM, which encoding class-specific
local organizations of image directions (LOIDs) in a rotation
invariant fashion. The LOIDs are key for visual understanding,
and are at the origin of the success of the popular approaches.
SWM learns data-specific representations of the LOIDs in
a rotation-invariant fashion. The image operators are based
on steerable circular harmonic wavelets (CHWs), offering a
rich and yet compact initial representation for characterizing
natural textures.

Motivated by the challenges posed by recognizing textures
exhibiting extreme scale variations, we propose a new network,
GANet, where we use a genetic algorithm (GA) to change the
filters in the hidden layers during network training in order
to promote the learning of more informative semantic texture
patterns and to suppress the number of nonsemantic ones.
Here, semantic pattern for textures means a pattern include a
texel/texton or a combination of texels/textons. Non-semantic
pattern for textures means a pattern does not include any
texel/texton. There certainly has already been work applying
GA to deep learning [32]–[36]: The work in [35] aims at
learning the architectures of modern CNNs by employing an
encoding method to represent each network architecture in a
fixed length binary string; in [33], a GA was used to train
networks with a large number of layers, each of which was
trained independently to reduce the computational burden;
in [32], a GA was used to improve the performance of a
deep autoencoder and to produce a sparser neural network;
and in [34] a GA was used to train a network when annotated
training data were not available.

Our method is quite different from previous work [32]–[36],
in that our work aims at developing CNNs specifically to
learn more semantic patterns, a focus which is has not been
studied.

III. METHODOLOGY

Our work builds on the extensive literature on CNNs
in texture recognition [12], but further motivated by the
work of Zhou et al. [31], which demonstrate a relationship
between semantic filters and recognition success. In particular,
those CNN convolutional filters showing semantic patterns are
regarded as effective at visual recognition, while those showing
non-semantic patterns are regarded as being incompletely
learned, on which basis the authors claimed that increasing
the number of semantic filters improves the recognition per-
formance. As a result, we are inspired to adopt a genetic
algorithm (GA) to promote the learning of networks in a global
and optimized way, by which we aim to reduce the number of
non-semantic filters and to increase the number of semantic
ones.

GAs are effective at searching large and complex spaces in
an intelligent way to approximately solve global optimization
problems. Furthermore, from weak learning theory in pattern
recognition [37], using an ensemble of models boosts clas-
sification performance, since multiple models capture richer
semantic filters than a single model does, thus we propose
to adopt three CNN models in our GANet. We will define
genetic operations of mutation and crossover, so that we can
traverse the search space efficiently, seeking to maximize the
number of semantic patterns, thereby successively eliminating
non-semantic ones. By using different training sets to train
the three networks, we realize further improvements in filter
diversities of the hidden layers, increasing the string diversities
used for crossover and mutation, which we expect should lead
to improved performance.

A. Proposed GANet Network

Our proposed GANet is shown in Fig. 2, highlighting the
genetic operations of mutation and crossover.

Mutation is a genetic operator used to maintain genetic
diversity from one generation to the next of a population of
chromosomes, analogous to biological mutation. The mutation
process of an individual involves flipping each bit inde-
pendently with some probability q . In practice, q is often
small (0.05), since setting q too high causes the search to turn
into a primitive random search. A modest q allows the good
properties of a survived individual to more likely be preserved,
while still providing opportunities to explore.

In contrast, Crossover is a genetic operator to vary the
programming of a chromosome or chromosomes from one
generation to the next. It is analogous to reproduction and
biological crossover, involving a swapping, with probability p,
between two individuals, allowing the diversities of the filters
in the hidden layers to be improved.

The number of filters used for crossover or mutation is not
a trivial question, normally found empirically. Based on our
experiments we have chosen 10% of the filters for exchange
during crossover and 5% of the filters for mutation. Here,
we improve the classical/traditional genetic algorithm (GA)
according to our case for crossover and mutation. Specifically,
we already have a good initial population used for GA
operations since the initial population is encoded from the
filters in an off-the-shelf CNN model (VGGNet [24]) pre-
trained on a large-scale dataset like ImageNet [26]. We thus
decrease the probability for crossover but increase probability
for mutation. On the one hand, the probability for crossover
in our case is 10% vs. typical value 60% of the classical/
traditional GA. In other words, we reduce the probability
for crossover because of the good initial population. On the
other hand, the probability for mutation in our case is 5%
vs. typical value 0.8% of the classical/traditional GA. In the
traditional GA, the population size typically contains several
hundreds or thousands of possible solutions. For each genera-
tion, therefore, one would have several individuals to perform
the mutation. In our case, the population size for first layer has
only 64 filters, which means we have only 3 individuals used
for mutation. In other words, we increased the probability for
mutation because of the small population.

LIU et al.: TEXTURE CLASSIFICATION IN EXTREME SCALE VARIATIONS USING GANET 3913

Fig. 2. Architecture of our GANet network. There are three nets CNN-1, CNN-2 and CNN-3, each one being a 19 layer VGG-Net. Here, “3 × 3 conv 256”
implies a convolution with filters of size 3 × 3 × 256, where 256 is the number of feature channels in this layer. “fc n” denotes a fully connected layer of
size n, where n = C (final layer) is the number of texture classes. The GA includes two operations — crossover and mutation — which are only applied
to the hidden filters in the convolutional and pooling layers. By this way, we promote the network learning in a global and optimized way to reduce the
number of non-semantic filters and to increase the number of semantic ones. To undertake the GA operations, all of the filters in a convolutional/pooling
layer are concatenated into one string. For crossover we choose two filter strings Ui and U j from two nets at random, and then exchange some elements
between these two strings. For example, {ui1, ui2, . . . , uit } from Ui are exchanged with {u j1, u j2, . . . , u j t } from U j . For mutation we similarly choose two
filter strings from two nets, and then perform mutation by using some elements in one string to replace some in the other. For example, we use elements
{ub1, ub2, . . . , ubt } from Ub to replace certain elements in Ua , but keep Ub unchanged.

To undertake the GA operations, all of the filters in a
convolutional/pooling layer are concatenated into one string.
For crossover we choose two filter strings Ui and U j from two
nets at random, and then exchange some elements between
these two strings. For example, as shown in Fig. 2,

{ui1, ui2, . . . , uit } from Ui are exchanged with

{u j1, u j2, . . . , u j t} from U j . (1)

For mutation we similarly choose two filter strings from two
nets, however unlike exchange, mutation uses some elements
in one string to replace some in the other. For example, again
as shown in Fig. 2, we use elements {ub1, ub2, . . . , ubt } from
Ub to replace certain elements in Ua , but keep Ub unchanged.
Note that in all cases the two filter strings for crossover
and mutation are from the same layer. In our case, on the
one hand, we flip the bit in the string i.e., from semantic
elements to be non-semantic elements. Specifically, we encode
the non-semantic elements in one string as 0s and semantic

elements as 1s. We used 0s in one string to replace 1s in
the other string. It is a kind of flipping bits. On the other
hand, we did not use 1s to replace 0s because our motivation
is to simulate the strategy of dropout [34] in deep network
learning, intentionally designed to slow down the learning
process, such that the occasional removal of semantic filters
leads to more effective overall learning. In addition, we also
use the probability to control the bit flipping by randomly
selecting 5% bit to perform mutation.

The key question is the selection of filters for crossover and
mutation. We have developed the following rules:

• Crossover elements are chosen at random from the two
networks.

• Mutation elements are chosen such that, paradoxically,
non-semantic filters replace semantic ones. Although
the targeted removal of semantic filters feels perverse,
the approach is, in fact, analogous to the strategy of
dropout [38] in deep network learning, intentionally

3914 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

designed to slow down the learning process, such that
the occasional removal of semantic filters leads to more
effective overall learning.

What remains to be determined is a criterion by which a filter
is judged to be semantic or not. Motivated by the method
presented in [31], we visualized the filters and found that
filters at the first convolutional layer are typically responsive
to simple texture patterns, such as line elements, crosses
and corners, whereas deeper layers are associated with more
complex patterns having higher level semantics.

Therefore at the first layer each we apply the Local Binary
Pattern (LBP) operator [4] to the layer. The basic form of LBP
takes as input a local neighborhood around each pixel and
thresholds the neighborhood pixels at the value of the central
pixel. The resulting binary-valued string is then weighted as
follows:

L B P(gc) =
P−1∑

i=0

2i s(gc − gi) (2)

where the parameter P means the number of the neighbors
(e.g., P = 8 with neighborhood radius R = 1), and gc is the
central pixel. gc and gi are the gray-level values at c and i ,
and s(A) is 1 if A ≥ 0 and 0 otherwise.

One extension of the original LBP is the uniform patterns:
an LBP is ‘uniform’ if it contains at most two 0-1 or
1-0 transitions when viewed it as a circular bit string
(e.g., 11110011 is a uniform pattern). A uniform pattern usu-
ally conpresonds to edges, cornor and flat area in textures [4]
.In our case, each location in the layer is considered semantic
(systematic, non-random) if its corresponding LBP pattern is
uniform (i.e., edges, cornor or flat area etc), and likewise non-
semantic (irregular, random) if the corresponding LBP pattern
is nonuniform [4].

At coarser layers, the distinction is a bit more subtle.
We begin with a pre-trained VGGNet, from which (as in [31])
we visualize the filters of each layer and then cluster the filters
into two groups (semantic and nonsemantic). The minimal
activation of the semantic group is used as the semantic
threshold τl , which will be a function of layer l. Then, for some
input image I , let f l

j be the output of the j th convolutional
filter at the lth layer, that is, such that f l

j includes the effect
of the activation function (here a ReLU — Rectified Linear
Unit). A given filter output at position (r, c) and layer l will
be considered semantic if f l

j (r, c) > τl .
For each position (r, c) in feature map xl

j (i.e., the output
channel of the j-th convolutional filter at the l-th layer) ,
we wish to determine whether the region around (r, c) cor-
responds to semantic behavior. To do this, we search within a
5×5 window centered at (r, c) to count the number of semantic
activations, as just defined. If we cannot find k (typically
k = 10) strong activations, we neglect position (r, c) and move
to the next position in the feature map. If we do have at least
k activations, we assert filter j to be semantically meaningful,
an assessment to be taken into account during mutation and in
the final assessment of the resulting network. Note that our aim
is to check whether a filter is semantic or not. In the activation
map it is easy to find several locations whose activations are

larger than the given threshold because textures consists of
repeated texels. If we find such one location in the activation
map generated by a filter, we regard this filter is semantic. For
the other locations on the activation map, we just ignore them.

To learn our semantically driven network, we start with an
off the shelf CNN model (VGGNet [26]) pretrained on a large
scale dataset like ImageNet [30]. The model is then fine tuned
via the genetic strategy of Fig. 2, given texture images. Based
on our experiments, we found the fraction of filters showing
semantic patterns increasing from 60% in the original VGGNet
(fine tuned on textures, but with no GA) to around 70% in
GANet (VGGNet after the genetic algorithm).

B. Scale Proposal

Intuitively, the scale change of a texture image clearly
affects its appearance, however the direct estimation of global
scale is very unstable. In order to achieve scale invariance
in texture classification we propose to search a set of scale
proposals or candidate scale levels in a given texture image.
We then reduce the number of scale proposals by searching
among the basic dominant texels that occur most frequently.

1) Scale Proposal Searching: In general, there can be
not only multiple scales, but indeed continuous changes in
scale within a single image, as was illustrated in Fig. 1 (d).
A necessary prerequisite for texture classification with extreme
scale variations to be successful is that we should find all
of the existing scale proposals; to this end, we use the
BING algorithm [24] to find candidate texture element (texel)
windows, and then compute the scale proposals according to
these windows. The rationale behind the BING searcher is
that it searches the scale proposals in real time (300 fps) and
returns almost all of the potential texels in an image.

As demonstrated in Fig. 3 (a), to be sensitive to a range of
scales we resize an input image I ∈ R

W0×H0 to a sequence
of quantized sizes characterized by scale ratio s. In our
experiments, we choose s = 0.95 and generate an image
pyramid of resized images of sizes {(W0sm, H0sn)}, to some
lower limit (here set to ten pixels), determined by the region
of support of the features being extracted, with an 8 × 8
feature extraction window recommended by Cheng et al. [24].
We calculate the normed gradient (NG) 1 feature [24] (shown
in Fig. 3 (b)) of the entire pyramid. Note that we deliberately
downsample separately along each axis, to account for textures
having different aspect ratios (as illustrated in Fig. 3 (d)).

To find texels within a texture image, we scan over its entire
image pyramid with an 8 × 8 BING feature [24]. As shown
in Fig. 3 (c), at any particular scale level l a number of texels
� = {Tl,k}, indexed by location k, could be proposed. To keep
the concept of scale clear, every location in the image pyramid
is characterized by its rescaling relative to the original image;
that is, pyramid image of size {(W0sm , H0sn)} is said to be at
scale l = (sm , sn). We denote all texels found over the entire
image pyramid as � = {Tl,k}.

In practice, we typically find thousands of potential texels
over an entire image pyramid by using small thresholds for the
BING searcher. As shown in Fig. 4, the scales of these texels

1The normed gradient represents Euclidean norm of the gradient.

LIU et al.: TEXTURE CLASSIFICATION IN EXTREME SCALE VARIATIONS USING GANET 3915

Fig. 3. Scale proposal searching using an image pyramid and the BING
searcher [24]: (a) images are downsized to obtain an image pyramid;
(b) a single 64D linear model for selecting texture element proposals based on
normed-gradient features; (c) candidate texture element windows; (d) a texture
image whose texels have a significantly different aspect ratio from those
in (c).

form the scale proposals for this texture image. Specifically,
we denote the set of all the scale proposals

Ssp = {l|Tl,k ∈ �} (3)

as the candidate scale proposal.
2) Scale Proposal Reduction: The candidate scale proposals

Ssp are usually redundant for an input image. For efficiency
consideration, we need to reduce the number of the scale
proposals by finding the basic texels that most frequently occur
in the image.

Textures, whether they are regular or stochastic, contain
repetitive patterns that exhibit stationary statistics of some
sort [20]. Hence, the texels found by the BING searcher are
expected to appear repetitively. As shown in Fig. 4, for each
texel proposal T ∈ �, we search its similar texels over the
texel proposal set from the same scale level. We only keep
those texels having sufficiently many similar texels and remove
the others from the candidate texel set �, with the remaining
texels forming a new set �re, having a corresponding reduced
scale-proposal set Ssp-re, a significant reduction in the number
of scale proposals.

Based on our analysis, in order to obtain a good reduced
scale proposal set, two more issues have to be taken into
consideration: how to evaluate the similarity between two
texels, and how many texels to be reserved.

Regarding the similarity measure between two texels Tm

and Tn , we propose to compute the distance between the
LBP histograms [4] of them. Herein, the rationale behind the
Local Binary Pattern (LBP) is that it works in real time and

it achieved state-of-the-art performance for texture analysis
compared to other methods [21].

After getting the LBP features for Tm and Tn , we compute
their LBP histograms Hm and Hn. In our case, we take P = 8
and R = 1 and use the uniform patterns for LBP (i.e., LBPu2

8,1).
We then compute the histogram intersection as the similarity
between Tm and Tn .

In terms of which texels in the candidate texel proposal set
should survive, for each T ∈ �, we find the set �′ of similar
texels whose similarities are larger than some threshold η, such
that candidate T is preserved only if the number of similar
texels surpasses threshold K , only keeping the dominant, most
frequently occurring texels, essentially those which are more
stable and removing noise. The setting of the two threshold
parameters η, K will be discussed in Section IV-A.

C. Scale Boundary

As demonstrated in Fig. 1, we argue that the category of
a texture image only remains unchanged during some scale
interval. In other words, when the scale of a texture image
changes significantly, the category of this texture image may
also change. The interesting question is the location of the
scale boundary which separates the two images of the same
physical material as different texture classes. Olshausen and
Field [39] reconstruct any given image in a sparse way based
on a selected group of patches. Inspired by this finding,
we similarly develop a patch based method to infer boundary
in scale.

Given a texture dataset S = {Sc} with C classes and for each
class Sc, we randomly select 10 images and then compute its
basis functions Xc = {xc} on 16×16-pixel patches, as in [39].
For any image I ∈ Sc, we compute its reconstructed image Î
and the reconstructed error

δ = ‖I − Î‖/‖I‖ (4)

If δ > ξ , we consider that category of the texture image
changes, i.e. I /∈ Sc. In our case, we set ξ = 0.1 as suggested
in [39].

We adopt this approach to group our synthesized image set
SForrest �+(S f) and ESVaT (detailed later in Section IV)
into subcategories. The process is detailed in Algorithm 1,
where dataset SForrest is used as example. After applying
Algorithm 1, each texture class in SForrest is regrouped into
a number of subcategories, i.e. �+(S f) = {Ssyn

c,p }, indexed
by class c and scale level p, where there are Pc distinct scale
levels associated with class c. As a result, dataset SForrest with
C original texture classes has been regrouped into

∑C−1
c=0 Pc

categories.2 All of the images are also manually checked after
this automatic regrouping. Likewise, ESVaT is also regrouped
with Algorithm 1.

D. Summary of Proposed Framework

Our texture classification pipeline is summarized in Fig. 5,
consisting of the following steps:

2In fact we manually combine some subsets in {{Ssyn
c,p }p}c as one category

since some of them are basically textureless and only show a region of a
certain color.

3916 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

Fig. 4. Pipeline for generating scale proposal. Given a texture, we first generate its image pyramid using the scale (sm , sn) as shown in Fig. 3, from which
we search the candidate texels. We then collect the scale proposals by which we find the candidate texels in the image pyramid. For each candidate texel,
we find its similar texles. For those candidate texels who have more than K similar texles, we keep them and collect their scales to form the reduced scales
proposals Ssp−re .

Fig. 5. The proposed texture classification pipeline.

1) For each image I in training/testing set �I, we com-
pute its reduced scale proposals Ssp-re as described in
Section III-B.

2) We downsize each image I to obtain its image pyramid
{Ip} using its reduced scale proposals Ssp-re. For the
downsized images, we let I = I

⋃{Ip} be the expanded
set for image I. Thus, we have a new training/testing
set �+

I = {I}.
3) For each image in the new training/testing set, we use

the proposed FV-GANet to extract global texture feature
representation, following FV-CNN [12].

4) The extracted FV-GANet features are classified using
an Support Vector Machine (SVM) classifier. For each

image I, if its reduced scale proposals Ssp-re has M scale
levels (i.e. |Ssp-re| = M), then we have M + 1 category
labels for it after classification. Image I will be assigned
the category label which occurs the most frequently.

In our case, we use SVM for classification, which constructs
a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space [40]. It can be used for classification,
regression, or other tasks like outliers detection. Intuitively,
a good separation is achieved by the hyperplane that has
the largest distance to the nearest training-data point of
any class (so-called functional margin), since in general the
larger the margin the lower the generalization error of the
classifier.

LIU et al.: TEXTURE CLASSIFICATION IN EXTREME SCALE VARIATIONS USING GANET 3917

Algorithm 1 Divide Each Texture Class in the Synthesized
SForrest Into Subcategories to Find Its Scale Boundary

The evaluation of the texture classification performance
in step 3 uses FV-CNN [12] for texture feature description.
FV-CNN truncates a CNN network and regards the last
convolutional layer of a CNN as a filter bank, performing
orderless pooling of CNN descriptors using the Fisher Vector,
as is commonly done in standard bag of words approaches.
FV pools local features densely within the described regions
removing global spatial information, and is therefore more apt
at describing textures than objects. The pooled convolutional
features are extracted immediately after the last linear filtering
operator and are not normalized. These features are pooled into
a FV representation with 64 Gaussian components. FV-CNN
is remarkably flexible and effective. First, the convolutional
layers behaving like non-linear filter banks are better local
texture descriptors than the fully connected layers, which may
be useful for representing the overall shape of an object. Sec-
ond, the FV pooling encoder is suitable for texture description
since it is orderless and multi-scale. Third, it avoids expensive
resizing of input images since any image size can be processed
by convolutional layers.

We have to emphasize that the training set is divided into
subcategories via the scale boundary search algorithm pre-
sented in Algorithm 1. During classification, a testing image
is considered being correctly classified only it is assigned the
correct subcategory label.

IV. DATASETS AND EXPERIMENTAL SETUP

We test the proposed framework on four datasets: the
synthesized dataset SForrest derived from Forrest [41], ESVaT,
KTHTIPS2b [15] and OS (OS) [16]. Some example texture
images from Forrest, KTHTIPS2b and OS are shown in Fig. 6
and some examples from ESVaT are shown in Fig. 1.

SForrest is synthesized based on the Forrest dataset S f ,
which contains 17 texture classes and 935 images captured
in the wild. The method for synthesizing SForrest is as

Fig. 6. Some example textures from (a) Forrest, (b) KTHTIPS2b and (c) OS
(Original images and their corresponding annotated texture segments).

follows. For each image Ii ∈ S f , we firstly generate an
image pyramid �Ii = {Ii,p} with scale s = 0.95 using
the method detailed at the beginning of Section III-B and
illustrated in Fig. 3 (a). We synthesize new images �Ji =
{Ji,p} based on �Ii , in that for each Ii,p ∈ �Ii , we stitch
several reduplications of Ii,p together to generate a larger
image Ji,p , which is cropped at random, if needed, to have
the same size as Ii . We define �(S f) = {�Ii }i to be the
image pyramids of all images in image set S f , and �+(S f) to
be the combined image set S f

⋃{�Ji }i . �+(S f) is our final
synthesized dataset. For image editing, we use the method
proposed by Pérez et al. [42], introduced for the seamless
editing of image regions.

ESVaT is composed of 15,747 texture images from
15 material categories,3 each of which has extreme scale
variations and is further annotated to several subcategories
by the approach detailed in Section III-C. KTHTIPS2b [15]
has 11 texture categories and four physical samples per
category. Each physical sample is imaged with 3 viewing
angles, 4 illuminants and 9 different scales to obtain different
images. From OS [16] we use the same dataset as in [12].
It has 53,915 annotated material segments in 10,422 images
spanning 22 different classes.

Most scale variations in KTHTIPS2b and OS are small
compared with SForrest and ESVaT. SForrest and ESVaT
were specifically designed to test texture classification under
extreme scale variations. However we do continue to test
the performance of our framework on KTHTIPS2b and OS
to show that the proposed can give significantly improved
performance, even though our method is specifically designed
for extreme scale variations.

For SForrest, half of the class samples were selected at
random for training and the remaining half for testing, and
results are reported over ten random partitions of training
and testing sets. For ESVaT, we split images evenly into
training, validation and testing subsets. For KTHTIPS2b, one
sample is available for training and the remaining three for
testing, following [12]. For OS, we also use the same setup as
in [12]. SForrest and ESVaT are regrouped per Algorithm 1.
KTHTIPS2b and OS are augmented by building the
image pyramids using the scale proposals as discussed in
Sections III-B, but without regrouping.

3bark, bubble, brick, carpet, concrete, fabric, grass, granite, laminate, plastic,
stone, tile, wood, wheat and tree.

3918 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

Fig. 7. Example of a synthesized texture at different scales.

TABLE I

CLASSIFICATION SCORES OF EACH CNN IN GANET
ON THE SYNTHESIZED SFORREST DATASET

Implementation Details: We finetune VGGNet using
CUReT [14] and UIUC [2]. Our finetuning is carried out
for the whole network. The original training set of CUReT
and UIUC are expanded as follows. For each image I in the
training set � = {I}, we compute its reduced scale proposal
set Ssp-re, then downsize it to obtain M = |Ssp-re| downsized
images I

+ = {Ip} using its scale proposals Ssp-re. Thus,
we have a new training set �+ = I

+ ⋃
�. Note that each

image in I
+ has the same class label as I. We further perform

data augmentation and window cropping on the new training
set, following the method in [26]. By these means, the number
of training samples increases significantly, to 3.96 million,
which are split at random into three even subsets (S1, S2
and S3), which are then used to train the three CNN models
shown in Fig. 2, respectively.

In our GANet, we train three CNNs to perform crossover
and mutation for the filter strings from the same layer because
they show similar semantic features. Since we propose to use
three CNNs, we have three SVM classifiers. We use these
three classifiers to vote for texture categories. Following the
work in [12], we also normalize descriptors by L2 norm and
let the learning constant be C = 1.

The network is implemented following the parameter setting
of VGG net [27]. Specifically, the hyper parameters of this
network include: mini-batch size (4), learning rate (1e-6),
momentum (0.9), weight decay (0.002), and maximum number
of training iterations (600,000). For the cost function, we use
the same as that of VGG net [27].

A. Experimental Tests

1) GANet: The classification results on SForrest are listed
in Table I. FV-CNN means the original VGGNet. FV-CNN
(S1) means that FV-CNN is finetuned using S1. FV-CNN
(S1 + S2 + S3) means that FV-CNN is finetuned using all
the three subset S1 + S2 + S3. FV-CNN-GA-n (n = 1, 2, 3)
are the three CNN models finetuned using GA. FV-GANet
is to combine the three FV-CNN-GA-n models by voting for
texture categories. The majority vote algorithm is an algorithm
for finding the majority of a sequence of elements using linear

TABLE II

PERFORMANCE EVALUATION OF EACH COMPONENT OF OUR PROPOSED
SCALE SEARCHER ON THE SYNTHESIZED SFORREST DATASET

TABLE III

PERFORMANCE EVALUATION OF EACH COMPONENT OF OUR

PROPOSED FRAMEWORK ON SFORREST AND KTHTIPS2B

time and constant space. In its simplest form, the algorithm
finds a majority element, if there is one: that is, an element
that occurs repeatedly for more than half of the elements of
the input [43].

From Table I, we can observe that including GA improves
performance, since the individual models FV-CNN-GA-n out-
perform both FV-CNN (S1) and FV-CNN (S1+S2+S3). When
combined, one can observe that FV-GANet is significantly
better than FV-CNN.

The performance evaluation how crossover and muta-
tion change the performance of the proposed method is
shown Table II. We used three subsets to train three
CNNs separately. we can observe that including GA com-
ponents (crossover and/or mutation) improves performance.
In other words, FV-CNN-GA-n(Sn) with the two components
(crossover+mutation) works better than FV-CNN-GA-n(Sn)
with only one component (crossover or mutation). However,
both of them, i.e., FV-CNN-GA-n(Sn) with one or two
components (crossover and/or mutation) works better than
FV-CNN-GA-n (Sn) without GA components. In addition,
from this table, we can observe that crossover works slightly
better than mutation. One reason might be that we get two new
children strings for crossover but only one new child string
for mutation. Thus, the former brings more diversity into the
network.

2) Component of Scale Searcher: Scale searcher results are
shown in Table III. FV-GANet means that we only use FV-
GANet. FV-GANet+SP means we use FV-GANet and the
Scale Proposals (SP) component. FV-GANet+SP+RE means
we use FV-GANet and the REduced SP. The pipeline about
how to get the training set for these three cases is shown
in Fig. 8.

The results in Table III clearly show that the combination
of FV-GANet, SP and RE improves the classification perfor-
mance significantly. It demonstrates that texture classification
in extreme scale variations can benefit from SP. After we
combine RE, the number of scale proposals drops significantly
since RE discards many errors in scale proposals. To check
the accuracy of the predicted scale levels for each image by
FV-GANet+SP+RE, we use the mode of the predicted scale

LIU et al.: TEXTURE CLASSIFICATION IN EXTREME SCALE VARIATIONS USING GANET 3919

Fig. 8. (Illustration of training set for network training. (a) FV-GANet block. (b) Training set using for FV-GANet, FV- GANet+SP, and FV-GANet+SP+RE).

TABLE IV

PERFORMANCE EVALUATION USING DIFFERENT SCALE

PROPOSAL SEARCHERS ON SFORREST AND KTHTIPS2B

levels to compare with ground truth; the accuracy for the syn-
thesized dataset is 97.4%, clearly demonstrating the accuracy
of texture classification in the extreme scales of SForrest.

3) Different SP Searchers: We compare our SP method
with other possible SP searchers such as Fast Fourier Trans-
form (FFT) and the method by Lindeberg [22]. As shown
in Fig. 9, we use the same pipeline as FV-GANet+SP+RE
shown in Fig. 8. The difference is that FV- GANet+FFT
using FFT to find the texture period instead of the method
proposed in Section III-B. To find the texture period by FFT,
we use the method proposed in Matsuyama et al. [44]. Results
are shown in Table IV, which clearly demonstrate that our
method works the best. The reason that BING works better
than Lindeberg [22] is that BING return almost all of the
potential texels in an image. Although BING might not be
the best method to find texels without redundancy, these
redundant texel candidates satisfy the prerequisite for texture
classification with extreme scale variations to be successful,
i.e., finding all of the existing scale proposals. In addition,
BING run in real time (300 fps), which speeds up the training
of a network.

One possible reason that FV-GANet+FFT works poorly is
that the texture images in the test set have other uninformative
variations, such as illumination and rotation changes, besides
scale variations.

4) Parameter Evaluation: In our approach, we have two
important threshold parameters: η, the threshold similarity
measure of two texels, and K , the number of similar texels of a
candidate texel, as discussed in Section III-B. For parameter η,
we use the following statistical value. Starting with dataset
CUReT having 61 texture classes S = {S1, . . . , SC}, we adopt
LBP and nearest neighbor to classify the textures in CUReT.
For those correctly classified textures in each class we compute
the image-wise similarity based on LBP histograms, letting φi

denote the minimal similarity in class Si , and then setting
η = min{φi }. We find that although η is derived based on
CUReT it works well for other datasets.

For parameter K , we determine its value empirically as
shown in Fig. 10. The performance (and computational com-
plexity) of our method increases with K , with performance
very much leveling off at K = 20, so we have set K = 20
for all experiments.

5) Results for KTHTIPS2b: The results for KTHTIPS2b are
shown in Table IV. One can observe that the performance
improvement for KTHTIPS2b is similar to that for the SFor-
rest. This demonstrates that our scale proposal approach gen-
eralizes to improving the texture classification in KTHTIPS2b
which has small scale variations. Note that although images
in KTHTIPS2b are spread over nine scales, we can find that
there also several scale variations within one image.

3920 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

Fig. 9. Illustration of training set for training the network FV-GANet+FFT, where FV-GANet block is shown in Fig. 8 (a).

TABLE V

A COMPARISON OF OUR PROPOSED METHOD WITH THE

STATE OF THE ART IN TEXTURE DESCRIPTORS

Fig. 10. Classification performance as a function of paramter K .

V. COMPARATIVE EVALUATION

For comparison purposes, Table V compares our proposed
approach with recent state of the art texture features including
LBP [4], SIFT [45], IFV+DeCAF [6], PR-proj [30], RAID-G
[8] and B-CNN [33]. For methods IFV+DeCAF, PR-proj and
FV-CNN, we adopt the code provided by the original authors.
For LBP and SIFT we use our own implementation. Note
that IFV+DeCAF, PR-proj and FV-CNN are all fine-tuned
using the same training set as our approach. The results of
RAID-G [8] and B-CNN [33] are quoted directly from their
original papers.

From Table V, we can see that our proposed approach
achieves consistently and significantly better results than all
methods in comparison on all four evaluated datasets, partic-
ularly providing a significant performance margin in excess
of 10% on SForrest and ESVaT over previous state of the
art, almost certainly because of the extreme scale variations
present in those datasets, relative to the more modest gains in
KTHTIPS2b, which has less extensive scale variations. Some
texture classification example are shown in Fig. 11. Although
some of textures are quite challenging, our method classifies
them correctly.

Fig. 11. Example of a synthesized texture at different scales.

In Table V, we can find the two methods SWM and DRLBP
does not work so well for ESVaT although they perform very
well for rotated textures [46], [47]. For example, SWM got
42.5% and DRLBP got 41.4% compared to 67.9% by our
method. It is because both SWM and DRLBP are designed for
rotation invariation and ESVaT is a dataset showing extreme
scale variation. In addition, we also show the experimental
comparison between our methods and DeepTen [48] and
FASON [49]. From Table V, we can find that both DeepTen
and FASON achieve quite good performance for KTHTIPS-2b
but the performance for ESVat dataset is also not so good
compared to our method. It is because that the dataset ESVaT
is a dataset showing extreme scale variation and most of
existing methods can not work so well. It is also verified that
developing a new method for extreme-scale-variation texture
analysis is an important issue.

As we mentioned in Section II, existing CNN architectures
are not robust to appearance variations such as rotation, scale
and noise. Specifically, for the scale variation, as shown
in Table V, both FV-CNN and IFV+DeCAF are CNN archi-
tectures. They got very good performance for KTHTIPS-2b
(82.1% and 77.5%) but not so well for ESVaT (56.2%
and 53.3%). The major difference between KTHTIPS-2b
and ESVaT is the extreme scale variation in ESVaT. For
the noise variations, please refer to [7]. In [7], Liu et al.
perform extensive experiments to evaluate the performance
variations of CNN architectures when textures are degraded by
noise. For the rotation variation, CNN architectures have the
capability of processing transforms including small rotations.
Such capability is endowed with the inherent properties of
convolutional operations, redundant convolutional filters, and
hierarchical spatial pooling. However, their ability in han-
dling significant local and global image rotations remains
limited [50], [51]. Zhou et al. proposed the Oriented Response
Networks for rotation robustness, but it need extra rotating
filters.

LIU et al.: TEXTURE CLASSIFICATION IN EXTREME SCALE VARIATIONS USING GANET 3921

VI. CONCLUSIONS

Overall, we have proposed a highly effective framework
for recognizing textures with extreme scale variations, first
searching scale proposals and then discarding errors in scale
proposals by exploring dominant texture primitives. We have
proposed a novel GANet network for better texture feature
learning. Extensive experiments on four challenging texture
benchmarks show that the proposed framework works much
better than existing methods, especially for those textures with
extreme scale variations. In addition, our method is efficient
since the scale proposal searching and reducing methods are
very fast.

REFERENCES

[1] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer Vision
Using Local Binary Patterns. London, U.K.: Springer, 2011.

[2] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation
using local affine regions,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 8, pp. 1265–1278, Aug. 2005.

[3] L. Liu, P. Fieguth, Y. Guo, X. Wang, and M. Pietikäinene, “Local binary
features for texture classification: Taxonomy and experimental study,”
Pattern Recognit., vol. 62, pp. 135–160, Feb. 2017.

[4] T. Ojala and M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-
scale and rotation invariant texture classification with local binary
patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 971–987, Jul. 2002.

[5] E. Shechtman and M. Irani, “Matching local self-similarities across
images and videos,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2007, pp. 1–8.

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
“Describing textures in the wild,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 3606–3613.

[7] L. Liu, P. Fieguth, X. Wang, M. Pietikäinen, and D. Hu, “Evaluation of
LBP and deep texture descriptors with a new robustness benchmark,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 69–86.

[8] Q. Wang, P. Li, W. Zuo, and L. Zhang, “RAID-G: Robust estimation of
approximate infinite dimensional Gaussian with application to material
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 4433–4441.

[9] L. Liu, S. Lao, P. W. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen,
“Median robust extended local binary pattern for texture classification,”
IEEE Trans. Image Process., vol. 25, no. 3, pp. 1368–1381, Mar. 2016.

[10] Y. Dong, J. Feng, L. Liang, L. Zheng, and Q. Wu, “Multiscale sampling
based texture image classification,” IEEE Signal Process. Lett., vol. 24,
no. 5, pp. 614–618, May 2017.

[11] Y. Xu, X. Yang, H. Ling, and H. Ji, “A new texture descriptor using
multifractal analysis in multi-orientation wavelet pyramid,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010,
pp. 161–168.

[12] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep filter banks for texture
recognition and segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3828–3836.

[13] P. Brodatz, Textures: A Photographic Album for Artists and Designers.
New York, NY, USA: Dover, 1966.

[14] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink,
“Reflectance and texture of real-world surfaces,” ACM Trans. Graph.,
vol. 18, no. 1, pp. 1–34, Jan. 1999.

[15] B. Caputo, E. Hayman, and P. Mallikarjuna, “Class-specific material
categorisation,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2005,
pp. 1597–1604.

[16] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Opensurfaces: A richly
annotated catalog of surface appearance,” ACM Trans. Graph., vol. 32,
no. 4, p. 111, Jul. 2013.

[17] L. Liu and P. Fieguth, “Texture classification from random features,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 574–586,
Mar. 2012.

[18] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” Int. J. Comput. Vis., vol. 73, no. 2, pp. 213–238,
2007.

[19] B. Julesz, “Textons, the elements of texture perception, and their
interactions,” Nature, vol. 290, no. 5802, pp. 91–97, Mar. 1981.

[20] X. Xie and M. Mirmehdi, A Galaxy of Texture Features. London, U.K.:
Imperial College, 2008.

[21] L. Liu, J. Chen, P. Fieguth, G. Zhao, R. Chellappa, and
M. Pietikäinen, “From BoW to CNN: Two decades of texture repre-
sentation for texture classification,” Int. J. Comput. Vis., vol. 127, no. 1,
pp. 74–109, Jan. 2018.

[22] T. Lindeberg, “Feature detection with automatic scale selection,” Int. J.
Comput. Vis., vol. 30, no. 2, pp. 79–116, Nov. 1998.

[23] M. Mirmehdi and M. Petrou, “Segmentation of color textures,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 2, pp. 142–159, Feb. 2000.

[24] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “BING: Binarized
normed gradients for objectness estimation at 300 fps,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3286–3293.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 159–161.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Neural Inf. Process.
Syst., 2012, pp. 1097–1105.

[28] L. Zhang and S. Rusinkiewicz, “Learning to detect features in texture
images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6325–6333.

[29] W. Xian et al., “TextureGAN: Controlling deep image synthesis with
texture patches,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 8456–8465.

[30] K. Simonyan, A. Vedaldi, and A. Zisserman, “Learning local feature
descriptors using convex optimisation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 8, pp. 1573–1585, Aug. 2014.

[31] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object
detectors emerge in deep scene CNNs,” in Proc. Int. Conf. Learn.
Represent., May 2014, p. 1.

[32] O. E. David and I. Greental, “Genetic algorithms for evolving deep
neural networks,” in Proc. Annu. Conf. Genet. Evol. Comput., Jul. 2014,
pp. 1451–1452.

[33] J. Lamos-Sweeney, “Deep learning using genetic algorithms,”
M.S. thesis, Dept. Comput. Sci., Rochester Inst. Technol., Rochester,
NY, USA, 2012.

[34] C. Steininger, “Genetic algorithms with deep learning for robot naviga-
tion,” M.S. thesis, Imperial College, London, U.K., 2016.

[35] L. Xie and A. Yuille, “Genetic CNN,” in Proc. IEEE Int. Conf. Comput.
Vis., Oct. 2017, pp. 1388–1397.

[36] S. Ding, H. Li, C. Su, J. Yu, and F. Jin, “Evolutionary artificial neural
networks: A review,” Artif. Intell. Rev., vol. 39, no. 3, pp. 251–260,
Mar. 2013.

[37] A. Webb and K. Copsey, Statistical Pattern Recognition, 3rd ed.
Hoboken, NJ, USA: Wiley, 2011.

[38] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[39] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, pp. 607–609, Jun. 1996.

[40] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[41] The Forrest Dataset. Accessed: Mar. 22, 2019. [Online]. Available:
http://textures.forrest.cz/

[42] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graph., vol. 22, no. 3, pp. 313–318, Jul. 2003.

[43] R. S. Boyer and J. S. Moore, MJRTY—A Fast Majority Vote Algorithm,
Dordrecht, The Netherlands, Kluwer Academic, 1991, pp. 105–117.

[44] T. Matsuyama, S.-I. Miura, and M. Nagao, “Structural analysis of
natural textures by Fourier transformation,” Comput. Vis., Graph., Image
Process., vol. 24, no. 3, pp. 347–362, Dec. 1983.

[45] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[46] A. Depeursinge, Z. Püspöki, J. P. Ward, and M. Unser, “Steerable
wavelet machines (SWM): Learning moving frames for texture clas-
sification,” IEEE Trans. Image Process., vol. 26, no. 4, pp. 1626–1636,
Apr. 2017.

[47] R. Mehta and K. Egiazarian, “Dominant rotated local binary patterns
(DRLBP) for texture classification,” Pattern Recognit. Lett., vol. 71,
pp. 16–22, Feb. 2016.

3922 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

[48] H. Zhang, J. Xue, and K. Dana, “Deep TEN: Texture encoding net-
work,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2017,
pp. 708–717.

[49] X. Dai, J. Y.-H. Ng, and L. S. Davis, “FASON: First and second order
information fusion network for texture recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 6100–6108.

[50] Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Oriented response networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2017,
pp. 519–528.

[51] L. Liu et al.. (Sep. 2018). “Deep learning for generic object detection:
A survey.” [Online]. Available: https://arxiv.org/abs/1809.02165

Li Liu (SM’19) received the B.Sc. degree in com-
munication engineering, the M.Sc. degree in pho-
togrammetry and remote sensing, and the Ph.D.
degree in information and communication engi-
neering from the National University of Defense
Technology (NUDT), China, in 2003, 2005, and
2012, respectively. She joined the faculty of NUDT
in 2012, where she is currently an Associate Profes-
sor with the College of System Engineering. During
her Ph.D. study, she was a Visiting Student at the
University of Waterloo, Canada, from 2008 to 2010.

From 2015 to 2016, she was with the Multimedia Laboratory, The Chinese
University of Hong Kong. From 2016 to 2018, she was a Senior Researcher
with the Machine Vision Group, University of Oulu, Finland. Her current
research interests include facial behavior analysis, texture analysis, image
classification, and object detection and recognition. She was the Co-Chair
of five International Workshops at CVPR, ICCV, ECCV, and ACCV. She will
be lecturing a tutorial at CVPR’19. She was a Guest Editor of special issues
of IEEE TPAMI and IJCV.

Jie Chen received the M.S. and Ph.D. degrees
from the Harbin Institute of Technology, China,
in 2002 and 2007, respectively. He has been a Senior
Researcher with the Center for Machine Vision
and Signal Analysis, University of Oulu, Finland,
since 2007. In 2012 and 2015, he visited the Com-
puter Vision Laboratory, University of Maryland,
and the School of Electrical and Computer Engineer-
ing, Duke University, respectively. He has also been
with the Peng Cheng Laboratory, China, since 2018.
His research interests include pattern recognition,

computer vision, machine learning, dynamic texture, deep learning, and
medical image analysis. He was the Co-Chair of the International Workshops
at ACCV, CVPR, and ICCV. He was a Guest Editor of special issues of IEEE
TPAMI, IJCV, and Neurocomputing. He is an Associate Editor of The Visual
Computer.

Guoying Zhao received the Ph.D. degree in com-
puter science from the Chinese Academy of Sci-
ences, Beijing, China, in 2005. She is currently
a Professor with the Center for Machine Vision
and Signal Analysis, University of Oulu, Oulu,
Finland, where she has been a Senior Researcher
since 2005 and an Associate Professor since 2014.
In 2011, she was selected as the highly competitive
Academy Research Fellow. She was a Nokia Visiting
Professor in 2016. She has authored or co-authored
more than 180 papers in journals and conferences.

She has authored/edited three books and eight special issues in journals.
Her current research interests include image and video descriptors, facial-
expression and microexpression recognition, gait analysis, dynamic-texture
recognition, human motion analysis, and person identification. Her papers
have currently more than 9200 citations in Google Scholar (H-index 43).
She is a Co-Publicity Chair of the 2018 IEEE International Conference on
Automatic Face and Gesture Recognition, has served as the Area Chair for
several conferences, and is an Associate Editor of Pattern Recognition, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
and Image and Vision Computing. She has lectured tutorials at the 2006 Inter-
national Conference on Pattern Recognition, the 2009 IEEE International
Conference on Computer Vision, the 2013 Scandinavian Conference on Image
Analysis, and the 2018 IEEE International Conference on Automatic Face
and Gesture Recognition. She was Co-Chair of the European Conference on
Computer Vision, the IEEE International Conference on Computer Vision,
the IEEE Conference on Computer Vision and Pattern Recognition, the Asian
Conference on Computer Vision, and the British Machine Vision Conference.
Her research has been reported by Finnish TV programs, newspapers, and
MIT Technology Review.

Paul Fieguth received the B.A.Sc. degree in elec-
trical engineering from the University of Waterloo,
ON, Canada, in 1991, and the Ph.D. degree in
electrical engineering from the Massachusetts Insti-
tute of Technology, Cambridge, in 1995. He joined
the Faculty of the University of Waterloo in 1996,
where he is currently a Professor in systems design
engineering. He has held visiting appointments at the
University of Heidelberg, Germany, INRIA/Sophia,
France, the Cambridge Research Laboratory, Boston,
and Oxford University and the Rutherford Appleton

Laboratory, U.K., and has held postdoctoral positions in computer science at
the University of Toronto and in information and decision systems at MIT. His
research interests include statistical signal and image processing, hierarchical
algorithms, data fusion, and the interdisciplinary applications of such methods,
particularly to remote sensing.

Xilin Chen (F’16) is currently a Professor with the
Institute of Computing Technology, Chinese Acad-
emy of Sciences (CAS). He has authored one book
and more than 200 papers in refereed journals and
proceedings in the areas of computer vision, pat-
tern recognition, image processing, and multimodal
interfaces. He is a fellow of IAPR and CCF. He
served as an Organizing Committee Member for
many conferences, including a General Co-Chair of
FG13/FG18 and a Program Co-Chair of ICMI 2010.
He is/was an Area Chair of CVPR 2017/2019 and

ICCV 2019. He is currently an Associate Editor of the IEEE TRANSACTIONS
ON MULTIMEDIA, a Senior Editor of the Journal of Visual Communication
and Image Representation, a Lead Editor of the Journal of Computer Science
and Technology, and the Associate Editor-in-Chief of the Chinese Journal
of Computers and the Chinese Journal of Pattern Recognition and Artificial
Intelligence.

Matti Pietikäinen (F’12) received the D.Sc. degree
in technology from the University of Oulu, Finland.
From 1980 to 1981 and from 1984 to 1985, he vis-
ited the Computer Vision Laboratory, University of
Maryland. He has made fundamental contributions,
e.g., to local binary pattern (LBP) methodology,
texture-based image and video analysis, and facial
image analysis. He is currently a Professor with the
Center for Machine Vision and Signal Analysis, Uni-
versity of Oulu. He has authored about 350 refereed
papers in international journals, books, and confer-

ences. He is an IEEE Fellow for contributions to texture and facial image
analysis for machine vision. He was the President of the Pattern Recognition
Society of Finland from 1989 to 1992 and was named its Honorary Member
in 2014. From 1989 to 2007, he served as a member of the Governing Board of
the International Association for Pattern Recognition (IAPR) and became one
of the founding fellows of the IAPR in 1994. In 2014, his research on LBP-
based face description was awarded the Koenderink Prize for Fundamental
Contributions in Computer Vision. He was a recipient of the prestigious IAPR
King-Sun Fu Prize 2018 for fundamental contributions to texture analysis
and facial image analysis. His papers have about 53 500 citations in Google
Scholar (h-index 78), and eight of these have over 1350 citations. He was
an Associate Editor of IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE (TPAMI), Pattern Recognition, IEEE TRANSAC-
TIONS ON FORENSICS AND SECURITY, and Image and Vision Computing
journals. He currently serves as an Associate Editor for IEEE TRANSACTIONS

ON BIOMETRICS, BEHAVIOR AND IDENTITY SCIENCE and a Guest Editor for
special issues of IEEE TPAMI and the International Journal of Computer
Vision. He was named a Highly Cited Researcher by Clarivate Analytics
in 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

