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Abstract—For a typical surface automated visual inspection (AVI) 

instrument of planar materials, defect classification is an 

indispensable part after defect detection, which acts as a crucial 

precondition for achieving the on-line quality inspection of end 

products. In the industrial environment of manufacturing flat 

steels, this task is awfully difficult due to diverse defect 

appearances, ambiguous intraclass and interclass distances. This 

paper attempts to present a focused but systematic review of the 

traditional and emerging automated computer-vision-based 

defect classification methods by investigating approximately 140 

studies on three specific flat steel products of con-casting slabs, 

hot-rolled steel strips and cold-rolled steel strips. According to the 

natural image processing procedure of defect recognition, the 

diverse approaches are grouped into five successive parts: image 

acquisition, image preprocessing, feature extraction, feature 

selection and defect classifier. Recent literature has been reviewed 

from an industrial goal-oriented perspective to provide some 

guidelines for future studies, as well as to recommend suitable 

methods for boosting the surface quality inspection level of AVI 

instruments. 

 
Index Terms—Automated visual inspection (AVI), automated 

optical inspection (AOI), surface defect classification, flat steel, 

survey. 

I. INTRODUCTION 

LAT STEEL acts as a vital and fundamental material for 

steelmaking industry, as well as the related planar material 

industries. Any surface defects not treated in time will threaten 

the steel product quality, which might cause substantial 

economic and reputation cost to both the steel manufacturers 

and end customers [1-5]. In-situ surface defect inspection is 

attracting increasing attention from flat steel industries. This 

task is mainly handled by automated visual inspection (AVI) 
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instruments [6-9]. 

A typical AVI instrument mainly realizes the two 

fundamental functions of defect detection and classification, 

whose results are used to adjust the relevant configurations of 

the production line to guarantee the quality of final steel 

product [5, 10, 11]. It is to be observed that the main distinction 

between defect detection and classification is that the former 

cannot identify the specific defect types after extracting and 

selecting the features of defect images. The primary target of 

defect detection is to differentiate defective and defect-free 

regions, and the task of identifying and labelling concrete types 

of defects is left to the classification process. To declare the 

twin problems clearly, a survey of the framework of the defect 

inspection was raised in [12] by separately reviewing the defect 

detection (Part-I) and defect classification (Part-II), in which 

Part-I has already been reviewed. Thus, this paper will review 

Part-II from five successive components: image acquisition, 

image pre-processing, feature extraction, feature selection and 

defect classifier. 

In general, as shown in Fig. 1, surface image frames of flat 

steel are collected by image acquisition components. Only 

through image pre-processing, feature extraction, feature 

selection and classifier selection, can the potential defects in the 

continuously acquired image streams be finally recognized and 

assigned with the closest defect labels. Essentially, feature 

extraction and feature selection are dedicated to learning the 

temporal, spatial [13-15] and spectral features [16, 17] in 

images and even the intrinsic priors in the production line [18] 

to narrow the intraclass variation and expand the interclass 

distance. In defect classification, excellent learning features 

favor pattern recognition. Compared with defect detection, 

which mainly affects the time-efficiency and missed detection 

rate of the AVI instrument, defect classification directly 

determines its final user experience, as the cognitive 

performance of defect patterns represents the troubleshooting 

ability of the AVI instrument. Fortunately, advanced imaging 

techniques and emerging machine learning methods jointly 

resist the challenges of unsatisfactory imaging environments 

and quasi real-time requirements [5], forcefully driving the 

progress of defect recognition, especially in learning 

classification [8]. To further the work in [12], this survey 

concentrates on the up-to-date theoretical and technological 

progress of automated visual defect classification in the recent 

twenty years to provide a reference for researchers in this field. 

In particular, the literature over the last ten years accounts for 

approximately 75% of the abovementioned advancements. 
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Fig.1. Overall paper organization of surface defect recognition for flat steel.

The composition of this paper is organized as follows. 

Following the introduction section, several relevant surveys are 

reviewed in Section II. Image acquisition, image preprocessing, 

feature extraction, feature selection and defect classifier are 

successively detailed from Section III to Section VII. Section 

VIII concludes this paper with summaries and comments on 

future trends. The overall organization of this paper is 

illustrated in Fig. 1. 

II. PRIOR LITERATURE REVIEW 

In automated inspection, defect detection and defect 

classification are regarded as pre- and post- relationships; the 

latter is to identify the specific types of defects based on the 

detection results of the former. Both of these steps play 

important roles in ensuring the quality of industrial products. 

Due to the low cost, high quality and easy-of-use of visual 

sensing technologies, the development of computer vision 

methods for industrial applications has been grown 

exponentially, and some AVI surveys (such as [19-21]) with a 

wide range of objects have been conducted. However, these 

surveys are insufficiently updated, and the methods involved do 

not reflect the latest level of algorithms in contemporary 

development. Gradually, researchers began to focus on specific 

planar materials such as asphalt pavement [22, 23], fabric 

[24-26], timber [27] and semiconductors [28]. Notably, in 2014, 

a comprehensive AVI review reporting both defect detection 

and classification methods for diverse types of steel products of 

slab, billet, plate, hot strip, cold strip and rod/bar by Neogi [29]. 

Sun et al. [30] offered a supplement to Neogi [29]. Recently, 

Czimmermann et al. [31] reviewed the latest development of 

visual-based automatic defect detection and classification 

methods for various materials such as metals, ceramics and 

textiles. However, these surveys paid more attention to the 

detection methods, and they simply summarized the research 

progress of the classification methods through supervised and 

unsupervised classifiers. In addition to the performance of the 

classifiers, the characteristic of the extracted features is another 

important factor influencing the precision of classification 

methods. This article overviews the latest algorithm and 

achievements from image acquisition, image preprocessing, 

feature extraction, feature selection and classifier selection. In 

response to previous work [12], this paper tries to present a twin 

survey on defect classification to support AVI development for 

relevant industrial manufacturing jointly. 

III. IMAGE ACQUISITION 

Image acquisition occurs during the first step of defect 

classification, and the quality of the acquired images directly 

affects the performance of the subsequent processing. At 

present, the commonly used imaging methods are based on 

range imaging and intensity imaging. Pernkopf and O’Leary 

conducted an summary of these two image acquisition ways for 

the AVI on metallic surfaces in [32]. Because the former is 

limited to surface defects with three-dimensional properties, e.g. 

cavities, scratches, and nicks, and it is not competitive with the 

latter in terms of spatial resolution and acquisition speed, 

intensity imaging is most commonly used in real-world flat 

steel production lines. Sun et al. [30] surveyed intensity 

imaging acquisition technologies in detail from three aspects: 

camera, light source and lighting method. According to the 

characteristics of the industrial environment of different steel 

production lines, this chapter will briefly summarize and 

supplement these three aspects.  

A. Camera 

Industrial camera is a core component of flat steel surface 

automated visual inspection equipment. Its working principle 

can be briefly summarized as the conversion of continuous 

optical signals on the photosensitive sensors into digital signals. 

The commonly used industrial camera sensors are 

complementary metal-oxide-semiconductor (CMOS) and 

charge-coupled devices (CCDs). The main distinction between 

CCD and CMOS is their readout architecture. The charge 

information stored in CCD sensors needs to be transmitted to 

the readout register in sequence under the control of 

synchronous signal. On the contrary, CMOS can directly select 

each row to readout through the row and column select circuits. 

Compared with CCD, CMOS has fewer components, less 

power consumption and faster readout speed. Although the 

development of CCD is relatively mature, CMOS is 

comparable in most aspects. According to the arrangement of 

the photosensitive unit, cameras can be divided into area array 
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cameras [1, 3, 4, 7] and linear array cameras [33-36]. The area 

array camera can take a two-dimensional image only once 

triggered outside. It is easy to operate and the result is intuitive 

but it is not suitable for the scenes that require large field of 

view and high resolution. The linear array camera with wide 

dynamic range and fast data transmission is suitable for 

application in the industry field with high-precision 

requirements. However, when capturing 2D images, it requires 

the motion control system to perform progressive scanning at a 

constant speed. 

B. Light Source and Lighting Method 

High-quality lighting reduces the computational burden of 

image processing, and the light source and lighting method play 

an important role in image acquisition. Some classical light 

devices for flat steel surface inspection illumination are 

incandescent lights, halogen lamps, light-emitting diode (LED) 

lamps and fluorescent lamps. Among them, LED is the most 

widely used luminaire in machine vision applications due to its 

advantages of longevity and low heat production [35, 37, 38]. 

The basic lighting methods include diffuse, bright field and 

dark field illumination. Diffuse illumination is a 

non-directional uniform lighting method, and it can realize the 

captured images with few shadows or highlights. Diffuse 

lighting can be appropriately applied for the surfaces with 

complex angles (e.g. non-Lambertian surfaces). In bright field 

illumination, the illumination direction is roughly 

perpendicular to the surface to be inspected and the surface 

appears bright. In contrast, in dark field illumination, the 

illuminated surface appears dark due to the large angle between 

the incident light and the surface normal vector. Combining 

these three illumination methods can greatly benefit defect 

detection and classification. For example, the composite of 

bright and dark domains mainly depends on each other as 

supplements; thus, the surface images have continuous gray- 

level and the edge details are greatly protected [5, 39-42]. 

C. Brief Summary of Image Acquisition 

Generally, the challenges that image acquisition faces are the 

greatest in all parts of flat steel surface defect classification. 

Intensity imaging technology is largely dependent on the 

illumination condition, which is the most vulnerable to 

interference in production. The pollution and jitter of the CCD 

camera lens are also deeply troubling. Therefore, optimization 

of image acquisition equipment is urgently needed to overcome 

these problems. For instance, Tao et al. [43]used an ion air gun 

to clean surface dust and fibers caused by the effect of 

electrostatic adsorption. In view of the limitation of intensity 

imaging techniques, Zhao et al. [44]combined the traditional 

line array scanning and laser three-dimensional scanning 

strategies to suppress the respective imaging system’s 

limitation. Beyond that, it is important to note that the intensity 

imaging techniques still rely on the reflection property of the 

entire surface, so it is necessary to explore imaging methods 

that are less sensitive to the changes in reflection factors. 

D. Quick Glance of Defect Types 

Fig. 2 (a) shows six types of defects on continuous casting 

slabs, including cracks, scratches, scales, nonuniform lighting 

effects, burrs, and slag marks (part of the defect samples come 

from the application of the system proposed in [5] in the on-line 

inspection of the surface quality of a continuous casting slab 

[45]). Cracks, scratches and burrs are natural defects, and the 

remaining three samples belong to pseudo-defects. The natural 

defects may lead to accidents due to the poor quality of the 

slabs. However, cracks are challenging to detect because of the 

interference of scales, slag marks, and uneven illumination, 

which are similar to the appearance of cracks. The most critical 

goal of defect classification for continuous casting slabs is to 

distinguish cracks from the other three similar pseudo-defects. 

Fig. 2 (b) shows eighteen types of image samples of hot-rolled 

steel strips, because the surfaces usually covered with many 

scales, which increase the possibility of misclassifying other 

types of defects. Fig. 3 (c) shows twelve types of image defects 

of cold-rolled steel strips, including hole, macular, emulsion 

rust, under picked, ripple, stain, corrosion, longitudinal scratch, 

wrinkle, scale, pit and transverse crack. The surface quality of 

the cold-rolled strip is usually better than the other two flat steel. 

Therefore, the number, size and degree of defects are also the 

most demanding. 

IV. IMAGE PREPROCESSING 

Weak correlation information and strong interference 

information influence the reliability of feature extraction and 

defect classification. The primary purpose of image 

preprocessing is to solve this problem. This section will 

introduce this from three sub-steps of image denoising, image 

enhancement and image segmentation.  

A. Image Denoising  

In the process of acquiring and transmitting flat steel images 

in industrial automated visual inspection, several kinds of noise 

can be caused by the influence of unstable sensor attributes, 

poor industrial environments and transmission decoding 

processing errors. For example, if the image sensor runs for a 

long time and the temperature is too high, or the field of view is 

not bright enough and the brightness is lacking when acquiring 

images, Gaussian noise will be generated; if there is a strong 

interference in the image signal of the transmission channel of 

the image sensor, the transmission errors will result in some 

random white points or black points, which are known as salt 

and pepper noise (pulse noise). This noise is not related to the 

research object (i.e., defects) and disturbs the observable 

information of the image. 

To reduce the impact of the noise on the obtained flat steel 

surface images, filters such as the median filter [46-48] (for 

impulsive noise), Gaussian smoothing filter [49-51] (for 

Gaussian white noise), mean filter [52], bilateral filter [45, 53, 

54] and Wiener filter [55] are widely used. Among them, it is 

proved that the median filters have the best performance on the 

suppression of salt and pepper noise, and the Gaussian filter and 

Wiener filter have better effects on Gaussian noise. However, a 
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Fig. 2.  Typical defect image samples. (a) Continuous casting slabs, (b) hot-rolled steel strips and (c) cold-rolled steel strips. 

single filter may not only smooth the image but also miss the 

details of the image. To solve this problem, scholars have 

attempted to combine multiple filters to suppress noise. Li et al. 

[56] used a median filter to smooth the casting images first and 

then applied Wiener filter to improve these images and reduce 

the noise effects. Chu et al. [39, 57] improved the median filter 

and bilateral filter to remove salt-and-pepper noise and 

Gaussian noise, respectively. The optimized filters have been 

very effective not only in filtering mixed noise, but also in 

maintaining edge details. In addition to the filtering methods, 

wavelet transform methods based on the frequency domain are 

also often utilized to suppress noise [58-61]. The wavelet 

smoothing calculation is based on multilevel 2D discrete 

wavelet transform, which modifies the decomposed detail 

coefficients, and then uses the approximation coefficients to 

reconstruct the real signal. Wavelet smoothing can sharpen an 

object’s edges and restrain noise; moreover, it can enhance the 

positioning precision of the edges and the depiction of the 

images. 

B. Image Enhancement 

Image enhancement is to enhance the global or local 

effective information of the test image. Reasonable image 

enhancement technologies can enhance the features of useful in 

the image and suppress the redundant ones. This approach can 

usefully improve the appreciation and enhance the 

characteristics of the image to meet the needs of subsequent 

analysis (i.e., defect detection and defect classification). The 

two basic image enhancement methods are based on spatial 

domain and frequency domain, respectively. For spatial domain 

methods, histogram equalization makes the image clearer by 

equalizing the histogram of the original image [55, 61, 62]. In 

addition, the grayscale intensity transformation enhances the 

image contrast by changing (i.e., stretching, compressing or 

transforming) the grayscale dynamic range of the image [18, 48, 

63]. For frequency domain methods, 2-D Fourier Transform 

(FT) transforms the test images into the frequency domain, and 

then the low-pass or high-pass filter is used to filter the signals, 

which can achieve the effects of noise removal and edge 

enhancement, respectively [64]. Furthermore, homomorphic 

filtering associates frequency filtering with grayscale 

transformation. It conducts frequency domain processing based 

on the illuminance/reflectivity of the image and eliminates the 

uneven illumination on test images by shrinking the brightness 

range and strengthening the contrast [65]. Because the global 

gray value of steel surface images is ordinarily low but the 

dynamic range is large, the effect of histogram equalization is 

not as good as that of homomorphic filtering. 
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It is worth emphasizing that image enhancement should not 

take too much time and resources as the pre-processing work of 

the defect classification task. Furthermore, some intrinsic priors 

in production lines that are easily ignored should be utilized 

effectively. The resource-saving algorithm of dynamic 

homogenizing compensation (DHC) [5] explores the intrinsic 

prior that the image intensity is varying actively but horizontal 

intensity distribution is extremely stable, which helped the 

DHC algorithm win a competition against other image 

enhancement methods. 

C. Image Segmentation 

Image segmentation is crucial from image processing to 

image analysis. The goal of segmentation is to remove 

redundant information and represent the image as concisely and 

effectively as possible, making it easier to analyze in 

subsequent operations. Some scholars utilized a fixed threshold 

to binarize the test image to highlight the defect area [61, 66, 

67]. Although this method is simple and efficient, in many 

cases, the contrast between the defect and the background is not 

the same everywhere in the image, so it is challenging to 

separate the abnormal area and the background with a unified 

threshold. At this time, different thresholds can be used to 

segment the image according to its local characteristics [39, 49, 

68], which is called the adaptive threshold method. Otsu is a 

classical adaptive threshold method for separating defects from 

the background in flat steel images [59, 69, 70], which obtains a 

threshold value based on the characteristic of the large variance 

between the background and foreground. Different from the 

threshold methods, the methods based on edge detection use the 

first or second derivative to detect edge points by taking 

advantage of the property of discontinuous pixel values in 

adjacent regions, such as Robert [71], Sobel [72, 73], Prewitt 

[74], Canny [55] and Kirsch [52, 53]. The grayscale of steel 

strip images is ordinarily nonuniform, the gray value variation 

cross the background and the defect is sometimes gradual, and 

the size of defect area is very small, not easy to be recognized 

by the computer. Operators such as Sobel and Roberts have 

difficulty detecting unclear and tiny defects due to their 

relatively small weighting factor. The Laplacian operator is of 

poor robust to noise and has a large amount of calculation. 

Kirsch operator has a good effect in maintaining details and 

anti-noise, but it depends on the edge direction and cannot 

guarantee the continuity and closure of the edge, which make it 

difficult to form a large region. At the basis of topological 

theory, the watershed algorithm is acting as a mathematical 

morphology segmentation method and its core concept is to 

represent each point’s gray value in the image to the altitude of 

the pixel. The influence domain of each local minimum is 

slowly spread outward, and the boundary of the influence 

domain is the edge. Chu et al. utilized the watershed algorithm 

to segment the defects and background of the steel surface in 

[45, 54]. The watershed algorithm can well detect weak edges, 

even though the noise in an image may cause 

over-segmentation, it can still ensure a closed continuous edge. 

In contrast, threshold-based methods are simple and efficient, 

but the selection of the optimal threshold value is usually 

labor-intensive. Edge-based operators can locate edges 

accurately but cannot guarantee the continuity and closure of 

edges. The watershed algorithm is able to detect weak edges but 

is still sensitive to noise. Therefore, searching for better 

combinational solutions may be a wise choice to give full play 

to their respective advantages and obtain better segmentation 

results. For example, the genetic algorithm is applied to 

threshold screening to select the threshold that can best segment 

the image [75]. The differential matrix of the image is obtained 

by using a differential calculation, and then the double 

threshold is selected to segment the defect area [76]. 

V. FEATURE EXTRACTION 

Feature extraction aims to extract the significant information 

from images through the use of computers. To meet the 

requirements of validity, less computation and better 

robustness of target segmentation and classification in the flat 

steel surface, the input image preprocessed first, and certain 

features are extracted by a variety of feature extraction methods 

which will be described as follows. 

A. Grayscale-based Methods 

The grayscale feature of the steel image is the most 

fundamental feature, which is the statistics of the gray value 

distribution of the image. An image histogram is the graphic 

depiction of the gray distribution in the gray image.  

The first-order statistical characteristics of gray information 

can be calculated by formula (1): 

  ( ) ( , ) , (0 1)P b P g x y b b L    
 

(1) 

where b is the gray value, L (1 ≤ L ≤ 256) means the total 

amounts of gray levels, and g(x, y) is the gray value of the point 

with coordinate (x, y) in the image. Therefore, the 

corresponding first-order grayscale histogram of an image can 

be obtained by formula (2): 
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where M is the total amounts of image pixels and N(b) is the 

amounts of image pixels with gray value b. 

The typical histogram coefficients, including the mean, 

standard deviation, skewness, kurtosis, energy and entropy, can 

be calculated by formulas (3) to (8). They are often used to 

describe the grayscale features of steel defect images [52, 67, 

77]. 
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Fig.3. The overall architecture of feature extraction 

B. Shape-based Methods 

Shape features also play an essential role in image 

description. The outline shape and the regional shape are two 

typical shape features that depict the outer boundary and the 

overall object area, respectively. The fundamental task of shape 

feature extraction and representation is to find efficient and 

effective shape descriptors. For the description of outline 

features, Fourier shape descriptors are the most popular [67, 77, 

78]. The core concept is to use the FT of the target boundary as 

the shape depiction, and use the closeness and periodicity of the 

region boundary to transform the 2D problem into a 1D 

problem. For regional shape features, the geometric shape 

parameters method based on the quantitative measure of the 

shape (such as length, breadth, elongation, compactness, and 

area ratio) is a simple method to express the shape [47, 79]. In 

addition, moments, especially geometric moments, centric 

moments and orthogonal invariant moments are more 

dependable for shapes with complex boundaries. The Hu 

invariant moment [80] is the most classical method and is often 

used to describe the regional shape of steel surface defects [67, 

77]. In addition to the above typical shape feature description 

methods, some scholars have proposed new shape feature 

extraction methods. For example, Chu et al. [11] proposed a 

type of statistical feature used with the shape distance (SD-SFs) 

to measure the distance between the outer boundary point and 

central one. SD-SFs is one of the outline shape feature types, 

and they improve the robustness to affine transformations. It 

should be noted that the extraction of shape features must be 

based on image processing and image segmentation, and the 

accuracy of the features must be affected by the segmentation 

effect.  

C. Texture-based Methods 

Texture usually has three characteristics: repeated local 

sequences, nonrandom permutations and roughly uniform 

texture areas. The texture feature characterizes the repeated 

local patterns and their arrangement rules in the image. Some 

commonly used methods are introduced as follows. 
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Fig.4. The encoding mode and sampling rules of traditional LBP. 

1) Local Binary Pattern (LBP)  

LBP is one of the most successful local texture feature 

operators, which creates an intensity- and rotation-invariant 

binary descriptor and estimates the local contrast of an image 

based on the differences between adjacent pixels and central 

pixel, whose encoding mode and sampling rules are briefly 

given in Fig. 4, and it has been widely used to extract features 

of steel surfaces [11, 81-87]. In addition, some variants based 

on the original LBP have been proposed to overcome the 

limitations of LBP, such as noise sensitivity. In 2013, Song et al. 

[1] proposed adjacent evaluation completed local binary 

patterns (AECLBPs) to recognize hot-rolled steel strip surface 

defects by modifying the threshold scheme of the completed 

local binary pattern. In 2015, Chu et al. [88] presented a 

smoothed local binary pattern (SLBP), which applied weight on 

the gray difference between the local neighborhood. These two 

methods are both robust to noise to a large extent. LBP was 
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introduced for gray-level images, making it ineffective for 

coloured images, so Shervan et al. [89] used a new 

noise-resistant and multiresolution version of the LBP to 

extract color and texture features of texture surface jointly. 

Furthermore, to obtain better visual discrimination, Wang et al. 

[18] designed an LBP-inspired feature descriptor by describing 

each pixel of the test images with four values corresponding to 

the four directions so as to characterize each pixel based on 

pixels at various distances from the different directions. 

Different from the improvement of the LBP variants mentioned 

above, Luo et al. innovatively extracted the forgotten useful 

information hidden in nonuniform patterns in [10, 90], which 

not only improves the accuracy and calculation time 

simultaneously but also has better robustness to noise. 

(b) Image block or sub-region (c) GLCM of the image
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Fig.5. The calculation template of GLCM. (a) is the offset of GLCM to adjust 

the orientation between two adjacent pixels. (b) is a image block or sub-region. 

(c) is the GLCM of (b). 

2) Gray-level Co-occurrence Matrix (GLCM) 

The GLCM is another preeminent statistical texture 

descriptor that calculates the frequency of a special pixel at a 

special distance and angle, which is able to commendably 

convert gray value into texture information, such as 

homogeneity, contrast and correlation [53, 91]. The calculation 

mode of GLCM when selecting 0° direction is given in Fig. 5. 

However, it is sensitive to rotation, which could bring about 

information redundancy. To solve this problem, the gradient 

magnitude and gradient orientation co-occurrence matrix 

(GMGOCM) and the gray level and gradient orientation 

co-occurrence matrix (GLGOCM) are proposed based on the 

statistical characteristics of the gradient vector information 

and GLCM. Both GMGOCM and GLGOCM features fully 

take into account the scale and rotation invariance when 

extracting the steel defect feature [34]. However, since GLCM 

and its variants are merely describe spatial features, they cannot 

reflect the high- or low-frequency components of the 

multidirectional defects on a surface, while steel strip surface 

defects vary widely (various types, shapes and orientations). To 

overcome the above challenge, the discrete Shearlet transform 

gray-level co-occurrence matrix (DST-GLCM) was designed in 

[92], which achieves outstanding classification rates on defects 

with high interclass similarity and high intraclass appearance 

variations. 

3) Histogram of Oriented Gradients (HOG) 

The HOG [93] first divides the window into several blocks, 

then divides each block into several cells, and then counts the 

histogram of the gradient direction inside each cell as the cell's 

feature vector, then the feature vector of a block is obtained, 

and finally the HOG description feature for the window is 

obtained, which has good characterization abilities of local 

texture and shape. As an expansion of the HOG descriptor, the 

pyramid of HOG (PHOG) descriptor takes into account the 

spatial locality of the descriptor’s constituents in [94]; the 

PHOG has an excellent feature description ability and was 

applied to describe steel texture features.  

4) Others 

There is a problem of optimal scale in texture analysis. For 

some structural textures, only the texture features at the optimal 

scale can be used to reflect the intrinsic content of the texture. A 

method for extracting the fractal dimension of a PELEG 

blanket coverage image is proposed, which can be used in the 

automatic identification of surface defects of hot-rolled strip 

steel [95] and provides a new idea for texture analysis. In 

contrast, LBP, GLCM and HOG are the three reliable methods 

most widely used in steel due to their adaptability and 

robustness. Further explorations of these conventional methods 

and other effective approaches should be given more attention. 

In Table I, the advantages and disadvantages of several 

texture-based feature extraction methods are compared. 

D. Transform-based methods 

Transform coefficient methods that transform images from 

the spatial domain to the frequency domain are also influential 

in extracting hidden information from the data. Many works 

suggest that the features in the spatial-frequency domain show 

stronger robust to noise and intensity variation than in the 

spatial domain, and transform features have been reported to be 

useful in improving the representation of spectral data and 

increasing the classification accuracy [16]. The methods are 

mainly based on an image filtering transform and the spectrum 

information is also used to describe the geometric and texture 

features. In Table II, the advantages and disadvantages of 

several transform-based feature extraction methods are 

compared. 

1) Fourier Transform (FT) 

The traditional spatial domain feature set is very complex, very 

laborious to extract and difficult to guarantee the real-time 

recognition of flat steel surface defects. FT can reflect the local 

outstanding feature information, which is widely used in the 

extraction of features of steel surface images [96, 97]. Inspired 

by that, the Fourier amplitude spectrum is translational 

invariant and is often used to assess the directional information 

of carbide distribution images [68]. The Fast Fourier Transform 

(FFT) not only represents the images’ gray features and 

geometrical features but also realizes fast convolution and 

object recognition simultaneously. Wu et al. [98] first obtained 

an original feature set by the FFT, and then , two extended 

features (Sum of Valid Pixels (SVP) and Repletion Ration of 

Center Region (RRCR)) were introduced to reflect the global 

and local statistic feature information, respectively, which 

excavated more deep information from the spectrum images. 

2) Gabor Filter (GF) 

The FT only depicts the spatial-frequency distribution 

without regard to the spatial domain information. However, the 

GF has optimal joint localization in both the spatial and 

spatial-frequency domains [62]. The GF can be obtained by 
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TABLE I 

COMPARISON OF SEVERAL TEXTURE-BASED FEATURE EXTRACTION METHODS 

Taxonomy Methods Refs Strengths Weaknesses 

Texture-based 

Local binary pattern [1, 10, 11, 18, 81-90] 
Be of rotation and gray 

invariance, fast calculation speed. 

Sensitive to scale variation and noise 

interference. 

Gray-level Co-occurrence Matrix [34, 53, 91, 92] 

Can reflect the comprehensive 

distribution characteristic of the 

image gray level, such as 

direction, adjacent interval, 

change range, etc. 

The selection range of parameters is wide 

and the calculation is large. 

Histogram of Oriented Gradients [93, 94] 
Invariant to geometric and optical 

deformations. 

High feature dimension and large amount 

of calculation. 

superimposing a trigonometric function and a Gaussian 

function; which is an effective texture detection tool to extract 

the features of a specific of specific scale and orientation. The 

2D Gabor function contains real and imaginary parts. The 

former can be utilized to detect blob, and the latter can be used 

to detect edge. Furthermore, Choi et al. [63] combined two 

Gabor filters to detect seam cracks on steel plates, which offers 

high detection performance and the effective reduction of noise 

components. 

3) Wavelet Transform (WT) 

To support near-real-time operation, the feature extraction 

need to be competitive in feature dimensions and algorithm 

properties. A WT may be an ideal candidate because it presents 

powerful judgment on the spatial-frequency characteristics 

both horizontally and vertically. Classical WTs can realize 

time-frequency localization and 1D data sparse representation. 

The surfaces of steel defect images are transformed using 

Daubechies wavelets of the fourth order, Haar wavelets, 

Daubechies wavelets, Bior wavelets and multiwavelet wavelets 

by decomposing the surface images into different resolution 

levels [4, 99]. Since the wavelet basis function can only 

represent 1D directions, it is challenging for wavelet based 

methods to sparsely express high-dimensional data due to their 

line singularity and surface singularity. The multi-scale and 

multidirection localization method (MGA) was suggested to 

represent the high-dimensional data of hot-rolled steels in [100], 

which has been proved to be less redundancy. The discrete 

wavelet transform (DWT) results in different wavelet 

coefficients when transforming the original signal, the 

undecimated wavelet transform (UWT) was put forward to 

overcome this issue in [61]. Which can produce more accurate 

information for frequency localization and is robust to scales, 

water marks and uneven illumination. In addition, Gabor 

wavelets have many useful characteristics and have been 

performed well for defect classification in textured materials, 

which is naturally a single layer architecture, yet deep 

multilayer architecture is in a position to extract more 

influential features [96]. 

4) Curvelet Transform (CT) and Biorthogonal Wavelet 

transform (BWT) 

The CT is a higher-dimensional extension of the WT and was 

created to describe images of different scales and angles. 

Curvelets have very interesting properties, especially, only a 

few coefficients are needed to approximate the curved 

singularities, which makes the curvelet coefficients for pixels 

pertaining to a particular object particular. CT is a nonadaptive 

image representation method with two essential features: 

anisotropy scaling law and directionality. It is applicable to 

characterize and analyze edge features with curved or linear 

shapes that perform well in continuous casting slabs [97]. The 

BWT can be constructed using the lifting-scheme, not only has 

the properties of compactly support, time-frequency 

localization, high vanishing moments and anisotropy but also 

provides the specific characteristics of strict sampling and 

adaptability. In addition to these advantages, BWT is 

symmetric, preventing image content from shifting between 

subbands while allowing for extensions at the boundaries. 

Based on the above advantages, it behaves remarkably for 

hot-rolled steel [92]. 

5) Shearlet Transform (ST) 

Gabor wavelets cannot effectively depict the directional 

properties because of their isotropic support and limited 

directivity. The ST provides efficient multiscale directional 

representation, which is a relatively new MGA method. 

Compared to other methods, it sets up disparate direction 

amounts at diverse decomposition scales and is preeminent 

when approximating 2D smooth functions with discontinuities 

along the C2-curves; the ST is fit to analyze images with 

complicated backgrounds and has been successfully applied to 

defecting steel defects in [101, 102]. 

6) Scattering Transform (SCT) 

Gabor and wavelet-based methods cannot tolerate local 

deformation well. By contrast, the SCT improves the tolerance 

ability of local deformations for current feature extraction and 

builds nonlinear invariant representations for the defects on 

hot-rolled steel strips by cascading wavelet transforms and 

modulus pooling operators [6], providing a new idea for defect 

classification. 

7) Discrete Cosine Transform (DCT) 

The DCT requires a complicated number operation. Despite 

the FFT can faster the operation speed, it is not very 

competitive in image coding, especially in real-time processing. 

Based on the discrete Fourier transform, the DCT is constructed 

as a real domain transform, which has the characteristic that 

most of the discriminative information about the steel surface is 

concentrated in a few coefficients of the DCT [99]. It is also 

widely used because of this characteristic. 

TABLE II 
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STRENGTHS AND WEAKNESSES OF TRANSFORM-BASED FEATURE EXTRACTION METHODS 

Taxonomy Methods Refs Strengths Weaknesses 

Transform-based 

Fourier 

Transform 
[68, 96-98] 

Invariance to translation, expansion and 

rotation. 
Lack of localized signal analysis function. 

Gabor Filters [62, 63] 

Has good characteristics in extracting the local 

space and frequency domain information of the 

target. 

Difficulty in determining the optimal filter 

parameters and not robust to rotation 

invariance. 

Wavelet 

Transform 
[4, 61, 96, 99, 100] 

Capable of multi-resolution analysis and 

represent local signal features. 
Difficulty in choosing wavelet basis. 

Curvelet 

Transform and 

Biorthogonal 

Wavelet 

transform 

[92, 97] Anisotropic scaling law and directionality. 
The process is complicated and not easy to 

realize. 

Shearlet 

Transform 
[101, 102] Good sparsity. 

Cannot effectively retain the detail 

information of the original images. 

Scattering 

Transform 
[6] 

Local translation invariance and elastic 

deformation stability. 
High computational complexity 

Discrete Cosine 

Transform 
[99] Great description and anti-noise ability. 

Lack of good direction selectivity and 

multi-resolution analytical ability. 

E. Deep-learning-based methods 

The features described above use the extraction methods of 

traditional artificial guidance. Due to the reliance on manual 

design, these features tend to be simpler and mainly depend on 

some prior information, and it is difficult to use the advantage 

of big data. By contrast, the deep-learning-based feature 

extraction method can learn automatically from the massive 

data characteristics of multilayers. In addition, deep learning 

can quickly discover the deep-layer and discriminative feature 

representations from the training data [103]. 

Deep-learning-based methods are also widely applied in the 

feature extraction of flat steel surface images, such as 

convolutional neural networks (CNNs), convolutional 

autoencoders (CAE) and generative adversarial networks 

(GANs). The related methods are described in detail below. 

1) Convolutional Neural Network (CNN) 

Variants of CNNs have been proven to have record-breaking 

performance. They are the most basic network framework for 

deep learning, they can learn deep level features that cannot be 

extracted by traditional manual feature extraction methods 

under supervised learning manner, which show stronger 

discrimination[104]. Standard CNNs lack multiple resolution 

pooling and are restricted to a constant size of input images, A 

multiscale pyramidal pooling network (MSPPN) was presented 

to solve the above problems [105]. Taking the errors of 

localization result and background into consideration, 

multigroup CNN (MG-CNN) was created, which can build 

more effective and explainable feature map groups and can be 

used for feature extraction of hot-rolled steel images [106]. 

However, the performance of CNN-based methods mainly 

depend on plentiful training samples, which stunts the 

utilization of CNNs in industrial scenes with small datasets. At 

present, transfer learning makes full use of the previously 

labelled data and guarantees the precision of the model on new 

tasks with limited training samples [107], which broadens the 

application prospect of the CNN. CNNs are the core of deep 

learning methods, and many more features and applications are 

worth exploring and should be given more attention. 

2) Convolutional Autoencoder (CAE) 

As an unsupervised learning method, Autoencoder (AE) can 

automatically learn from a large amount of unlabelled data to 

obtain the effective features. CAE combines the convolution 

and pooling operations of the convolutional neural network to 

extract more robust and discriminative representations. Xu et al. 

[108] trained CAE to depict fine-grained features and fed them 

into a softmax classification layer to form a classification 

network. A group of AutoEncoders were also trained to reduce 

the dimension of the extracted multiscale features in [109], 

which improved the performance under inadequate training 

samples. A novel method such as transfer learning is often been 

considered for classification tasks due to the most samples of 

steel are unlabelled. However, the image information of the 

steel surface is actually distinctive from most pretrained models, 

which breach the utilization conditions of transfer learning and 

makes the applications of transfer learning to steel defect 

detection not as good as the applications in other fields. To 

solve this problem, the CAE mentioned above is innovatively 

aimed at unlabelled steel datasets, which is of great referential 

significance. 

3) Manifold Learning (ML) 

Supposing the data are a low-dimensional manifold 

uniformly sampled in a high-dimensional Euclidean space, 

manifold learning recovers the low-dimensional manifold 

structure from the high-dimensional sampled data. 

Correlatively, manifold regularization adds items related to the 

manifolds to the regularization items to play the role of 

semisupervision by using the geometric structures in the data. 

The earlier local descriptors, such as the LBP and HOG, subject 

to the hand-crafted definition and the limitations of the 

applications. In contrast, Zhao et al. [87] proposed the 

discriminant manifold regularized local descriptor (DMRLD) 

based on the new viewpoint learning mechanism, which applies 

the manifold structure to regularize the local descriptor for 
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describing the features of the image. Its core idea is to employ 

the learning strategy to establish the local information, while 

maintaining the original, discriminant, and intrinsic structure of 

the steel defect image. DMRLD is purposefully designed for 

depicting the useful and completed local feature for steel 

surface defect classification without a high defect image quality 

requirement. 

4) Brief Summary 

Deep learning can make full use of the advantages of big data 

to automatically learn the multilayer depiction of features, 

which can involve thousands of features, and the expression 

ability of these learned features is stronger than that of 

manually designed features. Deep-learning-based methods can 

quickly learn modern and powerful feature representations 

from training data for strange applications. However, most of 

the existing steel samples are not marked because of the 

randomness and limitations of the production line, so only a 

small amount of data with safety labels can be used for learning, 

resulting in the instability of the final classification results. To 

speed up the promotion and application of deep learning 

features, academia and industry have carried out much research 

on structure optimization. The research methods used to design 

the network automatically is helpful to the design space 

exploration of deep learning networks and plays an essential 

role in accelerating the process of network design and 

promoting the application of deep learning in engineering.  

TABLE III 
STRENGTHS AND WEAKNESSES OF DEEP-LEARNING-BASED FEATURE EXTRACTION METHODS 

Taxonomy Methods Refs Strengths Weaknesses 

Deep-learning-based 

Convolutional 

neural network 
[104-107] 

Compare with fully connected 

network, it reduces many 

parameters and simplifies the 

calculation by adopting local 

connection, weight sharing and 

down sampling operations.  

Because all local parts share 

weights, it does not take into 

account the difference of 

contribution to the whole 

between each local part. 

Convolution 

autoencoder 
[108, 109] 

Compared with the traditional 

autoencoder, it can well retain 

the spatial information of 2D 

signals and can be used in 

unsupervised learning. 

Because all local parts share 

weights, it does not take into 

account the difference of 

contribution to the whole 

between each local part. 

Manifold 

learning 
[87] 

Be able to find the essence of 

from the observed phenomena, 

and find the internal law of 

data generation. 

High computational burden 

and poor classification ability. 

Feature 

selection

Feature 

evaluation

Feature 

optimization

PCA

LPP

Random 

search 

algorithm

 Filter 

method

Wrapper 

method

Embedding 

method

Dimension 

reduction

Heuristic 

algorithm
 

Fig.6. The overall framework of feature selection. 

VI. FEATURE SELECTION 

Feature selection attempts to eliminate redundant 

information among the extracted high-dimensional features. 

One reason feature selection is needed is to avoid the so-called 

curse of dimensionality, and another is to enhance the 

generalization ability of the designed classifier. A large number 

of features may increase the complexity of the classifier, slow 

down the training process and seriously affect the final 

classification accuracy and efficiency. Therefore, the 

appropriate feature optimization methods are applied to remove 

the features with less information. The feature optimization of 

the surface defects selectively recombines the features of the 

defects to refine a set of optimized feature parameters for 

achieving accurate and efficient defect classification. Fig. 6 

shows the framework of feature selection, feature evaluation, 

dimension reduction and feature optimization are three 

important parts of feature selection and will be discussed in 

detail below. 

A. Feature Evaluation 

Feature evaluation is mainly used to estimate the quality of 

the selected subset of features, and the features that have an 

outstanding ability to distinguish among the different 

categories are selected. Subsets are generated from the original 

feature sets, and the effectiveness of the features is evaluated by 

different feature evaluation methods to find the best ones. The 

adequacy of evaluation approaches existing in the literature can 

be categorized into three groups, namely, filter method, 

wrapper method and embedding method. Two main approaches 

were used in [110], where the filter approach assigned the 

weights before induction, the wrapper approach ran an 

induction algorithm on the training set and used the accuracy of 

the resulting description to evaluate the mill scale defect feature 

set. There are generally two types of reserved features after flat 

steel feature evaluation. The first is based on the saliency and 

robustness of the features themselves. For example, statistical 

features such as entropy and variance that dramatically 

distinguish the edge are picked in [59], and graphs whose 
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dimension and scale are invariant with translation, scale and 

light conditions are selected in [95]. The second is based on the 

classifiers that select feature parameters according to some 

rules, such as the shape parameters and the intensity parameters 

of the objects, which are computed to better perform the 

classification phase [111]. 

B. Dimension Reduction 

After feature evaluation, the dimension of the feature subsets 

may be too large, and there exists much redundancy, which will 

reduce the robustness and generalization speed of the classifier, 

so the process of dimension reduction is necessary. Numerous 

algorithms are proposed to handle dimension reduction. Graph 

embedding is a universal scheme for the methods of 

dimensionality reduction, including principal component 

analysis (PCA), isometric mapping (ISOMAP), locally linear 

embedding (LLE), Laplacian eigenmap (LE) and locality 

preserving projection (LPP), which are all based on the 

assumption that the data set is on a low-dimensional manifold 

embedded in the raw high-dimensional feature space. The 

calculation of weight matrices and the selection of constraint 

matrices are the main differences in these methods [100]. Of 

these methods, the most popular algorithms applied to flat steel 

surface defect classification are PCA and LPP [112, 113]. A 

variety of improved methods based on concrete scenes have 

emerged, such as the incorporation of the PCA with bootstrap 

aggregating, which reduces not only the dimensions but also 

the variance in the decision trees [82]. Because LPP is a linear 

method and often cannot perform well when images are 

susceptible to complicated nonlinear changes resulting from 

noise or lighting variations, Xu et al. designed a kernel LPP 

(KLPP) by implementing the LPP in a kernel space, which was 

reported to solve nonlinear problems well when applied on the 

surface inspection for con-casting slabs [97]. Throughout the 

literature we consulted, we found that the PCA is the most 

frequently used method to reduce the dimensions in the 

problem of strip steel surface defect classification because of its 

reliable performance. However, other methods with better 

performance and wider application scenarios are still to be 

explored. 

C. Feature Optimization 

Feature optimization is the selectable regrouping of all the 

features of the defects to obtain some optimized character 

parameters that can depict the defects more precisely. After the 

processing of the two steps mentioned above, the subsets 

acquired may not be optimal for the classifiers; thus, feature 

optimization is essential in improving the overall performance. 

There are two traditional optimization algorithms based on 

searching strategies: random search algorithms and heuristic 

algorithms. The genetic algorithm (GA) is a typical random 

search algorithm [98]. To enhance the visual feature selection, 

the adaptive genetic algorithm (AGA) [91] and the hybrid 

chromosome genetic algorithm (HCGA) [67] were proposed. A 

representative heuristic algorithm, Relief, is mainly based on 

sample learning. This method is straightforward and efficient 

but is restricted to binary classification. For this reason, Chu et 

al. developed the Relief-F to solve the multiclass classification 

problem in feature optimization for strip steel surface defect 

recognition [39]. Other effective algorithms are also applied, 

such as suboptimal feature selection algorithms, which have 

better results than simple sequential methods [68], recursive 

feature elimination (RFE), which ranks all features in 

descending order, and an appropriate number of top features are 

selected [114]. Both are less commonly used methods, which 

are briefly presented here for reference. According to the 

review, we can find that studies have a preference for GA when 

considering steel feature optimization, which is mainly because 

there are few superior methods for query. We believe and 

encourage that various methods should be studied and applied. 

D. Brief Summary 

Feature selection plays a critical role in enhancing the 

performance of the classifier and indirectly influences the 

process of steel defect recognition. Feature evaluation, 

dimension reduction and feature optimization are three steps of 

great significance. The features that have great robustness or 

are relevant to classifiers are usually picked after three feature 

evaluation methods. After evaluation, the PCA is mostly used 

to reduce dimensions, and almost all studies choose the GA for 

feature optimization; both are traditional and reliable methods. 

In general, the algorithms used in the feature selection are 

generally identical and a little bit unitary in the topic of steel 

surface defect recognition. Moreover, the feature selection 

process is discounted. Therefore, more advanced or appropriate 

feature selection methods are highly encouraged to be applied 

to AVI instruments in the flat steel industry. 

VII. DEFECT CLASSIFIER 

Surface defect classification is dedicated to accurately 

assigning a detected defect to one class or category by learning 

a classification function or constructing a classification model 

(known as classifier). Reliable classification performance can 

be used to improve manufacturing process in a timely manner, 

effectively ensure the quality of flat steel and grade the end 

products quantificationally. According to whether the training 

sample has a label or not, the current classifiers can be 

classified into supervised, unsupervised and semi-supervised 

learning-based classifiers. Some classical classifiers of these 

three categories are introduced below, the contrast of the 

advantages and disadvantages of the three taxonomies and 

potential further research directions of the flat steel surface 

defect classification methods are also discussed.  

A. Supervised Learning 

The classification methods based on supervised learning 

utilize massive labelled training data to adjust the classifier 

parameters for fitting the new defect feature set. The 

performance of supervised classification methods mainly relies 

on two factors: the quality of the aforementioned features and 

the capability of the classifier. In terms of features, a detailed 

review has been expressed in Section V and Section VI. Next, 

the development of classification methods for the surface 
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Fig.7. Schematic diagram of defect classification by CNN. 

defects of flat steel is introduced from the perspective of 

classifier design. The most commonly used classifiers in 

supervised learning are neural networks (NN), support vector 

machines (SVM), distance functions, dictionary learning, 

sparse representation and multi-classifier fusion. 

1) Classifiers based on NN 

An artificial neural network is an operational model 

containing massive nodes connected to each other, which takes 

the test images as the inputs and then extracts the features to 

identify the types of defects automatically. This method has 

achieved satisfactory classification accuracy in the surface 

defect classification of flat steel [62, 115]. However, the 

expensive training step limits the generalization of nascent 

neural networks. Currently, convolutional neural networks are 

increasingly being developed. In [104] and [105], a CNN was 

adopted as a classifier for the defect classification of flat steel 

surfaces, and the experimental results indicate that the CNN is 

powerful and robust for the classification task. Generally, a 

dense layer is placed at the end of the network which executes 

the final classification or regression based on the extracted 

features, and the schematic diagram of defect classification by 

CNN is shown in Fig. 7. However, a large number of 

application scenarios cannot provide the necessary resources. 

Therefore, compressing and accelerating the model under the 

premise of ensuring the accuracy of the network has become a 

hot spot of discussion in the field of network structure 

optimization. With the gradual deepening of the research on the 

structure optimization of convolutional neural networks, a large 

number of achievements continue to emerge. To achieve high 

classification accuracy with a small training sample set, Fu et al. 

[116] presented a compact yet powerful CNN model by training 

the low-level features and incorporating multiple receptive 

fields. This method was reported to realize high classification 

accuracy of steel surface defects based on limited 

defect-specific training samples. That is, the problem of the 

lack of sufficient data is solved to some extent. Moreover, He et 

al. [109] designed a hierarchical learning scheme by combining 

the CNN and the AutoEncoder, which has greatly improved the 

performance of the model with insufficient training samples. 

Neuhauser et al. [117] altered the GoogLeNet architecture and 

enabled transform learning to expedite the training process and 

to improve performance of the network by compensating for 

the limited training set. In general, networks with multiple 

convolutional layers can do better in regression and 

classification tasks than shallow networks. At present, there 

exists network architectures containing more than 100 

convolutional layers. 

2) Classifiers based on SVM 

SVM is a generalized linear classifier for binary 

classification, which has been widely used for the defect 

classification of flat steel surfaces [67, 100-102, 118]. For the 

multiclass classification problem, Zhang et al. [59] succeeded 

in identifying seven classes of steel surface defects effectively 

based on a multiclass SVM by simultaneously optimizing the 

kernel function selection and parameter settings of the 

traditional SVM method. Inspired by [59], Agarwal et al. [119] 

proposed a classification scheme of the 

process-knowledge-based multiclass SVM (called PK-MSVM) 

by combining the feature extraction task of the automated 

defect inspection with the process knowledge; the PK-MSVM 

performed better than the traditional multiclass SVM. Notably, 

Chu et al. made great contributions to surface defect 

classification based on a multiclass SVM, by improving the 

historic problems of imbalanced training samples [120] and 

noise robustness [45]. To solve the conflict between efficiency 

and accuracy in defect classification, Chu’s team kept 

improving the algorithm and came up with a series of SVM 

variants, such as the enhanced least squares twin SVM [34], 

multiple support vector hypersphere with feature and sample 

weights [39], machine learning with quantile hyperspheres 

[121] and multiple hyperspheres vector machine with 

additional information [54]. Different from the above 

improvements, Xiao et al. [81] constructed a multiple classifier 

system for classifying steel surface defects, which contains 

multiple SVM classifiers and a Bayes kernel classifier. The 

Bayes kernel fuses the results from the multiple classifiers and 

adjusts the hybrid parameters with only a small sample set. 

3) Classifiers based on the Distance Function 

Distance is an important measure to describe the relationship 

between pixels. The distance function is one of the simplest 

tools for defect classification. The nearest neighbour classifier 

(NNC) is the commonly used distance classifier for surface 

defect classification, where the chi-square distance is a simple 
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but effective criterion for measuring the similarity between the 

training images and the test images. In [74], the authors 

recommended the K nearest neighbour (KNN) as a classifier to 

realize defect classification for cold-rolled steel with a 

co-occurrence matrix. Luo et al. [10, 90] selected the NNC as 

the dissimilarity metric between two multi-region histograms to 

identify LBP-like histograms. Moreover, Zhao et al. [87] 

simultaneously considered the variation and exemplar distances 

of the NNC to measure the similarity between the local models. 

The accuracy of this kind of conventional classifier primarily 

relies on the precision of the extracted features. Further 

increasing the classification accuracy requires exploring 

high-dimensional features, in return, sacrificing the 

classification speed. 

4) Classifiers based on Sparse Representation 

To simplify the learning process and reduce the complication 

of the inspection model, appropriate dictionaries are found for 

the samples with common dense expressions, and the samples 

are transformed into appropriate sparse expressions to express 

most or all original signals with fewer linear combinations of 

the basic signals. For example, Masci et al. [105] emulated a 

standard dictionary-based encoding strategy as an encoding 

layer to improve the recognition rate for generic steel defects. 

Furthermore, Zhou et al. [114] utilized the high-quality 

dictionary to extract the compact, reconstructive and 

discriminative features of the test images. Testing results prove 

that this scheme has improved the classification performance 

efficiently due to the discriminative information obtained from 

the reconstructive error or the sparse vector. Different from the 

conventional classification process that treats feature extraction 

and classifier training as two separate steps, classification 

methods based on dictionary learning and sparse representation 

do not have an explicit stage of feature extraction, which might 

be more effective in surface defect classification for flat steel. 

5) Classifiers based on Multi-Classifier Fusion 

AVI systems relying on multi-classifiers can achieve better 

classification performance and robustness than those based on 

individual classifiers. Consequently, multi-classifier fusion 

technology is attracting increasing attention from the iron and 

steel industry. Fernando et al. [62] aggressively combined 

artificial neural networks, the KNN algorithm and a naive 

Bayesian classifier for the surface defect classification of flat 

steel, which avoided the limitation of each simple classifier that 

yields errors on a different region of the input pattern space. 

Yan et al. [122] put forward a classification method with a 

combination of the LVQ, RBF neural networks and SVM, and a 

weighted voting algorithm was applied to integrate these basic 

classifiers. An advantageous complementary defect recognition 

system was finally established for steel strips. Similarly, Yan et 

al. [123] also designed a kind of classification method by using 

the cascade structure to improve weak classifier adaptively for 

the surface defect inspection of strip steel, which successfully 

addressed the contradiction between algorithm complication 

and classification accuracy. Beyond that, AdaBoost is an 

iterative algorithm whose intention is to engender a stronger 

classifier by assembling several weak classifiers. On the basis 

of the existing boosting algorithms, Hu et al. [124] proposed a 

new backward AdaBoost (AdaBoost. BK) algorithm for the 

noncommon defect recognition of steel plate surfaces. This 

algorithm selected the most applicable weak classifier through 

a filtering mechanism, which was proven to have satisfactory 

recognition accuracy on all involved kinds of defects. However, 

the performance of multi-classifier fusion mainly depends on 

the selection of weak classifiers. The iteration scale expands 

with the increase of the number in weak classifiers, and 

correspondingly, more training time will be spent. 

6) Other Classifiers and brief summary 

In addition to the above classifiers, some other classifiers 

have also achieved good effects under supervised learning for 

the task of flat steel surface defect classification, such as 

decision trees, random forests, and relevance vector machines 

(RVMs). Lechwer et al. [110] constructed a hybrid 

classification system based on a decision tree model to classify 

various kinds of scale defects in hot rolling mills. Zhang et al. 

[125] and Wang et al. [51] improved the random forest 

algorithm to execute defect classification on steel surfaces. Hou 

et al. [126] proposed a second-order cone programming (SOCP) 

optimized multiple kernel RVM to recognize strip steel surface 

defects, which showed better performance than both the 

traditional RVM and the original SVM. The classification 

methods based on supervised learning can excute sufficient 

training and learning on the images to obtain the most effective 

representation. This kind of mind-set has strong adaptability to 

the data, especially in the case of sufficient labelled data to 

obtain better results. However, the imbalance of defect samples 

in actual flat steel production lines has prompted researchers to 

use limited samples to achieve similar results. 

B. Unsupervised Learning 

Unsupervised methods separate or cluster the pixels or 

images belonging to related types through a certain measure of 

similarity evaluation without sufficient prior knowledge. That 

is, in unsupervised learning, the classification model needs to 

determine the relationships between various inputs without 

being pretrained with given labels. In real-world flat steel 

industrial production lines, it is extremely labour intensive and 

time consuming to collect a large number of flat steel surface 

defect data, and label them manually; this challenge is 

compounded by the harsh manufacturing environment (e.g., 

high temperature, poor lighting conditions, mechanical 

vibrations, and dense dust). Thus, studying unsupervised 

classification methods greatly benefits surface defect 

recognition for flat steel.  

As an unsupervised learning method, a self-organizing map 

(SOM) is trained to emerge a low-dimensional representation 

of the input space of the training sample. After receiving 

external input, the SOM divides the corresponding regions into 

different response characteristics automatically. Distinct from 

the CNN, the SOM establishes lateral connections between 

neurons in the same layer and excites the neuron response 

successfully while suppressing the failed neurons by adjusting 

the weights. With this specialty, SOMs are enjoying their 

popularity in clustering analysis, damage detection of 

composite materials and steel surface defect classification. In 

[127], the SOM was improved by the neural network with error 

back-propagation (NN-BP) and then applied to classify the 

defects on cold-rolled strips. Martins et al. [50] combined the 
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PCA and SOM to classify three rolled steel surface defects with 

complex textures. These application cases show that the SOM 

and its variants are promising in surface defect classification in 

the steel manufacturing industry. 

However, the quality of the input image and the original 

parameters of the classification model are the keys to 

determining the classification performance of the unsupervised 

learning model. The current unsupervised learning results show 

that there is still some disparity from our ultimate goal. 

C. Semisupervised Learning 

Different from the above two manners, the semisupervised 

learning method chooses a more eclectic way based on both 

limited labelled samples and ample unlabelled samples. 

Interestingly, Bratanic et al. [128] used a self-training 

semisupervised approach to train a spatially local 

representation of each object from a set of unlabelled training 

images, and then the local depiction in a feature space was 

obtained by calculating the HOG over a spatially local region. 

Gao et al. [129] proposed a semisupervised annotation 

approach by learning an optimal graph (OGL) from multicues 

(i.e., partial tags and multiple features), which can embed the 

relationships among the data points more accurately. The steel 

strip surface classification method proposed in [130], namely, 

the particle swarm optimization second order cone 

programming multi kernel relevance vector machine 

(PSO-SOCP-MKRVM), was mainly supported by the compact 

features refined by the semisupervised PCA and locality 

preserving projection manifold learning. 

The generative adversarial network (GAN) [131], consisting 

of a generator and a discriminator network, is a typical 

semisupervised learning method. The latter helps the former to 

make continuous progress, so that the new image generated by 

the former cannot be distinguished from the real image. GANs 

are often utilized to generate labelled defective images based on 

the existing limited labelled samples and sufficient unlabelled 

samples from industrial sites. Lian et al. [132] and Niu et al. 

[133] also utilized GAN to expand the limited defect samples. 

Odena [134] extended the traditional GAN to the 

semisupervised context by employing the discriminator 

network to output class labels, creating a more data-efficient 

classifier. On this basis, Song et al. [135] utilized the 

multi-training of the deep convolutional GAN (DCGAN) and 

residual network to obtain higher-confidence samples, which 

are added in the training set to improve the robustness. Inspired 

by this idea, Di et al. [108] designed an improved GAN, namely, 

SGAN, by combining the original CAE and GAN to handle the 

task of steel surface defect recognition. This classifier was 

trained by images collected from both actual production lines 

and randomly created by the GAN, which cleverly solved the 

engineering problem of sample limitation and improved the 

generalization ability of the classifiers effectively. In addition 

to GAN, Yun et al. [136] also proposed a modern 

Convolutional Variational Autoencoder (CVAE) and deep 

CNN-based defect classification algorithm to address the 

insufficient of imbalanced data. The experimental results 

demonstrates the excellent performance of image generation 

and defect inspection of the presented methods. 

In specific industrial practice, the quantity of the original 

samples might be limited (lack of representativeness and with 

contingencies), and the distribution can be uneven. If these 

situations happen, the semisupervised learning methods may 

become unreliable, creating difficulties for its development. In 

order to obtain the best semi-supervised learning algorithm 

with better adaptability, Berthelot et al. [137] consolidated the 

currently prevalent semisupervised learning methods and 

formed a brand-new algorithm, MixMatch, that guesses 

low-entropy labels for data-augmented unlabelled examples 

and mixes labelled and unlabelled data using MixUp. 

MixMatch has realized ultramodern results across many 

datasets. 

D. Brief Summary 

The above methods implemented the classification of flat steel 

surface defects according to features that were designed 

manually or learned automatically from the data by the deep 

neural network in a supervised, unsupervised or 

semisupervised learning manner. Generally, supervised 

learning methods need labelled samples for model training, 

which makes full use of the prior information in the data 

categories. Unsupervised learning methods mainly separate 

samples of the same type through the different characteristics of 

the data, and therefore, they do not need the label information 

from the data. It is challenging for unsupervised learning 

methods to realize the high accuracy of supervised 

classification. Semisupervised learning methods joint the 

previous two manners, which utilizes the labelled samples and 

massive unlabelled samples to train classifiers. The results 

reached with limited sample set can also match the results 

obtained with massive sample set. We noticed that, the number 

of labels to get comparable results to fully supervised learning 

is decreasing. Future research could lower the number of 

required labels even further. We identified that some common 

ideas are not often combined and that the combination of broad 

range and unusual methods is beneficial. We believe that the 

combination of different field ideas is a promising future 

research field because many reasonable combinations are yet 

not explored. Compared with machine learning-based methods 

for defect detection, defect classification methods focus on 

extracting the features of different kinds of defects and 

classifying the defects with similar features into one category. 

While acting as a binary classifier, the former is dedicated to 

distinguishing defective and defect-free pixels by analyzing the 

features of abnormal regions and backgrounds, to achieve 

isolation of the defects.  

VIII. SUMMARY AND DISCUSSION 

The end customers in planar material processing industries 

have high expectations for the quality of the steel product, 

which is usually threatened by the untimely detection of surface 

defects. By means of online defect detection and recognition, 

an in situ AVI instrument is gradually developing as a standard 

configuration to improve the steel quality for flat steel
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TABLE IV 

STATISTICAL LIST OF TYPICAL METHODS OF DEFECT CLASSIFICATION 

Ref. Year 
Feature learning 

methods 
Classifier Application Difficulty Performance 

[59] 2011 
Fourier spectral 

measure approach 
Multiclass SVM Metal surface Strong reflection 

Accuracy: 85.00% 

T: NA 

[53] 2011 GLCM Multikernel learning Steel surface Strict timeliness 
Accuracy: 97% 

T: 40 ms per image 

[119] 2011 
Transformation of 

variables 

Process knowledge 

based SVM 
Hot-rolled strips Variation of defect size 

Accuracy: 90.80% 

T: NA 

[100] 2013 
Multiscale feature 

extraction 
SVM Hot-rolled strips Limitation to specific defects 

Accuracy: 97.33% 

T: NA 

[1] 2013 
Adjacent evaluation 

completed LBP 
SVM Hot-rolled strips 

Similar appearance to be easily 

confused 

Accuracy: 98.93% 

T: NA 

[47] 2014 Gabor filter SVM Steel slab Small size and occurring location 
Accuracy: 97.26% 

T: NA 

[77] 2014 Multifeature fusion Multiclass SVM Steel strips 
Similar appearance to be easily 

confused 

Accuracy: 91.28% 

T: 7.92 ms per image 

[34] 2014 Multifeature fusion 
Enhanced least squares 

twin SVM 
Steel strips Variance of scale and rotation 

Accuracy: 96.00% 

T: 2.97 ms per image 

[67] 2016 Multifeature fusion 

SVM with hybrid 

chromosome genetic 

algorithm 

Steel strips Large image size 
Accuracy: 95.04% 

T: 1.56 ms per image 

[39] 2016 

Feature weight 

calculated with 

Relief-F algorithm 

Multiple support vector 

hypersphere with feature 

and sample weights 

Steel strips 
Weakly relevant features and 

abnormal samples 

Accuracy: 98.12% 

T: 1.17 ms per image 

[96] 2016 Multifeature fusion 

Second-Order Cone 

Programming-Relevanc

e Vector Machine 

Algorithm 

Steel strips 
Similar appearance to be easily 

confused 

Accuracy: 99.1% 

T: 2.77 ms per image 

[11] 2017 
LBP operator with sign 

and magnitude 
Enhanced twin SVM Steel surface Variance of scale and rotation 

Accuracy: 95.26% 

T: 1.93 ms per image 

[121] 2017 Multifeature fusion 
Multiple quantile 

hyperspheres classifier 
Steel surface 

Finite defect dataset and random 

noise 

Accuracy: 94.84% 

T: 3.49 ms per image 

[54] 2018 Multifeature fusion 

Multiple hyperspheres 

SVM with additional 

information 

Steel plate Corrupted defect 
Accuracy: 96.06% 

T: 1.15 ms per image 

[120] 2018 Multifeature fusion 
A novel SVM with 

adjustable hypersphere 
Steel strips 

Similar appearance to be easily 

confused 

Accuracy: 95.01% 

T: 4.77 ms per image 

[92] 2019 

Discrete Shearlet 

transform and the 

GLCM 

SVM Hot-rolled strips 
Similar appearance to be easily 

confused 

Accuracy: 96.00% 

T: NA 

[69] 2008 
Local entropy and 

morphology 

Feedforward neural 

network 
Cold-rolled strips Strict timeliness 

Accuracy: 97.19% 

T: NA 

[64] 2009 Multifractal dimension 
Feedforward neural 

network 
Steel surface Irregular shapes of defect 

Accuracy: 97.90% 

T: NA 

[98] 2007 Multifeature fusion 
Learning vector 

quantization 
Hot-rolled strips High speed and strong noise 

Accuracy: 83.98% 

T: NA 

[55] 2013 Multifeature fusion Classification tree  Stainless strip Finite defect samples 
Accuracy: 81.30% 

T: NA 

[6] 2014 Scattering transform 
Scattering convolution 

network 
Hot-rolled strips 

Similar appearance to be easily 

confused 

Accuracy: 98.60% 

T: NA 

[81] 2017 Multifeature fusion 
Evolutionary classifier 

with a Bayes kernel 
Steel surface Variation of physical condition 

Accuracy: 96.31% 

T: NA 

[86] 2018 LBP 
Extreme learning 

machine 
Cold-rolled strips Noncommon defects 

Accuracy: 88.93% 

T: NA 

[51] 2018 Multifeature fusion 

Improved random forest 

algorithm with optimal 

multifeature-set fusion 

Steel surface 
Similar appearance to be easily 

confused 

Accuracy: 90.91% 

T: 19.79 ms per image 

[90] 2019 
Generalized completed 

local binary patterns 
NNC Hot-rolled strips 

Similar appearance to be easily 

confused 

Accuracy: 99.11% 

T: 266.74 ms per image 

[10] 2019 
Selectively dominant 

local binary patterns 

Adaptive region 

weighting NNC 
Hot-rolled strips 

Similar appearance to be easily 

confused 

Accuracy: 97.62% 

T: 100.08 ms per image 

[62] 2011 Gabor filter 
Combination of ANN, 

K-NN and Bayesian 
Flat steel surface 

Complexity of integration and data 

processing chain 

Accuracy: 96.70% 

T: NA 

[123] 2011 
Extended Haar 

rectangle feature 

Weak classifier adaptive 

enhancement 

classification method 

Steel strips 

Contradiction between algorithm 

complexity and classification 

accuracy 

Accuracy: 94.00% 

T: NA 
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[122] 2012 Multifeature fusion 
Combined multiple 

classifier 
Steel strips Over-depend on training samples 

Accuracy: 96.67% 

T: NA 

[88] 2015 Multifeature fusion 
Combination of twin 

SVM and binary tree 
Steel strips 

variance of scale, rotation and 

translation, uneven illumination and 

random noise 

Accuracy: 90.05% 

T: 7.46 ms per image 

[124] 2018 

Synthetic minority 

oversampling 

technique 

New backward 

AdaBoost 

(AdaBoost.BK) 

Steel plate 
Noncommon defects and unbalance 

samples 

Accuracy: 88.35% 

T: NA 

[94] 2012 Max-Pooling convolutional neural networks Steel surface 
Similar appearance to be easily 

confused 

Accuracy: 93.03% 

T: 6.2 ms per image 

[104] 2017 CNN Steel sheet Variation of features 
Accuracy: 99.00% 

T: NA 

[107] 2017 Deep CNN with a majority voting mechanism Hot-rolled strips Finite defect samples 
Accuracy: 99.50% 

T: NA 

[114] 2017 Class-specific and shared dictionary learning Steel sheet 
Similar appearance to be easily 

confused 

Accuracy: 94.25% 

T: NA 

[84] 2018 Deep CNN Hot-rolled strips Finite defect samples 
Accuracy: 99.21% 

T: NA 

[108] 2019 
Convolutional AutoEncoder and semisupervised 

generative adversarial networks 

Hot rolled plates 

Hot-rolled strips 

Cold-rolled strips 

Rare occurrence and appearance 

variations of defects 

Accuracy: 

Hot-rolled plates: 97.2% 

Hot-rolled strips: 98.2% 

Cold-rolled strips: 96.7% 

T: NA 

[109] 2019 
Multiscale receptive field convolutional neural 

network 

Hot-rolled plates 

Hot-rolled strips 

Large intraclass variations and 

unbalanced training samples 

Accuracy: 

Hot-rolled plates: 97.2% 

Hot-rolled strips: 97% 

T: NA 

[116] 2019 SqueezeNet-based model Steel surface 
Nonuniform illumination, camera 

noise and motion blur 

Accuracy: 97.5% 

T: 8.0 ms per image 

Notes: 

Performance criteria. T: Classification time 

TABLE V 
STRENGTHS AND WEAKNESSES OF DEFECT CLASSIFICATION METHODS 

Taxonomy Strengths Weaknesses 

Supervised methods 
Quite simple, effective 

and robust. 

It is unrealistic to label 

massive flat steel 

surface defects. 

Unsupervised methods 
Require no labelled 

samples for training. 

Greatly affected by 

initialization value. 

Semisupervised 

methods 

Not limited by the 

small labelled 

samples. 

Requires massive 

interactions and is of 

low efficiency. 

mills. As the twin of our recently published survey (Part-I) on 

defect detection [12], this survey (Part-II) moves the 

concentration on defect recognition to continue the topic of 

how to accurately identify and reliably label detailed defect 

types among the massive detected defective and 

suspected-defective regions of the image frames. The three key 

parts of image acquisition, image preprocessing, feature 

extraction, feature selection and defect classification are 

reviewed successively. Some technology trends and the 

evolution of applications are excavated from a systematic 

perspective as follows. 

1) In the process of image acquisition, we should take 

reasonable measures to solve the problem of poor image quality. 

The physical interference can be removed by refitting the 

mechanical device, for instance, a blower or an air gun should 

be configured to clean water drops, dust, fibers, etc. And an 

adaptive uniform illumination system is ought to be installed to 

handle with the consequences of uneven light caused by the 

illumination fluctuations during day and night. In addition, 

some economical actions of cooling configuration and security 

protection for imaging equipment are also essential for averting 

imaging distortion due to the harsh environments.  

2) Image preprocessing usually makes the contrast, visual 

effect and entropy of the image reach a balance on the premise 

of improving the image contrast. The latest image processing or 

machine learning methods provide novel way to enhance the 

image quality of flat steel. For instance, the GAN has realized 

extreme achievement in image enhancement, providing a better 

solution to the problems of insufficient samples, feature 

extraction difficulties and poor image quality. To avoid the 

issue of meager explainability in a GAN, it can be united with 

reinforcement learning to employ GAN to reverse 

reinforcement learning and simulation learning, which 

increases the adaptability of the reinforcement learning and 

machines understand.  

3) Due to the strong randomness of the features of the flat 

steel surface image, it is very difficult to use a single 

mathematical model to extract features. Therefore, the research 

and application of the fusion method of various feature 

extraction methods should be a direction of feature extraction 

research. In addition, making full use of the prior knowledge of 

human visual perception characteristics and combining it with 

feature extraction methods could be helpful to describe the 

image more effectively. At the same time, obtaining a real-time, 

reliable and stable fusion feature extraction scheme will always 

be a research hotspot. 

4) Feature selection is mainly used to remove irrelevant 

features and redundant features, and there are some practical 

problems to be solved. After feature selection, the prediction 

accuracy of the high-dimensional small sample dataset may 
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decline. Designing a feature selection method for 

high-dimensional small sample data without decreasing the 

prediction accuracy of the feature subset is challenging. The 

feature selection algorithm is subject to the data distribution. If 

the training set changes, the feature subset is also very different. 

Therefore, improving the steadiness of the feature selection 

algorithm is very essential. In addition, excessive deletion of 

redundant features leads to the loss of a large amount of 

information. Removing redundant features accurately and 

effectively is very important.  

5) In terms of defect classification, cleverly utilizing multiple 

learned features and excavating the taxonomy potentials of the 

latest machine learning algorithms to construct adaptable defect 

classification schemes with high accuracy, robustness and 

generalization should be a research focus. Meanwhile, 

achieving high-precision classification in the case of only a 

small number of labelled samples is still a hot issue, so both the 

existing classification methods and open defect databases 

should be greatly expanded. The statistical table reflects that 

most of the current classification methods place emphasis on 

classification accuracy and noise robustness while rarely 

involving the time cost evaluation of the designed classifiers. 

To satisfy the requirement in situ AVI of a high-speed 

production line, the efficiency of the classification algorithm 

needs to be considered. 

6) Deep learning methods such as CNN, GAN, and 

AutoEncoder have nurtured many novel ideas that have 

achieved outstanding performance in both feature learning and 

defect recognition for flat steel surfaces. It is delightful to see 

these fashionable methods being widely used in steel, but 

everything should be on the basis of industrial demand. For 

instance, some techniques have shown prominent results on the 

image enhancement (i.e., noise removal) of many texture 

images with rich datasets in multimedia areas, although they 

are not necessarily suitable for the enhancement of images 

gathered from industrial production lines where labelled image 

sets are extremely limited. Whether deep neural networks well 

trained from other texture datasets or through transfer learning 

has adequate generalization ability for the AVI task for flat 

steel remains to be further studied. Overall, the learning-series 

approaches are promising, but they must be used carefully to 

meet the specific industrial demands. 

The accuracy of a single-mode algorithm for classification is 

always limited, and internal prior utilization, multimode fusion 

and interdisciplinary crossing can give full play to their 

respective advantages, which is the trend of future development. 

As many up-to-date references and potential proposals as 

possible have been included in this review; both the platform 

and the analysis for future steel research can be enhanced with 

the help of our efforts. We strongly hope that the surface quality 

inspection level of AVI instruments will be accelerated thanks 

to our efforts.  
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