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Abstract

Recently face recognition has made significantly progress due to the advancement
of large scale Deep Convolutional Neural Network (DeepCNNs). Despite the great suc-
cess, the known deficiencies of DeepCNNs have not been addressed, such as the need
for too much labeled training data, energy hungry, lack of theoretical interpretability,
lack of robustness to image transformations and degradations, and vulnerable to attacks,
which limit DeepCNNs to be used in many real world applications. Therefore, these fac-
tors make previous predominating Local Binary Patterns (LBP) based face recognition
methods still irreplaceable.

In this paper we propose a novel approach called BIRD (learning Binary and Il-
lumination Robust Descriptor) for face representation, which nicely balances the three
criteria: distinctiveness, robustness, and computationally inexpensive cost. We propose
to learn discriminative and compact binary codes directly from six types of Pixel Differ-
ence Vectors (PDVs). For each type of binary codes, we cluster and pool these compact
binary codes to obtain a histogram representation of each face image. Six global his-
tograms derived from six types of learned compact binary codes are fused for the final
face recognition. Experimental results on the CAS_PERL_R1 and LFW databases indi-
cate the performance of our BIRD surpasses all previous binary based face recognition
methods on the two evaluated datasets. More impressively, the proposed BIRD is shown
to be highly robust to illumination changes, and produces 89.5% on the CAS_PEAL_R1
illumination subset, which, we believe, is so far the best reported results on this dataset.
Our code is made available 1.

1 Introduction
As a longstanding, fundamental and challenging problem in computer vision and pattern
recognition, face recognition has been one of the most extensively studied problem, and
numerous approaches have been proposed in the literature. However, there are still major
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unsolved challenges in making face recognition algorithms work efficiently and reliably in
real world environments, especially on wearable and embedded devices. As a typical pattern
recognition problem, face recognition primarily consists of two critical subproblems: feature
representation and classifier designation [16]. It is generally agreed that the extraction of
powerful features plays the central role, and consequently numerous methods have been
proposed, with excellent surveys [21, 33].

Various face representation methods can be mainly classified into two categories: tradi-
tional method [1, 2, 12, 32, 34], and deep learning based methods [25, 27, 28, 29, 30]. Tradi-
tional methods consists of two main classes: holistic features (such as Eigenface [32], Fisher-
face [2]) and local features (such as Gabor [34], Local Binary Pattern (LBP) [1], SIFT [12]).
Recently, deep learning techniques, especially the advances in Deep Convolutional Neural
Networks (DeepCNNs) have brought extraordinary progress to face recognition. Represen-
tative methods include DeepFace [30], DeepID [28, 29], VGGFace [25] and FaceNet [27].

It seems that the popularity of traditional features have been overtaken by DeepCNN
features. Surprisingly however, due to their disadvantages such as data hungry and energy
hungry, the adoption of DeepCNN features has been limited in many real world applications.
Therefore, due to the outstanding advantages such as good discriminative power, invariance
to monotonic illumination changes, low computational complexity and not relying on large
amount of training data, LBP features for face recognition remain active, as evidenced by a
number of recent excellent binary features [7, 8, 9, 10, 22, 23].

Since the seminar work in [1], the LBP methodology has emerged as one of the most
prominent technique for face recognition. Many variants of LBP have been proposed to im-
prove robustness and discriminative power, with recent surveys [13, 21]. Nevertheless, most
LBP based facial feature representations still suffer from some of the following drawbacks.

(1) Limited representation power of uniform LBPs. Most approaches such as the
original LBP [1], Local Ternary Patterns (LTP) [24], and the method in [6] only exploit the
uniform LBP patterns for face representation. However, the proportions of uniform patterns
may be too small and inadequate to capture the texture characteristics of human faces.

(2) Limited diversity and spatial support in sampling pattern shapes. It is generally
prohibitive for handcrafted LBP descriptors to adopt a large sampling size as increasing the
size of local neighborhood increases number of LBP patterns exponentially.

(3) Limited representation power of using only one type of binary feature. To im-
prove the representation power of face descriptors, one usual approach is to fuse the infor-
mation extracted by different features such as using Gabor filter as preprocessing [34]. It
achieved improved performance but at the cost of increased computational complexity.

(4) Limited robustness to real world environments (such as serious illumination vari-
ations, pose changes, random noise, image blur, etc). There are some efforts to improve the
robustness such as NRLBP [26] and MSLPQ [4], the performance is still unsatisfactory.

(5) Requirement of strong prior knowledge. Most existing LBP based face descriptors
are handcrafted, which require strong prior knowledge to engineer them by hand.

Noticeably, there has been a series of work [9, 10, 22, 23] aiming at learning a num-
ber of hashing functions to obtain compact binary codes for face representation. This series
of work overcome some of the shortcomings such as (1) (2) and (5) listed above; however
they still have the disadvantages (3) and (4) because they are derived from the difference
between each pixel and its neighboring pixels only. This limits the overall information en-
coding capability of these learned binary codes and prevent them from leveraging all the
texture information existing in a local facial patch, thus affects the overall performance of
face recognition systems.
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In this paper, we propose a novel approach called BIRD, i.e., learning Binary and Illumi-
nation Robust Descriptor (BIRD) for face representation, in order to build features that can
inherit the advantages of LBP without suffering the above shortcomings. Specifically, our
BIRD based face recognition pipeline consists of the following stages.

Firstly, two kinds of local features are considered, one based on intensities and the other
on gradients encoding second order discriminative information along the radial and angular
directions. Hence, three kinds of PDVs, i.e., Center PDVs (CPDV), Radial PDVs (RPDV)
and Angular PDVs (APDV) are obtained. In order to preserve more texture information, for
each type of PDV, its magnitude component is further used to obtain an additional PDV, thus
resulting in two complementary features. Therefore, six type of local features are obtained
which will be separately fed into the next steps for learning compact binary codes. Secondly,
for each of the six local features, a feature mapping is learned to project it into a lower
dimensional binary vector based on some criteria. Therefore, six types of compact binary
codes can be learned. Then, for each type of binary codes, we cluster and pool these compact
binary codes to obtain a histogram representation of each face image. Finally, six global
histograms derived from six types of learned compact binary codes are fused for the final
face recognition, leading to the final BIRD approach.

Our proposed BIRD descriptor, we argue, nicely balances the following three criteria:
distinctiveness, robustness, and computationally inexpensive cost. Each individual learned
binary feature representation and the final BIRD approach are extensively evaluated on two
popular face datasets: CAS_PEAL_R1 [11] and LFW [14, 15]. We find that the represen-
tation power of binary codes can be significantly enhanced through learning, and the final
BIRD descriptor achieves consistently superior performance than each individual feature.
The performance of our BIRD surpasses all previous binary based face recognition methods
on the two evaluated datasets. More impressively, the proposed BIRD is shown to be highly
robust to illumination changes, and produces 89.5% on the CAS_PEAL_R1 illumination
subset, which, we believe, is so far the best reported results on this dataset. Note that the
recent CBFD approach published in IEEE TPAMI [22] reports only 67.4% on this dataset.

2 Proposed BIRD Approach

2.1 Proposed Pixel Difference Vectors

Limitations of Existing Binary Features. As we discussed in the Introduction Section
clearly, existing binary features for face recognition have serious limitations such as those
from (1) to (5) listed in the Introduction Section. Let’s take a close look at three recent
representative binary features: the original LBP [1], the Dual Cross Pattern (DCP) [8] and the
CBFD [22], whose pattern sampling shapes are contrasted in Fig. 1 (a1), (a2) and (a3). LBP
have all the drawbacks from (1) to (5), and most LBP based face representation usually adopt
the pattern shape shown in Fig. 1 (a1), i.e., only considering the PDVs between each central
pixel and its 8 neighboring pixels on a single scale. CBFD [22] overcomes the drawbacks (1)
(2) (5) by learning a feature mapping to project each high dimension PDV (a square layout
around a central pixel as shown in Fig. 1 (a2)) into a lower dimensional binary vector and
obtained improved face recognition performance. In DCP [8], second order discriminative
information in the radial directions are exploited, and the resulting PDV is grouped into two
subgroups, as shown in Fig. 1 (a3), to derive two LBP features. To address the limitations
of existing binary features, we propose to learning binary features from a extended set of

Citation
Citation
{Gao, Cao, Shan, Chen, Zhou, Zhang, and Zhao} 2008

Citation
Citation
{Huang and Learned-Miller} 2014

Citation
Citation
{Huang, Mattar, Berg, and Learned-Miller} 2008

Citation
Citation
{Lu, Liong, Zhou, and Zhou} 2015

Citation
Citation
{Ahonen, Hadid, and Pietikainen} 2006

Citation
Citation
{Ding, Choi, Tao, and Davis} 2016

Citation
Citation
{Lu, Liong, Zhou, and Zhou} 2015

Citation
Citation
{Lu, Liong, Zhou, and Zhou} 2015

Citation
Citation
{Ding, Choi, Tao, and Davis} 2016



4 SU, MATTI, LIU: LEARNING BIRD FOR FACE RECOGNITION

Figure 1: (a): Pattern
sampling shapes of ex-
isting representative bi-
nary features. (b): An
illustrational example to
show how to extract our
proposed PDVs (CPDV,
RPDV and APDV) from a
local patch.

(b1) Center Pixel Difference 
Vector (CPDV)

(b2) Radial Pixel Difference 
Vector (RPDV)

(b3) Angular Pixel Difference 
Vector (APDV)
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PDVs, as shown in Fig. 1 (b1), (b2) and (b3). As can be observed from Fig. 1 clearly,
existing representative binary features are special cases of our proposed approach.

CPDV. As shown in Figure 1 (b1), for any pixel xc in the image, we consider a local patch
of size (2R+1)× (2R+1), centered at xc. For a radius r in this patch, we subtract the gray
value of the center pixel xc from the gray values of its circularly symmetric neighborhood
{xr,pr ,n}

pr−1
n=0 (as shown in Equation 1), and thus obtain a CPDV of dimension pr. {xr,pr ,n}

pr−1
n=0

are the pr neighboring pixels evenly distributed on a circle of radius r centered at xc. If
the coordinates of the center pixel xc are (0,0), then the coordinates of xr,pr ,n are given by
(−rsin(2πn/pr),rcos(2πn/pr)). The gray values of neighbors which do not fall exactly in
the center of pixels are estimated by interpolation. CPDV is then formed by concatenating all
the PDVs from different radii. In our experiments, we consider local patches of size 11×11,
and sample 8, 16 and 24 pixels from radius 1, 3 and 5 respectively, so that each CPDV is a
48-dimensional feature vector.

CPDVr,pr ,n = xr,pr ,n− xc, n = 0,1,2, ..., pr−1. (1)

APDV and RPDV. However, CPDV only encodes the differences between the center
pixel and its neighborhood only. In order to explore the second order discriminative informa-
tion contained in a local patch, we further propose RPDV and APDV, encoding radial and an-
gular pixel differences respectively. In particular, RPDV encodes the between-circumference
structure, and preserves the relationship between pixels of different rings. APDV encodes
the relationship between neighboring pixels on the same radius and preserves intra-radius
information. Formally, RPDV and APDV can be computed as follows:

APDVr,pr ,n = ∆
Ang
r,pr ,n +∆

Ang
r−1,pr ,n, n = 0,1,2, ..., pr−1 , (2)

RPDVr,pr ,n = xr,pr ,n− xr−1,pr ,n, n = 0,1,2, ..., pr−1 . (3)

where, ∆
Ang
r,pr ,n (= xr,pr ,n− xr,pr ,mod(n+1,pr)) is the difference between the neighboring pixels on

radius r. Note that here we sum angular differences computed from a radii pair (r and r−1)
to enhance their robustness.

Like CPDV, we also concatenate the calculated PDVs on different radii to form a high-
dimensional vector for APDV and RPDV.

To further improve the discriminative power of each type of PDV, we derive a comple-
mentary counterpart for each of the above three PDVs by incorporating the magnitude of the
calculated differences. As a result, we obtain three additional PDV types and name them as
CPDV_M, APDV_M and RPDV_M. Specifically. PDV_M can be computed via:

PDV _Mr,pr ,n = |PDVr,pr ,n|−µr,pr , n = 0,1,2, ..., pr−1, (PDV ∈ {CPDV,APDV,RPDV}), (4)

where µr,pr (= 1
pr

∑
pr−1
n=0 |PDVr,pr ,n|) is the mean.
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2.2 Compact Binary Pattern Learning
For each PDV type, we aim to learn a feature mapping to project the PDVs to lower di-
mensional binary vectors. Several unsupervised filter learning techniques, including random
projection (RP) [5, 18], PCA, and the recent CBFD [22] method are used for learning. A set
of PDVs of dimension d are extracted from the training images and then input to a learning
algorithm to learn compact binary vectors of dimension k. For RP, there is no need to learn
the projection matrix, and it can preserve the salient information in the signal [18]. For PCA,
we only need to learn the principle feature vectors. For CBFD, the learning process is a little
complicated. Due to space limitation, details of the learning approaches used can be found
in [18, 22].
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Figure 2: Pattern distributions on different methods. For a fair comparison, all of them
adopted the same number of bins for feature representation. We also count the percentages
of the non uniform patterns for U2. Generally, the higher Shannon entropy (SE) is, the CBP
would be more informative and representative, thus resulting in a better performance.

Having learned the lower dimensional codes, we aim to learn a representative binary
codebook from the training set. Here, we obtain six types of Compact Binary Patterns
(CBPs), and denote them as CCBP_S, CCBP_M, RCBP_S, RCBP_M, ACBP_S and ACBP_M
in response to CPDV, CPDV_M, RPDV, RPDV_M, APDV, APDV_M respectively. We ex-
pect the binary codebook to be informative and representative, and look for a binary pattern
distribution with a higher Shannon Entropy (SE), which is defined as:

H(b1,b2, ...,bN) =−
N

∑
i=1

P(bi) log2 P(bi),

where P(bi) is the probability of pattern bi and N is the number of patterns.
Obviously, the maximum of SE is achieved when all the patterns are evenly distributed.

For efficiency reasons, we adopt the kmeans clustering on the binary codes to form a code-
book. Different from the previous work, we directly apply the kmeans clustering in the
Hamming space, which can speed up the learning process considerably. Therefore, we ob-
tain six binary codebooks. Regarding the performance of the learning methods, we have the
following findings, as illustrated in Figure 2. 1) Compared with the handcrafted descriptor
U2 [1], the learning process achieves a higher representation power; 2) Learning methods
PCA and CBFD produce a more evenly distributed pattern than their counterpart RP [18];
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Figure 3: Face recognition
pipeline based on learned indi-
vidual binary features proposed
by us. Our final BIRD approach
is to fuse all six learned individ-
ual binary features, i.e. fusing
six global feature histograms
hCPDV, hRPDV, hAPDV, hCPDV_M,
hRPDV_M, and hAPDV_M. (PDVs
in the figure can be one of our
proposed PDV types, i.e., CPDVs,
RPDVs, APDVs, CPDV_Ms,
RPDV_Ms and APDV_Ms.
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3) Using binary codes is superior to the one that directly uses real number codes without
binarization (“PCA-REAL”). We conjecture from 3) that real number codes tend to be in-
formation redundant and contain more noise component. By contrast, the binary codes are
more robust and discriminative.

The best distributed patterns are obtained by kmeans in the Euclidean space (“PCA-
EUC”). However, the performance of clustering in the Euclidean space is almost the same
as that of clustering in the Hamming space with the combination of more CBPs. Due to the
efficiency, Hamming space clustering will be used in our experiments.

2.3 BIRD based Face Representation

We first divide the images into M×M non-overlapped local regions to capture large-scale
relations [1, 22]. Then the six CBPs are extracted as described above in the training step
for each local region individually. During testing, for each CBP, the learned projection func-
tions and codebooks are used to build histogram representations for the corresponding local
regions, which are then concatenated to form a global image description. Therefore, as
shown in Fig. 3, each image has six representations in response to the six CBPs respectively.
For face recognition, as adopted in [8, 17, 22], we use Whitened PCA (WPCA) to further
reduce the feature dimension, and apply cosine similarity as the matching score between two
images. To fuse the six CBP features, we average the six similarity scores and use the nearest
neighbor classifier in the recognition task.

3 Experiments

3.1 Evaluation on CAS_PEAL_R1

We followed the basic protocol for evaluation on the CAS_PEAL_R1 database, which con-
tains 1200 images of 300 subjects in the Training set, 1040 frontal images of 1040 subjects in
the Gallery set. In this experiment, we used the Expression, Accessory and Lighting probe
sets, which contains 1570, 2285 and 2243 images respectively under variations in expres-
sion, accessory and illumination. All face images were cropped into 128× 128 pixels by
setting the eyes positions at (40,48) and (89,48) and illumination normalization was used
as in [31]. Next, we extracted CPDV from three (r, pr) pairs: (1,8), (3,16) and (5,24), and
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APDV/RPDV from (2,8), (3,8) and (5,8) , since we hoped r ≥ 2 in order to get a (r,r−1)
pair. The parameters k, M and the number of patterns were empirically set as 15, as 8 and
500 respectively, leading to a 32000 (= 8× 8× 500) dimensional feature vector for each
image. As adopted in [17, 22], WPCA was only conducted on the Gallery set. Noted that
the feature dimension after WPCA would be automatically determined according to the rank
of the input matrix. The remaining parts followed the framework described in Section 2.3.

Multi-scale vs. Single Scale. We started our analysis by extracting high dimensional
PDVs covering multi radii with the following considerations. 1) We assume a big local patch
can simulate a multi-scale analysis, to capture both micro-structure and macro-structure in-
formation [20, 21, 24]; 2) The crude quantization of angular space caused by a small set of
neighboring pixels (i.e., pr pixels on radius r) could be alleviated by using a larger pr, thus
to increase the robustness against image variants [24]; 3) Inspired by texture analysis in [18]
and compressed sensing [3], which demonstrated that most natural images are compressible,
it is feasible to learn the low dimensional compact binary codes from a higher dimension
space, while with little information loss. As shown in Fig. 4 (a), the recognition rate in-
creases with larger patch size. While we still avoid to apply very large patch size for the
subsequent redundancy that degrades the performance.

R
ec

o
g

n
it

io
n

 r
at

e 
%

(a)

U2_SR

U2

Full

PCA

(c)

R
ec

o
g

n
it

io
n

 r
a

te
 %

PCA

CBFD

RP

U2

Full

kmeans

(b)

R
at

io

PCA

CBFD

RP

U2

Full

kmeans

Figure 4: (a) Performances with changing patch sizes. All the method are evaluated with
multi radii except U2_SR which only considers a single radius in the the U2 method. (b)
The ratio of inter-class discrepancy and intra-class discrepancy w.r.t. Gallery and Probe set.
(c) Corresponding results for methods in (b).

Learning based vs. Hand crafted. Our next consideration was what mapping functions
should be learned to get discriminative and compact binary codes. Therefore, we further
analyzed PCA, PCA-EUC, CBFD, RP and U2 as well as the all patterns encoding method
(“Full”) [19] by visualizing their distinctive abilities. In addition, the method (“kmeans”)
directly using kmeans clustering on the raw high-dimension PDV without projection was
also considered. The face identification task on the dataset is to find the most similar image
in the Gallery set for each image in the Probe set. Therefore, to visualize the differences of all
these methods, we can formulate their distinctiveness as the ratio of inter-class discrepancy
and intra-class discrepancy on the basis of Gallery and Probe set:

σintra =
C

∑
i=1

1
N(Gi)×N(Pi)

∑
g∈Gi

∑
p∈Pi

‖ f (g), f (p)‖, σinter =
C

∑
i=1

1
N(G∼i)×N(Pi)

∑
g∈G∼i

∑
p∈Pi

‖ f (g), f (p)‖,

where, C is the number of subjects on the Gallery set, Gi and Pi are the set of images belong
to subject i in the Gallery and Probe set, with number N(Gi) and N(Pi) respectively, while
G∼i is set of Gallery images of subjects other than i, and f (·) is the extracted image feature.

From Fig. 4 (b) and (c), we can see that compared with handcrafted descriptors (Full
and U_2), learning based methods achieve better feature description, leading to a higher
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recognition rate. We may conjecture that on one hand, the handcrafted patterns are not
optimal for feature representation, while this is remedied in cases of learning, where patterns
are adjusted by kmeans under the supervision of training data distribution. On the other hand,
most of noise contained in the raw PDV can be eliminated by PCA or CBFD, which removes
the feature dimensions with small variances that usually correspond to redundancy. This is
also proved by comparing with kmeans which also uses the raw PDV without projection. We
may further discuss the performance difference between PCA and CBFD below.

Individual vs. Extended. As aforementioned, our BIRD descriptor capture textural
information with different directions and components, achieving high representation ability.
This is emphasized in Fig. 5 (a) by exploring all the 63 combination possibilities over the
six CBPs, although there is no guarantee for a monotonically increase in the curves, from
which we can see that the overall performance would be improved when more types of CBP
descriptors are fused. Another interesting thing is that clustering in Hamming space would
not lead to loss of discriminative power, as shown in Fig 5 (a), the performance gap between
PCA and PCA-EUC is gradually reduced and eliminated with the CBP combination. This is
worthwhile because all the CBPs in BIRD are in the same formulation structure and can be
implemented efficiently.

(a) (b)

R
ec

o
g

n
it

io
n

 r
at

e 
(%

)

PCA PCA-EUCkmeansU2 Full

Individual 80.78 82.3972.5464.38 74.36

Extended 89.48 89.0886.4581.94 87.12

RP

71.69

85.20

Recognition rate (%) on CAS_PEAL_R1 Lighting probe set

Individual: using a single CBP (CCBP_S);  Extended: fusing the 6 CBPs. 

CBFD

79.27

89.03

One Two Three Four Five Six

One~Six: Number of fused CBPs, in total 63 combination possibilities x axis: cbfd iterations from 1 ~ 20; y axis: objective function value 

BIRD (pca)

cbfd
pca-euc

Objective function values observed in randomly selected 25 local face regions (64 regions in total)    
 

Figure 5: (a) Evaluation on 63 combinations for the 6 CBP descriptors. The six parts on the
x axis indicate the the number of fused CBP types, where the results are sorted respectively
in each part. (b) Objective function values w.r.t. pattern distribution in CBFD algorithm.

The reason why CBFD is slightly worse than PCA from the above experiments can be
explained by tracking the objective function values [22] w.r.t. pattern distributions during
the iteration of CBFD algorithm, shown in Fig. 5 (b). In other words, it is hard to ensure the
objective function values for all the local face regions are minimized once the parameters are
determined. However, this can be improved by selecting better parameters for CBFD.

Comparison with State of the Arts. Table 1 compares different methods, including
the original CBFD algorithm [22], DFD [17] and DCP [8] on the CAS_PEAL_R1 dataset.
The proposed BIRD method shows high invariance to illumination changes in the Lighting
probe set and achieves the best performance with a recognition rate of 89.48%, which, we
believe, is so far the best reported results on this dataset. Furthermore, the proposed CBPs
can all produce very competitive performance individually, since the binarization operation
in our framework tends to obtain more robustness to variations, while being computationally
efficient, as also proved in the Expression and Accessory probe sets, where the results of our
framework are superior to or comparable with the recent proposed methods.
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Dataset CAS_PEAL_R1 Expression CAS_PEAL_R1 Accessory CAS_PEAL_R1 Lighting
Method U2 RP Full kmeans CBFD PCA U2 RP Full kmeans CBFD PCA U2 RP Full kmeans CBFD PCA

CCBP_S 99.43 99.81 99.87 99.68 99.49 99.75 96.02 96.89 96.76 96.46 97.37 97.29 64.38 71.69 74.36 72.54 79.27 80.78
CCBP_M 98.22 99.04 99.24 99.24 99.30 99.11 88.32 92.43 92.87 93.87 93.22 93.26 65.14 68.57 78.47 72.80 76.68 75.88
RCBP_S 99.49 99.62 99.68 99.62 99.43 99.55 96.54 95.84 97.29 96.67 95.97 96.37 63.53 71.42 74.90 65.23 74.05 77.57
RCBP_M 97.71 98.28 99.11 98.92 98.66 98.66 84.46 89.54 91.33 91.03 92.21 91.55 65.72 67.14 77.89 72.00 72.45 73.52
ACBP_S 99.24 99.62 99.81 99.43 99.62 99.75 94.09 96.76 97.51 97.11 96.85 96.76 41.64 74.72 73.21 70.35 79.63 78.20
ACBP_M 97.96 99.17 99.43 99.04 99.11 99.17 88.53 93.13 92.56 93.09 94.22 94.49 41.28 68.17 79.71 75.17 75.26 75.21
BIRD 99.62 99.81 99.68 99.68 99.55 99.55 95.97 96.46 96.46 96.76 96.72 96.59 81.94 85.20 87.12 86.45 89.03 89.48

CBFD∗ [22] 99.7 97.2 67.4
DCP [8] 99.62 99.21 82.92
DFD [17] 99.6 96.9 63.9

Table 1: Recognition rate (%) on CAS_PEAL_R1 database. The results for CBFD∗ [22]
(TPAMI 2015), DCP [8] (TPAMI 2016) and DFD [17] (TPAMI 2014) are from the original
papers, others are from the projection-binarization-clustering framework

3.2 Evaluation on LFW
LFW [14, 15] is a widely used database for face verification, containing 13233 images of
5749 subjects created under unconstrained conditions, varying in pose, lighting, focus, reso-
lution, expression, etc. We followed the standard protocol on the “View 2” dataset with the
unsupervised setting for evaluation, since the proposed method is label free, thus no iden-
tification or the same/different label information is needed. The “View 2” dataset contains
10 subsets, each of which has 300 matched pairs and 300 unmatched pairs. During the ex-
periments, all the parameters and the cropping methods were the same as those used in the
CAS_PEAL_R1 dataset and WPCA was conducted on the training data. Furthermore, sim-
ilar to [6, 8], we extracted additional 21 local regions based on 21 facial landmarks to gain
the pose invariance, so 85 local regions were used for each image (85 = 8×8+21).
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Figure 6: ROC curves for BIRD on LFW
with the unsupervised setting.

Methods AUC
BIRD-U2 0.8626
BIRD-PCA 0.9238
CBFD∗ [22] TPAMI 2015 0.9091
SLBFLE∗ [23] TPAMI 2018 0.9200
CA-LBFL∗ [10] TPAMI 2018 0.9166

Table 2: Evaluation on LFW. The results of
methods with ∗ are from the original papers

Not surprisingly, the proposed BIRD descriptor achieves better performance than any of
the individual components as illustrated in Fig. 6. Table 2 shows the AUC of BIRD and
other state of the art methods, including CBFD [22], SLBFLE [23] and CA-LBFL [10]. We
can see that our approach achieves the best result among all the methods, demonstrating the
high dsicriminative power of the proposed descriptor. Last but not least, there is few deep
learning based method recorded on LFW with unsupervised setting, due to their need for
too much labeled training data. While our approach is label free and compared with deep
learning method, it needs much less computation resources, thus can be easily developed for
using in embedded or wearable devices.
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4 Conclusion and Future Work
This paper presented a novel face descriptor BIRD for face recognition. It is more discrimi-
native and efficient than the previous state of the art binary face descriptors and demonstrated
to be highly robust to illumination changes. As future work, we wish to investigate more ef-
ficient features (e.g., more powerful learned binary features or compact and efficient binary
networks) to enhance the features in terms of discriminative power and robustness, and to
reduce the reliance on large scale labelled data.
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