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Abstract

This paper presents a simple, novel, yet very power-

ful approach for texture classification based on compressed

sensing and bag of words model, suitable for large texture

database applications with images obtained under unknown

viewpoint and illumination. At the feature extraction stage,

a small set of random features are extracted from local im-

age patches. The random features are embedded into the

bag of words model to perform texture classification. Ran-

dom feature extraction surpasses many conventional feature

extraction methods, despite their careful design and com-

plexity. We conduct extensive experiments on the CUReT

database to evaluate the performance of the proposed ap-

proach. It is demonstrated that excellent performance can

be achieved by the proposed approach using a small num-

ber of random features, as long as the dimension of the

feature space is above certain threshold. Our approach is

compared with recent state-of-the-art methods: the Patch

method (Varma and Zisserman, TPAMI 09), the MR8 filter

bank method (Varma and Zisserman, IJCV 05) and the LBP

method (Ojala et al., TPAMI 02). It is shown that the pro-

posed method significantly outperforms MR8 and LBP and

is at least as good as the Patch method with drastic reduc-

tion in storage and computational complexity.

1 Introduction

Texture is ubiquitous in natural images and constitutes

a important visual cue for a variety of image analysis and

computer vision applications like image segmentation, im-

age retrieval and shape from texture. Texture classification

is a fundamental issue in computer vision and image pro-

cessing, playing a significant role in a wide range of appli-

cations that include medical image analysis, remote sens-

ing, object recognition, content-based image retrieval and

many more.

A Recent “Bag of Words” (BoW) approach, borrowed

from the text literature, opens up a new prospect for tex-

ture classification. The BoW encodes both the local tex-

ture information by using feature extractors to extract tex-

ture information from local patches to form textons, and the

global texture appearance by statistically computing a or-

derless histogram for each image representing the frequency

of the repetition of the textons. However, the local feature

extractors from which texton dictionary is built still play a

crucial role.

There are two main ways to construct the texton dictio-

nary: 1) detecting a sparse set of points in a given image

using Local Interest Point (LIP) detectors and then using

local descriptors to extract features from a local patch cen-

tered at the LIPs [1] [2], 2) extracting local features pixel by

pixel over the input image densely. The dense approach is

more common and widely studied. Among the most popu-

lar dense descriptors are the use of large support filter banks

to extract texture features at multiple scales and orienta-

tions [3] [4] [5]. However, more recently, in [6] the au-

thors challenge the dominant role that filter banks have been

playing in texture classification area, and claim that classi-

fication based on textons directly learned from the raw im-

age pixels outperforms that based on textons based on filter

bank responses.

The key parameter in patch-based classification is the

size of the patch. Small patch sizes cannot capture large-

scale structures that may be the dominant features of some

textures, are not very robust against local changes in texture,

and are highly sensitive to noise and missing pixel values

caused by illumination variations. However, the disadvan-

tage of the patch representation is the quadratic increase in

the dimension of the patch space with the size of patch. The

high dimensionality poses two challenges to the clustering

algorithms used to learn textons: First the present of irrel-

evant and noisy features can mislead the clustering algo-

rithm; Second, in high dimensions data may be very sparse

(the curse of dimensionality), making it difficult for an al-

gorithm to find any structure.

It is therefore natural to ask whether high dimensional
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Figure 1. Compressed sensing measurements of local patches form good shape clusters and distinguish texture

classes. Three textures, leftmost, are shown from the Brodatz database. Compare the spatial dis-
tribution and separability of: (a) (b) raw pixel values, (c) two linear filter responses (computed with

support region 49× 49), and random (CS) features extracted from patches of size (d) 9× 9, (e) 15× 15,
(f) 25 × 25.

patch vectors can be projected into a lower dimensional

subspace without suffering great information loss. There

are many potential benefits of a low dimensional space: re-

duced storage requirements, reduced computational com-

plexity and possibly improved classification performance.

A small salient feature set simplifies both the pattern repre-

sentation and the subsequent classifiers used. This brings us

into the realm of recent theory of compressive sensing.

The compressed sensing (CS) approach [7] [8] [9], the

motivation for this research, is appealing because its sur-

prising results that high-dimensional sparse data can be ac-

curately reconstructed from just a few nonadaptive linear

random projections. When applying CS to our texture clas-

sification problem, the key question is therefore how much

information about the local texture patches is preserved by

these random projections.

The abilities of CS for perfect signal reconstruction have

been proved [7] [8]. A natural question emerges, can the

power of CS be leveraged in the texture classification prob-

lem? The application of CS for texture classification prob-

lem we investigate here has received only a minimal treat-

ment to date. Limited work has been reported [10] [11],

exploiting the specific structure of sparse coding for texture

patches, depending on the recovery process and careful de-

sign of the sparsifying dictionary [12]. In contrast, our work

performs classification in the compressed space, not relying

on any reconstruction process. We present a comprehen-

sive series of experiments intended to precisely illustrate the

benefits of this novel theory for texture classification.

The proposed method is computationally simple, yet

very powerful. Instead of performing texture classification

in the original high dimensional patch space or making ef-

forts to figure out which feature extraction method is suit-

able for all types of textures, we just use random projec-

tions and perform texture classification in a much lower di-

mensional space. The theory of compressed sensing helps

to remove these difficulties and indicates that the precise

choice of feature space is no longer critical: random fea-

tures contain enough information to preserve the underly-

ing local texture structure and hence correctly classify any

test image. Figure 1 explores this claim, contrasting the

distribution of raw pixels, filter responses and random CS

features. Clearly, Figure 1 is anecdotal evidence and in no

way comprehensive.

The rest of this paper is organized as follows. Section

2 reviews the CS background. In Section 3, we present

the details of the proposed features and the texture clas-

sification framework and discuss the benefits and advan-

tages of the proposed method in details. In Section 4, we

verify the proposed method with extensive experiments on



benchmark texture database CUReT and provide compar-

isons with three state-of-the-art methods: the patch method,

MR8 filter bank and LBP method. Section 5 concludes the

paper.

2 Background

The theory of compressed sensing has recently been

brought to the forefront by the work of Candès and Tao [7]

and Donoho [8], who have shown the advantages of ran-

dom projections for capturing information about sparse or

compressible signals. CS is based on the premise that a

small number of random linear measurements of a com-

pressible signal or image contains enough information for

reconstruction and processing. This emerging theory has

generated enormous amounts of research with applications

such as high-dimensional geometry, image reconstruction,

image compression, machine learning and data-streaming

algorithms [11] [13] [14] [15]. The beauty of the CS theory

is that if a signal may be sparsely represented in some ba-

sis, it may be perfectly recovered based on a relatively small

set of random projection measurements. CS relies on two

fundamental principles. Compressive sensing measurement

process is illustrated in Figure 2.
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Figure 2. Compressed Sensing measurement
process

1. Sparsity: Let y ∈ R
n×1 be an n-pixel image and Ψ =

[ψ
1

... ψ
n
] an orthnormal basis (dictionary), where

ψ
i
∈ R

n×1, such that

y =

n
∑

i=1

θiψi
= Ψθ (1)

where θ = [θ1 ... θn]T denotes the vector of coef-

ficients that represents y in the basis Ψ. A signal or

image is said to be sparse if most of the coefficients in

θ are zero or they can be discarded without much loss

of “information”. If the coefficients sorted in decreas-

ing order decay rapidly, then y is said to be (approxi-

mately) compressible.

2. Incoherent Sampling: Let Φ = [φT

1
... φT

m
] be an

m×n sampling matrix, with m ≪ n, such that x = Φy

is an m × 1 vector of linear measurements. While the

matrix ΦΨ is rank deficient, and hence loses informa-

tion in general, it can be shown to preserve the infor-

mation in sparse and compressible signals if it satisfies

the so-called restricted isometry property [9].

In the CS problem, we are interested in economically

recording information about a signal y. We allocate a budget

of m nonadaptive questions to ask about y. Each question

takes the form of a linear functional applied to y. Thus, the

information we extract from y is given by x = Φy.

3 Texture Classification Using Compressed

Sensing

To present the idea, assume that there are C distinct tex-

ture classes, with each class having S samples. We start the

description of our approach by defining texture pattern in a

local patch of size
√

n ×√
n of a texture image as the joint

distribution of the gray levels of n image pixels by row-

recording the pixels in the patch into a vector p. That is,

we treat an local image patch by vectorizing it into a long

one-dimensional vector.

The patch method [6] is based on the VZ algorithm [4]

(following the terminology of Varma and Zisserman) by re-

placing the filter responses with the source patch vector p.

Our proposed classifier is identical to the patch method ex-

cept that, at the feature extracting stage, instead of using

p, the compressed sensing measurements x = Φp are used

as features, where Φ ∈ R
m×n denotes the random com-

pressed sensing measurement matrix, defined in Section 2.

In this paper, we choose Φ to be a Gaussian random matrix,

i.e., the entries of Φ are independently sampled from a zero

mean normal distribution. Throughout this paper, the patch

space is defined as

P = {p : p ∈ R
n×1} (2)

which we call the patch space. We will work with the com-

pressed space X defined as

X = {x : x = Φp, x ∈ R
m×1, p ∈ P} (3)

In other words, X is a compressed representation of P .

Our texture classification system consists of the follow-

ing stages:

1. Compressed texton dictionary learning stage. In this

stage, we learn a universal compressed texton dictio-

nary directly in the compressed domain X which is

different from the patch method where the texton dic-

tionary is built from the patch domain P . The global



compressed texton dictionary learnt at this stage is de-

noted as W = {{wc,j}K
j=1}C

c=1, where K is the num-

ber of textons learnt from each class.

2. Histogram of textons learning stage. Given the com-

pressed texton dictionary obtained in the stage 1, a his-

togram of compressed textons is learnt for each par-

ticular training sample by labeling each of the image

pixels with the compressed texton that lies closest to it

in the compressed domain. Each texture class c then is

represented by a set of models Hc = {hc,s}s, hc,s ∈
R

CK×1 corresponding to the training samples of that

class. Each histogram of textons needs to be nor-

malized, hc,s(k) = hc,s(k)/
∑CK

k=1
hc,s(k), k =

1, ..., CK.

3. The classification stage. The set of learnt models from

stage 2 is used to classify a novel sample into one of

the C texture classes.The process to compute the nor-

malized histogram of compressed textons hnew for a

novel image is the same as computing the model for

each training sample. Then, the calculated model hnew

is used to classify it into one of the known classes by

a classifier. We have chosen to use the simple near-

est neighbor classifier (NNC), and the distance be-

tween two histograms is measured using the χ2 statis-

tic which is defined as

χ2(h1, h2) =
1

2

CK
∑

k=1

[h1(k) − h2(k)]2

h1(k) + h2(k)
(4)

4 Experimental Evaluation

4.1 Methods in Comparison Study

One of our main goals is compare the proposed approach

with the state-of-the-art Patch method [6]. In addition, the

following three popular methods will be used for compari-

son to further demonstrate the excellent performance of the

proposed method:

Patch-MRF [6]: Patch-MRF is a variant of the Patch

method. For the Patch-MRF, an image is represented using

a two-dimensional histogram: one dimension is the quan-

tized bins of the center pixel’s intensities of local patches

and the other dimension is the learnt textons from the patch

vector with the center pixel excluded. The number of bins

for the center pixel used in [6] is as large as 200 and the size

of texton dictionary is 61 × 40 = 2440.

MR8 [6]: The MR8 consists of 8 filter responses derived

from the original responses of 38 filters [4] [6]. A compli-

cated anisotropic Gaussian filtering method [16] was used

to calculate the MR8 responses [4].

LBP [17] [18]: The rotationally invariant, uni-

form LBP texton dictionary at different scales, LBPriu2
8,1 ,

LBPriu2
8,1+16,2, LBPriu2

8,1+16,2+24,3, LBPriu2
8,1+16,2+24,3+24,4,

LBPriu2
8,1+16,2+24,3+24,4+24,5 advocated in [17] and [18], will

be used for comparison with the proposed approach. For

simplicity, in the remainder of this paper, these LBP textons

are denoted as 1-scale, ... , 5-scale respectively. The his-

togram of textons model for each texture sample will be ob-

tained by concatenating histograms produced by operators

at three resolutions into a single histogram as used in [17].

4.2 Image Data and Experimental setup

For our experimental evaluation we have used two tex-

ture datasets, derived from the CUReT database which has

now become a benchmark and is widely used to assess clas-

sification performance.

For the CUReT large dataset DC (61 classes), we use

the same subset of images as Varma and Zisserman [4] [6]

[20], containing 61 texture classes shown in Figure 3 with

92 images for each class, resulting a total of 61 × 92 =
5612 images. These images are captured under different

illuminations with seven different viewing directions. In the

experiments on this dataset, half (46 samples per class) of

the samples are chosen for training and the remaining half

are chosen for testing.

Figure 3. CUReT: The 61 textures in the
CUReT database

The CUReT small dataset Dc (61 classes) preserves all

texture classes of DC , however, each kind of textures is rep-

resented by only a single texture image taken from the origi-

nal CUReT database [21], where all of the textures have the

same illumination and imaging conditions. We partitioned

each 320× 320 texture image into nine 106× 106 nonover-

lapping sub-images, consistent with [19]. Out of the nine

samples in each class, five samples are used as the train-

ing samples, and the other four samples are utilized as the

testing data.
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Figure 4. Classification results for the pro-
posed method and the patch method on
dataset DC as a function of feature dimen-
sionality. The number of the textons per class

used is shown in the bracket of the legend.
The bracketed values denote the number of
the textons per class used. Classification
rates obtained based on the same patch size
are shown in the same color.

All our experimental results are reported using random

partition of the training and testing set and random selection

of the samples from the training set unless explicitly stated

otherwise. In terms of the extracted CS vector, we consider

three kinds of normalization:

1. Weber’s law normalization:

x ← x

[

log(1 + ‖x‖2/0.03)

‖x‖2

]

(5)

2. Unit norm normalization:

x ← x

‖x‖2

(6)

3. No normalization.

4.3 Experimental Results

In this subsection, we compare the proposed approach

specifically to the current state-of-the-art Patch method [6]

[4] on the CUReT database. To make the comparison as

meaningful as possible, we use the same experimental set-

tings as Varma and Zisserman [6].

In their comprehensive study, Varma and Zisserman [4]

presented six filter banks for texton-based texture classi-

fication on DC . They concluded that the rotationally in-

variant, multi-scale, Maximum Response MR8 filter bank

yields better results than any other filter bank. The filter

support they used there is 49 × 49. However, in their more

recent study [6], they challenged the dominant role that fil-

ter banks have come to play in the texture classification

field and claim that their Patch method outperforms even

the MR8 filter bank and the Patch-MRF performs the best.

The topmost in Figure 4 presents a comparison of the

performance of the CS classifier, the Patch classifier and

the MR8 filter bank method. All the results are shown as

a function of the actual feature dimension used, except the

MR8 results, which are plotted against patch size. Our CS

results are statistically significantly better than those of any

other method. In particular, the variation in implementation

and test between the Patch results in [6] (Patch-VZ) and our

own (Patch) is small relative to the improvement offend by

the two CS results (CS -10 and CS-40).

For any given patch of size larger than 3 × 3, the CS

classifier performs better than the Patch method and much

better than the MR8 filter bank. This is strong evidence that

CS classifier possesses both of the advantages of these two

methods, i.e., the Patch method’s being able to achieve good

performance than MR8 and MR8’s lower dimensional fea-

ture space. It would thus appear that low dimensional CS

features with all the salient information present in an im-

age patch preserved is more beneficial for classification than

using the original high dimensional patch features which
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Figure 5. Comparison classification results on Dc as a function of patch size for the proposed ap-
proach and the Patch method.

cause difficulties in the clustering algorithm followed, or

relying on pre-selected filter banks which usually result in

loss of information when projecting downwards. A classi-

fier which is able to preserve all the information from all

the pixel values in a small number of measurements is su-

perior. The LBP method performs significantly worse than

any other method here (see Table 1). To assess statistical

significance, all the results are averaged over tens of ran-

dom partitions of the training and testing set.

To sum up, three points are notable in these results. First,

the CS method outperforms the Patch classifier, the MR8

filter bank and the LBP method. This is a clear indica-

tor that CS matrix preserves the salient information con-

tained in the local patch (as predicted by the CS theory) and

performing classification in the compressed domain is not

a disadvantage. Second, the CS method does better than

the Patch method, but at a much lower-dimensional fea-

ture space. That means not only does the use of low di-

mensional features reduce storage requirements and com-

putation times, an improvement in classification rate is also

achieved. Third, the CS method significantly outperforming

the MR8 filters further shows the power of the CS method.

Because both of them use linear projections to extract in-

formation from the local patch, but MR8 can’t extract such

good features as random features.

Furthermore, the results for the proposed method using

very small patch size 3 × 3 are comparable with the Patch

method. These results are slightly lower than the classifi-

cation rate obtained by using the patch method, most likely

because for the small patches, its small dimensionality in

theory leaves little space for CS to improve.

Table 1. Classification results for comparison

of the proposed method and LBP on dataset
DC .

3× 3 (%) 5× 5 (%) 7× 7 (%) 9× 9 (%) 11× 11 (%)

CS (10) 95.07 96.70 96.80 96.91 97.19

Scale 1-scale 2-scale 3-scale 4-scale 5-scale

LBP 81.46 91.65 94.06 94.61 95.72

Now we turn to discuss classification results using differ-

ent normalizations (defined in equation (5) and (6) in Sec-

tion 4.2) for feature vectors. The reason for testing differ-

ent types of normalization for feature vectors is that they

lead to different classification performance. For the No-

Normalization case and the Unit-Norm normalization case,

the maximum patch size is restricted to 11×11 for the Patch

method because of computational expense. These results

indicates that firstly, the proposed approach outperforms the

Patch method in all three normalization cases; secondly, for

the proposed method, classification difference caused by

different normalization is insignificant; thirdly, if compu-

tation time is a factor in consideration, no normalization is

a good choice.

Finally, Table 2 presents the best performance achieved

by each method in comparison. The proposed method gives

the highest classification accuracy of 98.43% here, a result

even higher than the best of Patch-MRF in [6], which is

highly storage and computational time demanding.

Figure 5 shows the classification accuracy of the pro-

posed method and the patch method on dataset Dc for



Table 2. Comparison of the best classifica-

tion performance on dataset DC: Results are
reported with the same experimental setup.
The “Best” results for MR8 and Patch-MRF
are reported in [6].

Method LBP MR8 Patch-MRF CS

Best (%) 95.72 97.43 98.03 98.43

a varying patch sizes.We can observe that the proposed

method performs very similarly to the patch method, but at

a much lower dimension feature space. What should also be

noticed is that the classification performance goes down as

the patch size is increased in this small and simple dataset.

This is different from the CUReT large dataset. This may be

due there are not so many complex texture patterns due to

the small intra-class variation. Thus we can not take advan-

tage of a wide range of exemplars to learn intra-class vari-

ation. Furthermore, the results of the proposed approach is

much better than those of LBP reported in [19] on the same

dataset.

5 Conclusion and Future Work

In this paper, we have described a classification method

based on representing textures as a small set of compressed

sensing measurements of local texture patches. We have

shown that CS measurements of the local patches can be

effectively used in texture classification problem. The pro-

posed method has been shown to achieve the state-of-art

classification performance and to be at least as good as the

one based on the original local patch, but with significant

reductions of computational complexity and storage. We

have shown that when the number of CS features is suffi-

ciently large (in our experiments, approximately 1/3 of the

dimension of the original patch) to preserve all the informa-

tion contained in local patch, the difference in classification

performance due to the further increase of the number of

features is negligible.

There are significant distinctions between our approach

and previous studies in texture classification with four main

contributions:

1. Random features: We demonstrated the effectiveness

of random features for texture classification;

2. Low dimensional feature space: The proposed ap-

proach facilitates a very straightforward and efficient

tradeoff between the patch method, which is high di-

mensional, and the common filter-bank based method,

which also requires large support regions and further

complex post processing to get better features such as

MR8.

3. A flexible approach to trade off between computational

complexity and performance.

4. Universality: We collected the features for texture

classification without assuming any prior information

about the texture images.

The promising results of this paper motivates a further

examining of CS-based texture classification, such as the

use of a more sophisticated classifier like SVM, which may,

in some cases, provide enhanced classification performance

than the nearest neighbor classifier used in the current study,

as in [22]. Furthermore, the proposed approach can also

be embedded into the signature/EMD framework as cur-

rently being investigated in the texture analysis community,

which is considered to offer some advantages over the his-

tograms/χ2 distance framework [1] [2]. Another issue re-

quiring further study is to extend the proposed framework to

the pixel-level classification or texture segmentation prob-

lem which is a little different from the image-level classifi-

cation problem considered in this paper.
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