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Abstract

The focus of this survey is on the analysis of two modalities of multimodal deep learning: image and

text. Unlike classic reviews of deep learning where monomodal image classifiers such as VGG, ResNet and

Inception module are central topics, this paper will examine recent multimodal deep models and structures,

including auto-encoders, generative adversarial nets and their variants. These models go beyond the simple

image classifiers in which they can do uni-directional (e.g. image captioning, image generation) and bi-

directional (e.g. cross-modal retrieval, visual question answering) multimodal tasks. Besides, we analyze

two aspects of the challenge in terms of better content understanding in deep multimodal applications. We

then introduce current ideas and trends in deep multimodal feature learning, such as feature embedding

approaches and objective function design, which are crucial in overcoming the aforementioned challenges.

Finally, we include several promising directions for future research.
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1 Introduction

Semantic information that helps us illustrate the world usually comes from different sensory modalities

in which the event is processed or is experienced (i.e. auditory, tactile, or visual). Thus, the same concept or

scene can be presented in different ways. If we consider a scene where “a large yellow dog leaps into the air

to catch a frisbee”, then one could select audio or video or an image, which also indicates the multimodal5

aspect of the problem. To perform multimodal tasks well, first, it is necessary to understand the content
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of multiple modalities. Multimodal content understanding aims at recognizing and localizing objects, de-

termining the attributes of objects, characterizing the relationships between objects, and finally, describing

the common semantic content among different modalities. In the information era, rapidly developing tech-

nology makes it more convenient than ever to access a sea of multimedia data such as text, image, video,10

and audio. As a result, exploring semantic correlation to understand content for diverse multimedia data has

been attracting much attention as a long-standing research field in the computer vision community.

Recently, the topics range from speech-video to image-text applications. Considering the wide array of

topics, we restrict the scope of this survey to image and text data specifically in the multimodal research

community, including tasks at the intersection of image and text (also called cross-modal). According to15

the available modality during testing stage, multimodal applications include bi-directional tasks (e.g. image-

sentence search [1][2], visual question answering (VQA) [3][4]) and uni-directional tasks (e.g. image cap-

tioning [5][6], image generation [7][8]), both of them will be introduced in the following sections.

With the powerful capabilities of deep neural networks, data from visual and textual modality can be

represented as individual features using domain-specific neural networks. Complementary information from20

these unimodal features is appealing for multimodal content understanding. For example, the individual

features can be further projected into a common space by using another neural network for a prediction

task. For clarity, we illustrate the flowchart of neural networks for multimodal research in Figure 1. On the

one hand, the neural networks are comprised by successive linear layers and non-linear activation functions,

the image or text data is represented in a high abstraction way, which leads to the “semantic gap” [9]. On25

the other hand, different modalities are characterized by different statistical properties. Image is 3-channel

RGB array while text is often symbolic. When represented by different neural networks, their features

have unique distributions and differences, which leads to the “heterogeneity gap” [10]. That is to say,

to understand multimodal content, deep neural networks should be able to reduce the difference between

high-level semantic concepts and low-level features in intra-modality representations, as well as construct a30

common latent space to capture semantic correlations in inter-modality representations.

Much effort has gone into mitigating these two challenges to improve content understanding. Some

works involve deep multimodal structures such as cycle-consistent reconstruction [11][12][13], while others

focus on feature extraction nets such as graph convolutional networks [14][15][16]. In some algorithms,

reinforcement learning is combined with deep multimodal feature learning [17][18][19]. These recent ideas35

are the scope of this survey. In a previous review [20], the authors analyze intrinsic issues for multimodal

research but mainly focus on machine learning. Some recent advances in deep multimodal feature learning
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Figure 1 A general flowchart of deep multimodal feature learning. Each modality starts with using an individual neural network to

process the data (e.g. CNN for images and RNN for text), which implements monomodal feature learning. The attention module is

an optional module for aligning two monomodal features. The extracted features FV and FT are not directly comparable and are

distributed inconsistently due to the process of individual domain-specific neural networks. To understand the multimodal content,

these monomodal features are embedded into a common latent space with the help of mapping functions (e.g. MLP). According to the

taxonomy [20], feature embedding in the common space can be categorized into a joint and a coordinated representation. Afterwards,

the optimized multimodal features FT
emb and FV

emb are comparable for specific applications. Common latent feature learning is a

crucial module in deep multimodal learning, which aims at learning semantically discriminative features. The current ideas and trends

for improving performance are the central topic of this paper.

are introduced [21], but it mainly discusses feature fusion structures and regularization strategies.

In this paper, we focus on two specific modalities, image and text, by examining recent related ideas.

First, we focus on the structures of deep multimodal models, including auto-encoders and generative adver-40

sarial networks [22] and their variants. These models, which perform uni-directional or bi-directional tasks,

go beyond simple image classifiers (e.g. ResNet). Second, we analyze recent methods of multimodal fea-

ture extraction which aim at getting semantically related features to minimize the heterogeneity gap. Third,

we focus on current popular algorithms for common latent feature learning, which are beneficial for net-

work training to preserve semantic correlations between modalities. In conclusion, the newly applied ideas45

mitigate the “heterogeneity gap” and the “semantic gap” between visual and textual modalities.

The rest of this paper is organized as follows: Section 2 introduces image-text related applications,

followed by corresponding challenges and intrinsic issues for these image-text applications in Section 3.

Regarding these challenges, we analyze the current ideas and trends in deep multimodal learning in Section

4. Finally, we conclude with several promising directions in Section 5.50
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2 Multimodal Applications

This section aims to summarize various multimodal applications where image and text data are involved.

These applications have gained a lot of attention lately and show a natural division into uni-directional and

bi-directional groups. The difference is that for uni-directional scenarios only one modality is available at

the test stage, whereas in bi-directional scenarios, two modalities are required.55

2.1 Uni-directional Multimodal Applications

An important concern in deep multimodal research is to map (translate) one modality to another. For

example, given an entity in visual (or textual) space, the task is to generate a description of this entity

in textual (or visual) space according to the content. For some tasks, these mapping processes are uni-

directional, i.e. either from image to text or from text to image.60

(1) Image-to-text tasks

Image captioning is a task that generates a sentence description for an image and requires recognizing

important objects and their attributes, then inferring their correlations within the image [23]. After capturing

these correlations, the captioner yields a syntactically correct and semantically relevant sentence. To under-

stand the visual content, images are fed into convolutional neural networks to learn hierarchical features,65

which constitutes the feature encoding process. The produced hierarchical features are transformed into

sequential models (e.g. RNN, LSTM) to generate the corresponding descriptions. Subsequently, the evalua-

tion module produces description difference as the feedback signals to update the performance of each block.

Deep neural networks are commonly used in image captioning. For other methods, including retrieval- and

template-based methods, we recommend the existing surveys [23][24][25]. In the following sections, we70

will examine the methods widely used to improve image captioning performance, including evolutionary

algorithm [26], generative adversarial networks [22][27][28], reinforcement learning [17][18][19], memory

networks [29][30][31], and attention mechanisms [32][33][34][35].

Image captioning is an open-ended research question. It is still difficult to evaluate the performance of

captioning, which should be diverse, creative, and human-like [36]. Currently, the metrics for evaluating the75

performance of image captioning include BLEU (Bilingual Evaluation Understanding), ROUGE (Recall-

Oriented Understudy for Gisting Evaluation), METEOR (Metric for Evaluation of Translation with Explicit

ORdering), CIDEr (Consensus-based Image Description Evaluation), and SPICE (Semantic Propositional

Image Captioning Evaluation). It is hard to access the generated captions by linguists. Thus it is necessary

to further study an evaluation indicator which is more in line with human judgments and is flexible to new80
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pathological cases [36]. Furthermore, image captioning systems might suffer from dataset bias issue. The

trained captioner overfits to the common objects in seen context (e.g. book and desk), but it would be

challenging for the captioner to generalize to the same objects in unseen contexts (e.g. book and tree).

According to captioning principles, researchers focus on specific caption generation tasks, such as image

tagging [37], visual region captioning [38], and object captioning [39]. Analogously, these tasks are also85

highly dependent on the regional image patch and sentences/phrases organization. The specific correlations

between the features of objects (or regions) in one image and the word-level (or phrase-level) embeddings

are explored instead of global dependence of the holistic visual and textual features.

(2) Text-to-image tasks

Compared to generating a sentence for a given image, generating a realistic and plausible image from a90

sentence is even more challenging. Namely, it is difficult to capture semantic cues from a highly abstract text,

especially when the text is used to describe complex scenarios as found in the MS-COCO dataset [40][41].

Text-to-image generation is such a kind of task which maps from textual modality to visual modality.

Text-to-image generation requires synthesized images to be photo-realistic and semantically consistent

(i.e. preserving specific object sketches and semantic textures described in text data). Generally, this re-95

quirement is closely related to the following two aspects: the heterogeneity gap [10] and the semantic gap

[9][42]. The first addresses the gap between the high-level concepts of text descriptions and the pixel-level

values of an image, while the second exists between synthetic images and real images.

The above issues in text-to-image application are exactly what generative models attempt to address,

through methods such as Variational Auto-Encoders (VAE) [43], auto-regressive models [44] and Gener-100

ative Adversarial Networks (GANs) [8][22]. Recently, various new ideas and network architectures have

been proposed to improve image generation performance. One example is to generate a semantic layout

as intermediate information from text data to bridge the heterogeneity gap in image and text [45][46][47].

Some works focus on the network structure design for feature learning. For image synthesis, novel derivative

architectures from GANs [48] have been explored in hierarchically nested adversarial networks [49], percep-105

tual pyramid adversarial networks [50], iterative stacked networks [51][52], attentional generative networks

[53][54], cycle-consistent adversarial networks [11][13] and symmetrical distillation networks [42].

Image generation is a promising multimodal application and has many applicable scenarios such as photo

editing or multimedia data creation. Thereby, this task has attracted lots of attention. However, there are

two main limitations to be explored further. Similar with image captioning, the first limit is regarding the110

evaluation metrics. Currently, Inception Score (IS) [51][52][55], Fréchet Inception Distance (FID) [55],
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Multi-scale Structural Similarity Index Metrics (MS-SSIM) [56][57], and Visual-semantic Similarity (VS)

[49] are used to evaluate generation quality. These metrics pay attention to generated image resolution and

image diversity. However, performance is still far from human perception. Another limitation is that, while

generation models work well and achieve promising results on single category object datasets like Caltech-115

UCSD CUB [58] and Oxford-102 Flower [58], existing methods are still far from promising on complex

dataset like MS-COCO where one image contains more objects and is described by a complex sentence.

To compensate for these limitations, word-level attention [53], hierarchical text-to-image mapping [46]

and memory networks [59] have been explored. In the future, one direction may be to make use of the

Capsule idea proposed by Hinton [60] since capsules are designed to capture the concepts of objects [48].120

2.2 Bi-directional Multimodal Applications

As for bi-directional applications, features from visual modality are translated to textual modality and

vice versa. Representative bi-directional applications are cross-modal retrieval and visual question answer-

ing (VQA) where image and text are projected into a common space to explore their semantic correlations.

(1) Cross-modal retrieval125

Single-modal and cross-modal retrieval have been researched for decades [61]. Different from single-

modal retrieval, cross-modal retrieval returns the most relevant image (text) when given a query text (image).

As for performance evaluation, there are two important aspects: retrieval accuracy and retrieval efficiency.

For the first, it is desirable to explore semantic correlations across an image and text features. To meet

this requirement, the aforementioned heterogeneity gap and the semantic gap are the challenges to deal130

with. Some novel techniques that have been proposed are as follows: attention mechanisms and memory

networks are employed to align relevant features between image and text [62][63][64][65]; Bi-directional se-

quential models (e.g. Bi-LSTM [66]) are used to explore spatial-semantic correlations [1][62]; Graph-based

embedding and graph regularization are utilized to keep semantic order in text feature extraction process

[67][68]; Information theory is applied to reduce the heterogeneity gap in cross-modal hasing [69]; Ad-135

versarial learning strategies and GANs are used to estimate common feature distributions in cross-modal

retrieval [70][71][72]; Metric learning strategies are explored, which consider inter-modality semantic sim-

ilarity and intra-modality neighborhood constraints [73][74][75].

For the second, recent hashing methods have been explored [2][76][77][78][79][80][81][82][83][84][85]

owing to the computation and storage advantages of binary code. Essentially, methods such as attention140

mechanisms [79] and adversarial learning [82][83][86] are applied for learning compact hash codes with

different lengths. However, the problems should be considered when one employs hashing methods for
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cross-modal retrieval are feature quantization and non-differential binary code optimization. Some meth-

ods, such as self-supervised learning [83] and continuation [86], are explored to address these two issues.

Recently, Yao et al. [85] introduce an efficient discrete optimal scheme for binary code learning in which a145

hash codes matrix is construct. Focusing on the feature quantization, Wang et al. [84] introduce a hashing

code learning algorithm in which the binary codes are generated without relaxation so that the large quan-

tization and non-differential problems are avoided. Analogously, a straightforward discrete hashing code

optimization strategy is proposed, more importantly, in an unsupervised way [87].

Although much attention has been paid to cross-modal retrieval, there still exists room for performance150

improvement (see Figure 8-9). For example, to employ graph-based methods to construct semantic informa-

tion within two modalities, more context information such as objects link relationships are adopted for more

effective semantic graph construction [61].

(2) Visual question answering

Visual question answering (VQA) is a challenging task in which an image and a question are given,155

then a correct answer is inferred according to visual content and syntactic principle. We summarize four

types of VQA [88] in Figure 2. VQA can be categorized into image question answering and video question

answering. In this paper, we target recent advances in image question answering. Since VQA was proposed,

it has received increasing attention in recent years. For example, there are some training datasets [89] built

for this task, and some network training tips and tricks are presented in work [90].160

To infer correct answers, VQA systems need to understand the semantics and intent of the questions com-

pletely, and also should be able to locate and link the relevant image regions with the linguistic information

in the questions. VQA applications present two-fold difficulties: feature fusion and reasoning rationality.

Thus, VQA more closely reflects the difficulty of multimodal content understanding, which makes VQA

applications more difficult than other multimodal applications. Compared to other applications, VQA has165

various and unknown questions as inputs. Specific details (e.g. activity of a person) in the image should be

identified along with the undetermined questions. Moreover, the rationality of question answering is based

on high-level knowledge and advanced reasoning capability of deep models. As for performance assess-

ment, answers on open-ended questions are difficult to evaluate compared to the other three types in Figure

2 where the answer typically is selected from specific options, or the answer contains only a few words [89].170

As summarized in Figure 2, the research on VQA includes: free-form open-ended questions [91], where

the answer could be words, phrases, and even complete sentences; object counting questions [92] where

the answer is counting the number of objects in one image; multi-choice questions [32] and Yes/No binary
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problems [93]. In principle, the type of multi-choice and Yes/No can be viewed as classification problems,

where deep models infer the candidate with maximum probability as the correct answer. These two types are175

associated with different answer vocabularies and are solved by training a multi-class classifier. In contrast,

object counting and free-form open-ended questions can be viewed as generation problems [89] because the

answers are not fixed, only the ones related to visual content and question details.

Compared to other three mentioned multimodal applications, VQA is more complex and more open-

ended. Although much attention has been paid to visual question answering research, there still exist several180

challenges in this field. One is related to accuracy. Some keywords in question might have been neglected

and some visual content might remain unrecognized or misclassified. Because of this, a VQA system might

give inaccurate even wrong answers. Another is related to diversity and completeness of the predicted

answer, which is especially crucial for free-form open-ended problems, as the output answers should be

as complete as possible to explain the given question, and not limited to a specific domain or restricted185

language forms [89]. The third one is the VQA datasets, which should have been less biased. For the

existing available datasets, questions that require the use of the image content are often relatively easy to

answer. However, harder questions, such as those beginning with “Why”, are comparatively rare and difficult

to answer since it needs to more reasoning [94]. Therefore, the biased question type impairs the evaluation

for VQA algorithms. For recommendations, a larger but less biased VQA dataset is necessary.190

3 Challenges for Deep Multimodal Learning

Typically, domain-specific neural networks process different modalities to obtain individual monomodal

representations and are further embedded or aggregated as multimodal features. Importantly, it is still diffi-

cult to fully understand how multimodal features are used to perform the aforementioned tasks well. Taking

text-to-image generation as an example, we can imagine two questions: First, how can we organize two195

types of data into a unified framework to extract their features? Second, how can we make sure that the

generated image has the same content as the sentence described?

These two kinds of questions are highly relevant to the heterogeneity gap and the semantic gap in deep

multimodal learning. We illustrate the heterogeneity gap and the semantic gap in Figure 3. Recently, much

effort has gone into addressing these two challenges. These efforts are categorized into two directions:200

towards minimizing the heterogeneity gap and towards preserving semantic correlation.

3.1 Heterogeneity Gap Minimization

On the one hand, although complementary information from multiple modalities is beneficial for multi-

modal content understanding, their very different statistical properties can impair the learning of this comple-
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Figure 2 Common types of visual question answering. “Yes/No” problem and multi-choice problem can be regarded as a classification

problem, while number counting problem and open-ended problem can be viewed as a caption generation problem.

mentary. For example, an image comprises 3-channel RGB pixel values, whereas the symbolic text consists205

of words with different lengths. Meanwhile, image and text data contain different ways of conveying seman-

tic information. Usually, the text has more abstract semantics than image while the content of the image is

easier and more straightforward to understand than text.

On the other hand, neural networks are comprised by successive linear layers and non-linear activation

functions. The neurons in each layer have different receptive fields so that the systems have various learning210

capacities. Usually, the last layer of neural networks are used as a way for representing data. Due to the

diverse structures of neural networks, the data representations are in various abstractions. Usually, image

features are extracted from hierarchical networks and text features are from sequential networks. Naturally,

these features are distributed inconsistently so that they are not directly comparable, which leads to the

heterogeneity gap. Both the modality data and the network itself contribute to this discrepancy.215

Therefore, to correlate features among different modalities, it is necessary to construct a common space

for these multimodal features to narrow the heterogeneity gap. In general, there are two strategies to narrow
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Figure 3 A conceptual illustration of two challenges. We use different shapes to denote different modalities; the circle represents text

feature distributions, and the triangle represents image feature distributions. Different shapes with the same color mean that they are

semantically similar in content. Apart from the “semantic gap” [9] which is commonly mitigated in monomodal deep visual tasks such

as image classification, the key for deep multimodal content understanding also lies in mitigating the “heterogeneity gap” [10], i.e.

reducing the inter-modality gap and exploring the semantic correlations.

the heterogeneity gap. One direction is from the viewpoint of deep multimodal structures and another is

from the viewpoint of feature learning algorithms.

Auto-encoders and generative adversarial networks (GANs) [22] are two important structures for rep-220

resenting the multimodal structure. We will introduce both of them in the following sections. Generative

adversarial networks learn features to bridge image data and text data. For example, GANs are commonly

applied to generate images according to their descriptive sentences. This idea is then developed into several

variants, such as StackGAN [51], HDGAN [49], and AttnGAN [53]. Auto-encoders are used to correlate

multimodal features based on feature encoding and feature reconstruction. For example, Gu et al. [95][96]225

use cross-reconstruction method to preserve multimodal semantic similarity where image (text) features are

reconstructed to text (image) features.

In addition, much effort has gone into minimizing the gaps in uni-modal representations. For instance,

sequential neural networks (e.g. RNNs) are employed to extract multi-granularity including character-level,

word-level, phrase-level and sentence-level text features [58][97][98][99]. Graph-based approaches have230

been introduced to explore the semantic relationship in text feature learning [68][100].

Regarding the goal of reducing the heterogeneity gap, uni-modal representations are projected into a

common latent space under joint or coordinated constraints. Joint representations combine uni-modal fea-
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tures into the same space, while coordinated representations process uni-modal features separately but with

certain similarity and structure constraints [20].235

3.2 Semantic Correlation Preserving

Preserving semantic similarity is challenging. On the one hand, the differences between high-level

semantic concepts (i.e. features) and low-level values (e.g. image pixel) result in a semantic gap among

intra-modality embeddings. On the other hand, uni-modal visual and textual representations make it difficult

to capture complex correlations across modalities in multimodal learning.240

As images and text are used to describe the same content, they should share similar patterns to some ex-

tent. Therefore, using several mapping functions, uni-modal representations are projected into the common

latent space using individual neural networks (see Figure 1). However, these embedded multimodal features

cannot reflect the complex correlations of different modalities because the individual networks are not pre-

trained and the feature projection are untargeted. The neural networks mainly act as a way of normalizing245

the monomodal features into a common latent space. Therefore, preserving the semantic correlations be-

tween projected features of similar image-text pairs is another challenge in deep multimodal research. More

specifically, if an image and text are similar in content, the semantic similarity of features in common latent

space should be preserved, otherwise, the similarity should be minimized.

To preserve the semantic correlations, one must measure the similarity between multimodal features250

where joint representation learning and coordinated representation learning can be adopted. Joint presenta-

tion learning is more suitable for the scenarios where all modalities are available during testing stage, such

as in visual question answering. For other situations where only one modality is available for testing, such

as cross-modal retrieval and image captioning, coordinated representation learning is a better option.

Generally, feature vectors from two modalities can be concatenated directly in joint representation learn-255

ing; Then the concatenated features are used to make classification or are fed into a neural network (e.g.

RNN) for prediction (e.g. producing an answer). Simple feature concatenation is a linear operation and

less effective, advanced pooling-based methods such as compact bilinear pooling [101][102] are introduced

to connect the semantically relevant multimodal features. Neural networks are also alternative for explor-

ing more corrections on the joint representations. For example, Wang et al. [103] introduce a multimodal260

transformer for disentangling the contextual and spatial information so that a unified common latent space

for image and text is construct. Similarly, auto-encoders, as as unsupervised structures, are used in several

multimodal tasks like cross-modal retrieval [75] and image captioning [104]. The learning capacity of the

encoder and decoder are enhanced by improving on the structure of the sub-networks by stacking attention
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[105][106], paralleling LSTM [107][104], and ensembling CNN [108]. Different sub-networks have their265

own parameters. Thereby, auto-encoders would have more chances to learn comprehensive features.

The key point for coordinated representation learning is to design optimal constraint functions. For ex-

ample, computing inner product or cosine similarity between two cross-modal features is a simple way to

constrain dot-to-dot correlations. Canonical correlation analysis [72][109][110][111] is commonly used to

maximize semantic correlations between vectors; For better performance and stability improvement, metric270

learning methods such as bi-directional objective functions [112][113][73] are utilized. However, mining

useful samples and selecting appropriate margin settings remain empirical in metric learning [74]. Re-

garding these limits in metric learning, some new methods, such as adversarial learning [71][83][70] and

KL-divergence [74], are introduced for these demerits. Instead of selecting three-tuple samples, these al-

ternative methods consider the whole feature distributions in a common latent space. In addition, attention275

mechanisms [33][34][114] and reinforcement learning [115][116] are popularly employed to align relevant

features between modalities.

To address the above-mentioned challenges, several new ideas, including methods for feature extraction,

structures of deep networks, and approaches for multimodal feature learning, have been proposed in recent

years. The advances from these ideas are introduced in the following sections.280

4 Recent Advances in Deep Multimodal Feature Learning

Regarding the aforementioned challenges, exploring content understanding between image and text has

attracted sustained attention and lots of remarkable progresses have been made. In general, these advances

are mainly from a viewpoint of network structure and a viewpoint of feature extraction/enhancement. To

this end, combining the natural process pipeline of multimodal research (see Figure 1), we categorize these285

research ideas into three groups: deep multimodal structures presented in Section 4.1, multimodal feature

extraction approaches introduced in Section 4.2, and common latent space learning described in Section

4.3. Deep multimodal structures indicate the basic framework in community; Multimodal feature extraction

is the prerequisite which supports the following similarity exploring; Common latent space learning is the

last but a critical procedure to make the multimodal features comparable. For a general overview for these290

aspects in multimodal applications, we make a chart for the representative methods in Figure 4.

4.1 Deep Multimodal Structures

Deep multimodal structures are the fundamental frameworks to support different deep networks for ex-

ploring visual-textual semantics. These frameworks, to some extent, have critical influences for the following

feature learning steps (i.e. feature extraction or common latent space learning). To understand the semantics295
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Figure 4 Representative approaches for multi-modal content understanding. We categorize these new ideas and trends in the perspective

of deep multimodal structure, feature extraction and common feature learning, which are applied into different applications: Text-

SeGAN [7], PPAN [50], MUCAE [117], AAAE [118], HDGAN [49], AttnGAN [53], SAGAN [55], AE-GAN [119], TAC-GAN [120],

StackGAN [51], AC-GAN [57], GAN-INT-CLS [8], Unsupervised IC [121], Improving-CGAN [122], RL-GAN [123], ShowAT [124],

SSL [28], CGAN [27], SSAH [83], CYC-DGH [12], MASLN [125], GXN [95], ACMR [71], CM-GANs [126], DCMH [127], TIMAM

[128], AGAH [129], DJSRH [130], SAEs [131], CAH [96], AA [132], ALARR [133], iVQA [134], CoAtt-GAN-w/Rinte-TF [135],

Scene graphs [45], vmCAN [59], Graph-align [136], Know more say less [137], GCN-LSTM [15], SGAE [16], StructCap [138], GCH

[139], GIN [140], Textual-GCNs [141], CSMN [31], CMMN [64], ReGAT [142], Out-of-the-box [143], Graph VQA [144], GERG

[145], VKMN [146], MAN-VQA [147], DMN+ [148], MSCQA [116], SCH-GAN [82], CBT [149], SCST [17], CAVP [18], SR-PL

[19], SMem-VQA [150], ODA [151], AOA [152], Up-Down [32], Attention-aware [79], BSSAN [62], CRAN [153], CBP [36], SOT

[5], PAGNet [34], MirrorGAN [154], DAI [155], T2I2T [11], CCGAN [13], C4Synth [156], Cycle-Attn+ [157], Coupled CycleGAN

[158], TCCM [159], CycleMatch [160], VQA-Rephrasings [161], iQAN [162], MLAN [163], MFB [164], DANs [165], High-order

Attn [166], FVTA [3], CMCE [167], BFAN [168], Semantic-Attn[169], Adaptive-Attn [170], Obj-GANs [171], Image-generation-attn

[43], ControlGAN [172], SEGAN [173].

between images and text, deep multimodal structures usually involve computer vision and natural language

processing (NLP) field [174]. For instance, raw images are processed by hierarchical networks such as
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CNNs and raw input text can be encoded by sequential networks such as RNN, LSTM [99], and GRU [174].

During the past years, a variety of related methods have blossomed and accelerated the performance of

multimodal learning directly in multimodal applications, as shown in Figure 4.300

Deep multimodal structures include generative models, discriminative models. Generative models im-

plicitly or explicitly represent data distributions measured by a joint probability P (X,Y ), where both raw

data X and ground-truth labels Y are available in supervised scenarios. Discriminative models learn classifi-

cation boundaries between two different distributions indicated by conditional probability P (Y |X). Recent

representative network structures for multimodal feature learning are auto-encoders and generative adver-305

sarial networks. There are some novel works to improve the performance of multimodal research based on

these two basic structures (see Figure 4).

4.1.1 Auto-encoders
The main idea of auto-encoder for multimodal learning is to first encode data from a source modality

as hidden representations and then to use a decoder to generate features (or data) for the target modality.310

Thus, it is commonly used in dimensionality reduction for bi-directional applications where two modalities

are available at the test stage. For this structure, reconstruction loss is the constraint for training encoder

and decoder to well capture the semantic correlations between image and text features. For clarity, we iden-

tify three ways for correlation learning using auto-encoders in Figure 5. For instance, as shown in Figure

5(a), the input images and text are processed separately with non-shared encoder and decoder, after which315

these hidden representations from the encoder are coordinated through a constraint such as Euclidean dis-

tance [117]. The coordinated methods can be replaced by joint methods in Figure 5(b) where image and

text features are projected into a common space with a shared multilayer perceptron (MLP). Subsequently,

the joint representation is reconstructed back to the original raw data [125]. Alternatively, feature corre-

lations are captured by cross reconstruction with similarity constraints (e.g. a similarity matrix is used as320

supervisory information [127][96]) between hidden features. The idea of constraining sample similarity is

also incorporated with GANs into a cycle-consistent formation for cross-modal retrieval like GXN [95] and

CYC-DGH[12] (see Figure 4).

The neural networks contain in the encoder-decoder framework can be modality specific. For image data,

the commonly used neural networks are CNN while sequential networks like LSTM are most often used for325

text data. When applied for multimodal learning, the decoder (e.g. LSTM) constructs hidden representations

of one modality in another modality. The goal is not to reduce reconstruction error but to minimize the

output likelihood estimation. Therefore, most works focus on the decoding since it is a process to project the
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Figure 5 Convolutional autoencoder used for deep multimodal learning. The branch for image feature learning can adopt hierarchical

networks such as CNNs; the branch for text feature learning can capture the dependency relations in a sentence by sequential models

such as RNN and LSTM. Usually, a reconstruction loss function is used to optimize network training.

less meaningful vectorial representations to meaningful outputs in target modality. Under this idea, several

extensions have been introduced. The main difference among these algorithms lies in the structure of the330

decoder. For example, “stack and parallel LSTM” [107][104] is to parallelize more parameters of LSTMs to

capture more context information. Similar ideas can be found in “CNN ensemble learning” [108]. Instead of

grabbing more information by stacking and paralleling, “Attention-LSTM” [107][175] combines attention

technique into LSTM to highlight most relevant correlations, which would be more targeted. An adversarial

training strategy is employed into the decoder to make all the representations discriminative for semantics335

but indiscriminative for modalities so that intra-modal semantic consistency is effectively enhanced [125].

Considering the fixed structure in the decoder like RNN might limit the performance, Wang et al. [26]

introduce evolutionary algorithm to adaptively generate neural network structures in the decoder.

4.1.2 Generative Adversarial Networks
As depicted in Figure 4, adversarial learning from generative adversarial networks [22] has been em-340

ployed into applications including image captioning [28][122][124], cross-modal retrieval [71][83][70][125]

[82][79] and image generation [7][49][51][52][50][53], but has been less popular in VQA tasks. GANs

combine generative sub-models and discriminative sub-models into a unified framework in which two com-
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ponents are trained in an adversary manner.

Different from auto-encoders, GANs can cope with the scenarios where there are some missing data.345

To accurately explore the correlations between two modalities, multimodal research works involving GANs

have been focusing on the whole network structure and its two components: generator and discriminator.

For the generator which also can be viewed as an encoder, an attention mechanism is often used to

capture the important key points and align cross-modal features such as AttnGAN [53] and Attention-aware

methods [79]. Sometimes, Gaussian noise is concatenated with the generator’s input vector to improve the350

diversity of generated samples and avoid model collapse, such as the conditioning augmentation block in

StackGAN [51]. To improve its capacity for learning hierarchical features, a generator can be organized into

different nested structures such as hierarchical-nested [49] and hierarchical-pyramid [50], both of them can

capture multi-level semantics.

The discriminator, which usually performs binary classification, attempts to discriminate the ground-355

truth labels from the outputs of the generator. Some recent ideas are proposed to improve the discrimination

of GANs. Originally, discriminator in the first work [22] just needs to classify different distributions into

“True” or “False” [8]. However, discriminator can also make a class label classification where a label

classifier is added on the top of discriminator [57][120]. Apart from the label classification, a semantic

classifier is designed to further predict semantic relevances between a synthesized image and a ground-360

truth image for text-to-image generation [7]. Only focusing on the paired samples leads to relatively-weak

robustness. Therefore, the unmatched image-text samples can be fed into a discriminator (e.g. GAN-INT-

CLS [8] and AACR [72]) so that the discriminator would have a more powerful discriminative capability.

According to previous work [48], the whole structure of GANs in multimodal research are categorized

into direct methods [8][120][57], hierarchical methods [49][50] and iterative methods [51][52][53]. Contrary365

to direct methods, hierarchical methods divide raw data in one modality (e.g. image) into different parts such

as a “style” and “structure” stage, thereby, each part is learned separately. Alternatively, iterative methods

separate the training into a “coarse-fine” process where details of the results from a previous generator are

refined. Besides, cycle-consistency from cycleGAN [136] is introduced for unsupervised image translation

where a self-consistency (reconstruction) loss tries to retain the patterns of input data after a cycle of feature370

transformation. This network structure is then applied into tasks like image generation [13][11] and cross-

modal retrieval [95][12] to learn semantic correlation in an unsupervised way.

Preserving semantic correlations between two modalities is to reduce the difference of inconsistently dis-

tributed features from each modality. Adversarial learning keeps pace with this goal. In recent years, adver-
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sarial learning is widely used to design algorithms for deep multimodal learning [70][71][79][83][82][125].375

For these algorithms, there are no classifiers for binary classification. Instead, two sub-networks are trained

with the constraints of competitive loss functions.

As the dominant popularity of adversarial learning, some works are performed by combining auto-

encoders and GANs in which the encoder in auto-encoders and the generator in GANs share the same sub-

network [118][119][121][125][95][126] (see Figure 4). For example, in the first work about unsupervised380

image captioning [121], the core idea of GANs is used to generate meaningful text features from scratch of

text corpus and cross-reconstruction is performed between synthesized text features and true image features.

4.2 Multimodal Feature Extraction

Deep multimodal structures support the following learning process. Thereby, feature extraction is closer

for exploring visual-textual content relations, which is the prerequisite to discriminate the complementarity385

and redundancy of multiple modalities. It is well-known that image features and text features from different

deep models have distinct distributions although they convey the same semantic concept, which results in a

heterogeneity gap. In this section, we introduce several effective multimodal feature extraction methods for

addressing the heterogeneity gap. In general, these methods focus on (1) learning the structural dependency

information to reasoning capability of deep neural networks and (2) storing more information for seman-390

tic correlation learning during model execution. Moreover, (3) feature alignment schemes using attention

mechanism are also widely explored for preserving semantic correlations.

4.2.1 Graph Embeddings with Graph Convolutional Networks
Words in a sentence or objects within an image have some dependency relationships, and graph-based vi-

sual relationship modelling is beneficial for the characteristic [35]. Graph Convolutional Networks (GCNs)395

are alternative neural networks designed to capture this dependency information. Compared to standard

neural networks such as CNNs and RNNs, GCNs would build a graph structure which models a set of ob-

jects (nodes) and their dependency relationships (edges) in an image or sentence, embed this graph into a

vectorial representation, which is subsequently integrated seamlessly into the follow-up steps for processing.

Graph representations reflect the complexity of sentence structure and are applied to natural language pro-400

cessing such as text classification [176]. For deep multimodal learning, GCNs receive increasing attention

and have achieved breakthrough performance on several applications, including cross-modal retrieval [14],

image captioning [15][16][35][138], and VQA [144][143][142]. Recent reviews [177][178] have reported

comprehensive introductions to GCNs. However, we focus on recent ideas and processes in deep multimodal

learning.405

17



Graph convolutional networks in multimodal learning can be employed in text feature extraction [14][144]

[35][65] and image feature extraction [15][16][138]. Among these methods, GCNs capture semantic rele-

vances of intra-modality according to the neighborhood structure. GCNs also capture correlations between

two modalities according to supervisory information. Note that vector representations from graph convolu-

tional networks are fed into subsequent networks (e.g. “encoder-decoder” framework) for further learning.410

GCNs aim at determining the attributes of objects and subsequently characterize their relationships. On

the one hand, GCNs can be applied in a singular modality to reduce the intra-modality gap. For instance, Yu

et al. [14] introduce a “GCN+CNN” architecture for text feature learning and cross-modal semantic correla-

tion modeling. In their work, Word2Vec and k-nearest neighbor algorithm are utilized to construct semantic

graphs on text features. GCNs are also explored for image feature extractions, such as in image captioning415

[15][16][138]. In previous work [138], a tree structure embedding scheme is proposed for semantic graph

construction. Specifically, input images are parsed into several key entities and their relations are organized

into a visual parsing tree (VP-Tree). This process can be regarded as an encoder. The VP-Tree is trans-

formed into an attention module to participate in each state of LSTM-based decoder. VP-Tree based graph

construction is somewhat in a unified way. Alternative methods are introduced to construct more fine-graded420

semantic graphs [15][16]. Specifically, object detectors (e.g. Faster-RCNN [179]) and visual relationship

detectors (e.g. MOTIFS [180]) are used to get image regions and spatial relations, semantic graphs and

spatial graphs are constructed based on the detected regions and relations, respectively. Afterwards, GCNs

extract visual representations based on the built semantic graphs and spatial graphs.

Graph convolutional networks are also introduced to mitigate the inter-modality gap between image and425

text [144][143]. Take the work [143] for VQA as an example, an image is parsed into different objects,

scenes, and actions. Also, a corresponding question is parsed and processed to obtain its question embed-

dings and entity embeddings. These embedded vectors of image and question are concatenated into node

embeddings then fed into graph convolutional networks for semantic correlation learning. Finally, the output

activations from graph convolutional networks are fed into sequential networks to predict answers.430

As an alternative method, graph convolutional networks are worthy more exploration for correlations

between two modalities. Moreover, there exist two limitations in graph convolutional networks. On the one

hand, graph construction process is overall time- and space-consuming; On the other hand, the accuracy of

output activations from graph convolutional networks mostly relies on supervisory information to construct

an adjacency matrix by training, which are more suitable for structured data, so flexible graph embeddings435

for image and/or text remains an open problem.
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Figure 6 The paradigm of memory-augmented networks in multimodal learning. Augmented memory stores the features of all long-

term sequences processed by a pre-trained classifier. The stored vectors can be selected (read) by the memory controller according to

the reading weights. Meanwhile, these stored vectors are updated according to the writing weights at each time-step.

4.2.2 Memory-augmented Networks
To enable deep networks to understand multimodal content and have better reasoning capability for

various tasks, a solution may be the mentioned GCNs. Moreover, another solution that has gained attention440

recently is memory-augmented networks. Directly, when much information in mini-batch even the whole

dataset is stored in a memory bank, such networks have greater capacity to memorize correlations.

In conventional neural networks like RNNs for sequential data learning, the dependency relations be-

tween samples are captured by the internal memory of recurrent operations. However, these recurrent oper-

ations might be inefficient in understanding and reasoning overextended contexts or complex images. For445

instance, most captioning models are equipped with RNN-based encoders, which predict a word at every

time step based only on the current input and hidden states used as implicit summaries of previous histories.

However, RNNs and their variants often fail to capture long-term dependencies [31]. For this limitation,

memory networks [30] are introduced to augment the memory primarily used for text question-answering

[88]. Memory networks improve understanding of both image and text, and then “remember” temporally450

distant information.

Memory-augmented networks can be regarded as recurrent neural networks with explicit attention meth-

ods that select certain parts of the information to store in their memory slots. As reported in Figure 4,
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memory-augmented networks are used in cross-modal retrieval [64], image captioning [31][99][181][6] and

VQA [146][147][148][145][150]. We illustrate memory-augmented networks for multimodal learning in455

Figure 6. A memory block, which acts as a compressor, encodes the input sequence into its memory slots.

The memory slots are a kind of external memory to support learning; the row vectors in each slot are ac-

cessed and updated at each time-step. During training, a network such as LSTM or GRU, which acts as a

memory controller, refers to these memory slots to compute reading weights (see Figure 6). According to

the weights, the essential information is obtained to predict the output sequence. Meanwhile, the controller460

computes writing weights to update values in memory slots for the next time-step of the training [182].

Memory networks can expand the “memory” of networks thus store more information. The network

performance relates to the memory slots’ initialization strategy and the stored information. For this aspect,

memory networks have been combined with other techniques like attention mechanisms [106] to further

improve its feature learning capability. For example, Xiong et al. [148] explore the impact of different465

initialization strategies to demonstrate that initializations from the outputs of pre-trained networks have

better performance. This was verified in works [150] where output features from image patches are stored

into memory slots of spatial memory networks for VQA. Thereby, generated answers are updated based

on gathering evidence from the accessed regions in memory slots. Similarly, Ma et al. [147] adopt LSTM

to obtain text features of each sentence and store into memory slots. Then memory-augmented networks470

are utilized to determine the importance of concatenated visual and text features over the whole training

data. Further considering both two modalities, a visual knowledge memory networks is introduced in which

memory slots store key-value vectors computed from images, query questions and a knowledge base [146];

Instead of storing the actual output features, Song et al. [64] adopt memory slots to store a prototype concept

representation from pre-trained concept classifiers, which is inspired from the process of human memory.475

Memory-augmented networks improve the performance of deep multimodal content understanding by

offering more information to select. However, this technique is less popular in image generation, image

captioning and cross-modal retrieval than VQA (see in Figure 4). A possible reason for this is that in cross-

modal retrieval, memory-augmented networks might require extra time when memory controllers determine

when to write or read from the external memory blocks. It will hurt overall retrieval efficiency.480

4.2.3 Attention Mechanism

As mentioned in Section 3.2, one challenge for deep multimodal learning is to preserve semantic corre-

lations among multimodal features. Regarding this challenge for content understanding, feature alignment

plays a crucial role. Image and text features are first processed by deep neural networks under a certain
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(d) Self-attention
Figure 7 Diagram for different types of attention mechanisms used in deep multimodal learning.

structure like auto-encoders. Naturally, the final output global features include some irrelevant or noisy485

background information, which is not optimal for performing multimodal tasks.

Attention are commonly used mechanisms to tackle this issue and have been widely incorporated into

various multimodal tasks, such as visual question answering [151][152][183] [184][185][186][187][188]

[99], image captioning [5][34][35][15][189][190], and cross-modal retrieval [62][79][65]. In principle, the

attention mechanisms compute different weights (or importances) according to relevances between two490

global (or local) multimodal features and assign different importances to these features. Thereby, the net-

works will be more targeted at the sub-components of the source modality–regions of an image or words of

a sentence. To further explore the relevances between two modalities, the attention mechanisms are adopted

on multi-level feature vectors [150][189], employed in a hierarchical scheme [188][191], and incorporated

with graph networks for modelling semantic relationships [35].495

To elaborate on the current ideas and trends of attention algorithms, we categorize this popular mech-

anism into different types. According to objective computing vectors, we categorize the current attention

algorithms into four types: visual attention, textual attention, co-attention, and self-attention. Their diagrams

are introduced in Figure 7. We further categorize the attention algorithms into single-hop and multiple-hop

(i.e. stacked attention) according to the iterations of importance calculation.500
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Visual attention. As shown in Figure 7(a), visual attention schemes are used in scenarios where text fea-

tures (e.g. from a query question) are used as context to compute their co-relevance with image features, and

then the relationships are used to construct a normalized weight matrix. Subsequently, this matrix is applied

to original image features to derive text-guided image features using element-wise multiplication operation

(linear operation). The weighted image features have been aligned by the correlation information between505

image and text. Finally, these aligned multimodal features are utilized for prediction or classification. This

idea is common in multimodal feature learning [5][32][34][15][150][151][152][183][185][99][189] and has

been incorporated to get different text-guided features. For example, Anderson et al. [32][185] employ em-

bedded question features to highlight the most relevant image region features in visual question answering.

The predicted answers are more accurately related to the question type and image content. Visual attention510

is widely used to learn features from two modalities.

Textual attention. Compared to visual attention, the textual attention approach is relatively less adopted.

As shown in Figure 7(b), it has an opposite computing direction [153][192][193]. The computed weights

are based on text features to obtain relevances for different image regions or objects. According to the work

[88], the reason why textual attention is necessary is that text features from the multimodal models often515

lack detailed information for a given image. Meanwhile, the application of textual attention is less dominant

as it is harder to capture semantic relevances between abstract text data and image data. Moreover, image

data has always contained more irrelevant content for similar text. In other words, the text might describe

only some parts within an image.

Co-attention. As shown in Figure 7(c), co-attention algorithm is viewed as a combination of visual520

attention and textual attention, which is an option to explore the inter-modality correlations [62][186][188]

[106][165][190][194][167][65]. Co-attention is a particular case of joint feature embedding in which image

and text features are usually treated symmetrically. Co-attention in a bi-directional way is beneficial for

spatial-semantic learning. As an example, Nguyen et al. [186] introduce a dense symmetric co-attention

method to improve the fusion performance of image and text representations for VQA. In their method,525

features are sampled densely to fully consider each interaction between any word in question and any image

region. Similarly, Huang et al. [62] also employ this idea to capture underlying fine-granularity corre-

lations for image-text matching, and Ding et al. [195] capture similar fine-granularity by two types of

visual-attention for image captioning. Meanwhile, several other works explore different formations of co-

attention. For instance, Lu et al. [188] explore co-attention learning in a hierarchical fashion where parallel530

co-attention and alternating co-attention are employed in VQA. The method aims at modelling the question
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hierarchically at three levels to capture information from different granularities. Integrating image feature

with hierarchical text features may vary dramatically so that the complex correlations are not fully captured

[164]. Therefore, Yu et al. [164][184] develop the co-attention mechanism into a generalized Multi-modal

Factorized High-order pooling (MFH) block in an asymmetrical way. Thereby, higher-order correlations of535

multi-modal feature achieve more discriminative image-question representation and further result in signifi-

cant improvement on the VQA performance.

Self-attention. Compared to the co-attention algorithm, self-attention, which considers the intra-modality

relations, is less popular in deep multimodal learning. As intra-modality relation is complementary to

the inter-modality relation, its exploration is considered improving the feature learning capability of deep540

networks. For example, in the VQA task, the correct answers are not only based on their associated

words/phrases but can also be inferred from related regions or objects in an image. Based on this obser-

vation, a self-attention algorithm is proposed for multimodal learning to enhance the complementary be-

tween intra-modality relations and the inter-modality relations [184][79][194][103]. Self-attention has been

used in different ways. For example, Gao et al. [194] combine the attentive vectors form self-attention with545

co-attention using element-wise product. The linear modelling method for inter- and intra-modality informa-

tion flow lead to less effectiveness since the complex correlations cannot be fully learned. Therefore, more

effective strategies are introduced. Yu et al. [184] integrate text features from the self-attention block by

Multimodal Factorized Bilinear (MFB) pooling approach rather than linear method to produce joint features.

Differently, Zhang et al. [79] propose a learnable combination scheme in which they employ a self-attention550

algorithm to extract the image and text features separately. Then these attended and unattended features are

trained in an adversary manner.

It is important to note that when these four types of attention mechanisms are applied, they can be

used to highlight the relevances between different image region features and word-level, phrase-level or

sentence-level text features. These different cases just need region/object proposal networks and sentence555

parsers. When multi-level attended features are concatenated, the final features are more beneficial for

content understanding in multimodal learning.

As for single-hop and multiple-hop (stacked) attention, the difference lies in whether the attention “layer”

will be used one or more times. The four mentioned attention algorithms can be applied in a single-hop

manner where the relevance weights between image and text features are computed once only. However,560

for multiple-hop scenarios, the attention algorithm is adopted hierarchically to perform coarse-to-fine fea-

ture learning, that is, in a stacked way [65][188][165][150][105][152][106] . For example, Xu et al. [150]
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introduce two-hop spatial attention learning for VQA. The first hop focuses on the whole and the second

one focuses on individual words and produces word-level features. Yang et al. [105] also explore multiple

attention layers in VQA thereby the sharper and higher-level attention distributions will contribute refined565

query features for predicting more relevant answers. Singh et al. [152] achieve marginal improvements

using “attention on attention” framework in which the attention module is stacked in parallel and for image

and text feature learning. Nevertheless, a stacked architecture has tendency for gradient vanishing [106].

Regarding this, Fan et al. [106] propose stacked latent attention for VQA. Particularly, all spatial configu-

ration information contained in the intermediate reasoning process is retained in a pathway of convolutional570

layers so that the vanishing gradient problem is tackled.

In summary, to better understand the content in visual and textual modality, attention mechanisms pro-

vide a pathway for aligning the multimodal semantic correlations. With different multimodal applications,

attention mechanisms (single-hop or multiple-hop) can have different benefits. To this end, we briefly make

a comparison for single-hop and multiple-hop with respect to their advantages, disadvantages, and the ap-575

plicable scenarios in Table 1.

Hop(s) Advantages Disadvantages Applicable scenarios

Single

More straightforward and training

effective since the visual-textual in-

teraction occurs a single time

Less focused on complex relations be-

tween words. Insufficient to locate words

or features on complicated sentences

No explicit constraints for visual attention. Suit-

able for capturing relations in short sentences as

tends to be paid much to the most frequently words.

Multiple

More sophisticated and accurate,

especially for complicated sen-

tences. Each iteration provides

newly relevant information to dis-

cover more fine-grained correla-

tions between image and text.

Less training effective due to re-

assigning attention weights multiple

times. Sharing structures and parameters

leads to attention bias (similar attention

weights in all hops). Might suffer from

the gradient vanishing problem [106].

Beneficial for multimodal learning involved long

sentences. More suitable for sentence embedding

in text classification or machine translation tasks.

Beneficial for combining with memory networks

due to the repeatedly or iteratively information ex-

traction process.

Table 1 Brief comparisons of two attention categories

4.3 Common Latent Space Learning

As illustrated in Figure 1, feature extractors (e.g. GCNs) would yield modality-specific presentations.

In other words, these features distribute inconsistently and are not directly comparable. To this end, it

is necessary to further map these monomodal features into a common latent space with the help of an580

embedding networks (e.g. MLP). Therefore, common latent feature learning has been a critical procedure

for exploiting multimodal correlations. In the past years, various constraint and regularization methods have

been introduced into multimodal applications (see Figure 4). In this section, we will include these ideas,

such as attention mechanisms, which aim to retain similarities between monomodal image and text features.
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According to the taxonomy methods [20], multimodal feature learning algorithms include joint and585

coordinated methods. The joint feature embedding is formulated as:

J = J (x1, ..., xn, y1, ..., yn) (1)

while coordinated feature embeddings are represented as:

F = F(x1, ..., xn) ∼ G(y1, ..., yn) = G (2)

where J refers to the jointly embedded features, F and G denote the coordinated features. x1, ..., xn and

y1, ..., yn are n-dimension monomodal feature representations from two modalities (i.e. image and text).

The mapping functions J (·), F(·) and G(·) denote the deep networks to be learned, “∼” indicates that the590

two monomodal features are separated but are related by some similarity constraints (e.g. DCCA [196] ).

4.3.1 Joint Feature Embedding
In deep multimodal learning, joint feature embedding is a straightforward way in which monomodal

features are combined into the same presentation. The fused features are used to make a classification in

cross-modal retrieval [63]. It also can be used for performing sentence generation in VQA [32][36][91].595

In early studies, some basic methods are employed for joint feature embedding such as feature summa-

tion, feature concatenation [51][52][53], and element-wise inner product [148][186], the resultant features

are then fed into a multi-layer perceptron to predict similarity scores. These approaches construct a com-

mon latent space for features from different modalities but cannot preserve their similarities while fully

understanding the multimodal content. Alternatively, more complicated bilinear pooling methods [101]600

are introduced into multimodal research. For instance, Multimodal Compact Bilinear (MCB) pooling is

introduced [197] to perform visual question answering and visual grounding. However, the performance

of MCB is based on a higher-dimensional space. Regarding this demerit, Multimodal Low-rank Bilinear

pooling [198][187] and Multimodal Factorized Bilinear pooling [164] are proposed to overcome the high

computational complexity when learning joint feature. Moreover, Hedi et al. [199] introduce a tensor-based605

Tucker decomposition strategy, MUTAN, to efficiently parameterized bilinear interactions between visual

and textual representations so that the model complexity is controlled and the model size is tractable. In gen-

eral, to train an optimal model to understand semantic correlations, classification-based objective functions

[120][57] and regression-based objective functions [51][53] are commonly adopted.

Bilinear pooling methods are based on outer products to explore correlations of multimodal features. Al-610

ternatively, neural networks are used for jointly embedding features since its learnable ability for modelling

the complicated interactions between image and text. For instance, auto-encoder methods, as shown in Fig-

ure 5(b), are used to project image and text features with a shared multi-layer perceptron (MLP). The similar
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multimodal transformer introduced in [103] constructs a unified joint space for image and text. In addition,

sequential networks are also adopted for the latent space construction. Take visual question answering as615

an example, based on the widely-used “encoder-decoder” framework, image features extracted from the en-

coder are fed into the decoder (i.e. RNNs [107]), and finally combined with text features to predict correct

answers [89][104][122][147]. There are several ways to combine features. Image features can be viewed as

the first “word” and concatenate all real word embeddings from the sentences. Alternatively, image features

can be concatenated with each word embedding then fed them into RNNs for likelihood estimation. Con-620

sidering the gradient vanishing in RNNs, CNNs are used to explore complicated relations between features

[113][200]. For example, convolutional kernels are initialized under the guidance of text features. Then,

these text-guided kernels operate on extracted image features to maintain semantic correlations [200].

The attention mechanisms in Section 4.2.3 can also be regarded as a kind of joint feature alignment

method and are widely used for common latent space learning (see Figure 4). Theoretically, these feature625

alignment schemes aim at finding relationships and correspondences between instances from visual and

textual modalities [20][88]. In particular, the mentioned co-attention mechanism is a case of joint feature

embedding in which image and text features are usually treated symmetrically [63]. The attended multimodal

features are beneficial for understanding the inter-modality correlations. Attention mechanisms for common

latent space learning can be applied in different formations, including bi-directional [186][62], hierarchical630

[188][164][184], and stacked [188][165][150][105]. More importantly, the metrics for measuring similarity

are crucial in attentive importance estimation. For example, the importance estimation bu simple linear

operation [188] may fail to capture the complex correlations between visual and textual modality while the

Multi-modal Factorized High-order pooling (MFH) method can learn higher-order semantic correlations and

achieve marginal performance.635

To sum up, joint feature embedding methods are basic and straightforward ways to allow learning inter-

actions and perform inference over multimodal features. Thus, joint feature embedding methods are more

suitable for situations where image and text raw data are available during inference, and joint feature em-

bedding methods can be expanded into situations when more than two modalities are present. However, for

content understanding among inconsistently distributed features, as reported in previous work [89], there is640

potential for improvement in the embedding space.

4.3.2 Coordinated Feature Embedding
Instead of embedding features jointly into a common space, an alternative method is to embed them

separately but with some constraints on features according to their similarity (i.e. coordinated embedding).
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For example, the above-noted reconstruction loss in auto-encoders can be used to constraining multimodal645

feature learning in the common space [68][75]. Using traditional canonical correlation analysis [109], as an

alternative, the correlations between two kinds of features can be measured and then maintained [111][196].

To explore semantic correlation in a coordinated way, generally, there are two commonly used categories:

classification-based methods and verification-based methods.

For classification-based methods when class label information is available, these projected image and650

text features in the common latent space are used for label prediction [71][73][83][194]. Cross-entropy loss

between the inference labels and the ground-truth labels is computed to optimize the deep networks, see Fig-

ure 1, via the back-propagation algorithm. For classification-based methods, class labels or instance labels

are needed. They map each image feature and text feature into a common space and guarantee the semantic

correlations between two types of features. Classification-based methods mainly concern the image-text pair655

with the same class label. For the image and unmatched text (vice versa), classification-based methods have

less constraints.

Different from classification-based methods, the commonly used verification-based methods can con-

strain both the matched image-text pairs (similar or have the same class labels) and unmatched pairs (dis-

similar or have the different class labels). Verification-based methods are based on metric learning among660

multimodal features. Given similar/dissimilar supervisory information between image and text, these pro-

jected multimodal features should be mapped based on their corresponding similar/dissimilar information.

In principle, the goal of the deep networks is to make similar image-text features close to each other while

mapped dissimilar image-text features further away from each other. Verification-based methods include

pair-wise constraint and triplet constraint, both of which form different objective functions.665

For pair-wise constraint, the key point lies in constructing an inference function to infer similarity of

features. For example, Cao et al. [96] use matrix multiplication to compute the pair-wise similarity. In other

examples, Cao et al. [81][83][80] construct a Bayesian network, rather than a simple linear operation, to

preserve the similarity relationship of image-text pairs. In addition, triplet constraint is also widely used for

building the common latent space. Typically, bi-directional triplet loss function is applied to learn feature670

relevances between two modalities [63][19][78][73][79][153][71]. Inter-modality correlations are learned

well when triplet samples interchange within image and text. However, a complete deep multimodal model

should also be able to capture intra-modality similarity, which is a complementary part for inter-modality

correlation. Therefore, several works consider combining intra-modal triplet loss in feature learning in which

all triplet samples are from the same modality (i.e. image or text data) [63][78][183][194].675

27



These classification-based and verification-based approaches are widely used for deep multimodal learn-

ing. Although the verification-based methods overcome some limits of classification-based methods, they

still face some disadvantages such as the negative samples and margin selection, which inherit from metric

learning [74]. Recently, new ideas on coordinated feature embedding methods have combined adversarial

learning, reinforcement learning, cycle-consistent constraints to pursue high performance. Several represen-680

tative approaches are shown in Figure 4.

Combined with adversarial learning. Classification- and verification-based methods focus on the se-

mantic relevance between similar/dissimilar pairs. Adversarial learning focuses on the overall distributions

of two different modalities instead of just focusing on each pair. The primary idea in GANs is to determine

whether the input image-text pairs are matched [45][46][48][72].685

In new ideas of adversarial learning for multimodal learning, an implicit generator and a discriminator

are designed with competitively goals (i.e. the generator enforces similar image-text features be close while

the discriminator separates them into two clusters). Therefore, the aim of adversarial learning is not to make

a binary classification (“True/False”), but to train two groups of objective functions adversarially, it will

enable the deep networks with powerful ability and focus on holistic features. For example, in recent works690

[71][83][125][82][201], a modality classifier is constructed to distinguish the visual modality and textual

modality according to the input multimodal features. This classifier is trained adversarially with other sub-

networks which constrain similar image-text feature to be close. Furthermore, adversarial learning is also

combined with a self-attention mechanism to obtain attended regions and unattended regions. This idea is

imposed on the formation of a bi-directional triplet loss to perform cross-modal retrieval [79].695

Combined with reinforcement learning. Reinforcement learning has been incorporated into deep net-

work structures (e.g. encoder-decoder framework) for image captioning [17][18][19][115][104][202][203],

visual question answering [116][135] and cross-modal retrieval [82]. Because reinforcement learning avoids

exposure bias [19][18] and non-differentiable metric issue [17][19]. It is adopted to promote multimodal

correlation modeling. To incorporate reinforcement learning, its basic components are defined (i.e. “agent”,700

“environment”, “action”, “state” and “reward”). Usually, the deep models such as CNNs or RNNs are viewed

as the “agent”, which interacts with an external “environment” (i.e. text features and image features), while

the “action” is the prediction probabilities or words of the deep models, which influence the internal “state”

of the deep models (i.e. the weights and bias). The “agent” observes a “reward” to motivate the training

process. The “reward” is an evaluation value through measuring the difference between the predictive distri-705

bution and ground-truth distribution. For example, the “reward” in image captioning is computed from the
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CIDEr (Consensus-based Image Description Evaluation) score of a generated sentence and a true descriptive

sentence. The “reward” plays an important role for adjusting the goal of predictive distribution towards the

ground-truth distribution.

Reinforcement learning is commonly used in generative models in which image patch features or word-710

level features are regarded as sequential inputs. When incorporating reinforcement learning into deep mul-

timodal learning, it is important to define an algorithm to compute the expected gradients and the “reward”

as a reasonable optimization goal.

For the first term, the expected gradients, REINFORCE algorithm [204] is widely used as a policy gradi-

ent method to compute gradients, then to update these “states” via back-propagation algorithms [17][18][19]715

[82][202][135][203][95]. For the second term, there are several different alternatives. For example, the

difference, evaluated by the popular metric CIDEr, between the generated captions and true description

sentences in image captioning is used as a “reward” [18][202][17][104][203]. Instead of measuring the dif-

ference, sample similarity is more straightforward to track. As an example, visual-textual similarity is used

as “reward” after deep networks are trained under the ranking loss (e.g. a triplet loss) [19][115][82]. Note720

that, the design of triplet ranking loss function is diverse, such as in a bi-directional manner [115] or based

on inter-modal triplet sampling [19]. For example, Wang et al. [116] devise a three-stage “reward” for three

different training scenarios according to similarity scores and binary indicators.

Combined with cycle-consistent constraint. Class label information or relevance information between

image and text is crucial for understanding semantic content. However, this supervisory information some-725

times is not available for training deep networks. In this case, a cycle-consistent constraint is employed for

unpaired image-text inputs. The basic idea of a cycle-consistent constraint is dual learning in which a closed

translation loop is used to regularize the training process. This self-consistency constraint allows a predictive

distribution to retain most of the correlations of the original distribution to improve the stability of network

training. In principle, a cycle-consistent constraint includes a forward cycle and backward cycle. The former730

relies on the loss function F (G(X)) ≈ X , while the latter relies on another loss function G(F (Y )) ≈ Y .

In these two functions, F (·) is a mapping process from Y to X and G(·) is a reversed process from X to

Y . Cycle-consistency has been used on several tasks such as cross-modal retrieval [158][95][12][149][125],

image generation [11][13][95] and visual question answering [162].

Cycle-consistency is an unsupervised learning method for exploring semantic correlation in the common735

latent space. To ensure predictive distribution and retain as many correlations as possible, the aforementioned

forward and backward cycle-consistent objective functions are necessary. The feature reconstruction loss
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function acts as the cycle-consistency objective function. For example, Gorti et al. [11] utilize the cross-

entropy loss between generated words and the actual words as cycle-consistency loss values to optimize the

process text-to-image-to-text translation. For cross-modal retrieval tasks, Li et al. [158] adopt Euclidean740

distance between predictive features and reconstructed features as the cycle-consistency loss where the two

cycle loss functions interact in a coupled manner to produce reliable codes.

Currently, the application of cycle-consistent constraints for deep multimodal learning can be categorized

as structure-oriented and task-oriented. The former group focuses on making several components in a whole

network into a close loop in which output of each component is used as the input for another component.745

Differently, task-oriented group concerns to exploit the complementary relations between tasks. Thus, there

are two independent tasks (e.g. VQA and VQG) in the close loop.

For structure-oriented groups, the cycle-consistent idea is combined with some popular deep networks,

such as GANs, to make some specific combinations. In these methods, image features are projected as

“text features” and then reconstructed back to itself. Currently, the combination with GANs is a popular750

option since paired correspondence of modalities can be learned in the absence of a certain modality (i.e. via

generation). For example, Wu et al. [12] plug a cycle-consistent constraint into feature projection between

image and text. The inversed feature-learning process is constrained using the least absolute deviation. The

whole process is just to learn a couple of generative hash functions through the cycle-consistent adversarial

learning. Regarding this limit, Li et al. [158] devise an outer-cycle (for feature representation) and an inner-755

cycle (for hash code learning) constraint to combine GANs for cross-modal retrieval. Thereby, the objects

for which the cycle-consistency loss constrains have increased. Moreover, in their method, the discriminator

should distinguish if the input feature is original (viewed as True) or generated (viewed as False).

For task-oriented groups, cycle-consistency is adopted into dual tasks. In cycle-consistency, we use an

inverse process (task A to task B to task A) to improve the results. When a whole network performs both tasks760

well, it indicates that the learned features between the tasks have captured the semantic correlations of two

modalities. For example, Li et al. [162] combine visual question answering (VQA) and visual question gen-

eration (VQG), in which the predicted answer is more accurate through combining image content to predict

the question. In the end, the complementary relations between questions and answers lead to performance

gains. For text-image translation, a captioning network is used to produce a caption which corresponds to a765

generated image from a sentence using GANs [11]. The distances between the ground truth sentences and

the generated captions are exploited to improve the network further. The inverse translation is beneficial

for understanding text context and the synthesized images. To sum up, there are still some questions to be
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explored in task-oriented ideas, such as the model parameter sharing scheme, and these implicit problems

make the model more difficult to train and might encounter gradient vanishing problems, the task-oriented770

cycle-consistent constraint is applied to unify multi-task applications into a whole framework and attracts

more research attention.

5 Conclusion and Future Directions

In this survey, we have conducted a review of recent ideas and trends in deep multimodal learning (image

and text) including popular structures and algorithms. We analyzed two major challenges in deep multimodal775

learning for which these popular structures and algorithms target. Specifically, popular structures including

auto-encoders, generative adversarial nets and their variants perform uni-directional and bi-directional mul-

timodal tasks. Based on these popular structures, we introduced current ideas about multimodal feature

extraction and common latent feature learning which plays crucial roles for better content understanding

within a visual and textual modality. For multimodal feature extraction, we introduced graph convolutional780

networks and memory-augmented networks. For common latent feature learning, we presented the joint and

coordinated feature embedding methods including the recently proposed objective functions.

The aforementioned ideas have made some progress on various multimodal tasks. For example, for

cross-modal retrieval, we presented the achieved progress and state-of-the-art of recent methods on the

Flickr30K [205] and the MS-COCO [41] datasets in Figure 8. For hashing retrieval methods, we presented785

the achievement on the MIRFlickr25k [206] and the NUS-WIDE [207] datasets in Figure 9. Meanwhile,

other tasks, (i.e. image generation, image captioning and VQA) are listed in Tables in the Appendix. As we

can see from these statistics, the progress is notable in recall rate (i.e. the fraction of queries for which the

top K nearest neighbors are retrieved correctly) and mAP (i.e. the mean of the average precision scores for

each query) in cross-modal retrieval. However, there is still room for improvement in the current limitations790

of multimodal content understanding.

For future directions, multi-task integrated networks might be helpful and complementary for content

understanding as different applications capture semantic correlations from different perspectives. Effort has

been made on integrating image captioning and cross-modal retrieval tasks, image captioning and visual

question answering, image generation and image retrieval. Nevertheless, these combined applications are795

only based on two modalities. Considering the complementary characteristic among modalities (conveying

the same concept), it might be promising to fuse more than two modalities to enable machines to understand

their semantic correlations. Undoubtedly, it will be more challenging for aligning these diverse data. There

are some explorations in this direction. Aytar et al. [208] present a deep cross-modal convolutional network
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Figure 8 The achieved progress of cross-modal retrieval on the Flickr30K [205] and the MS-COCO [41] datasets.

to learn a representation that is aligned across three modalities: sound, image, and text. The network is only800

trained with “image + text” and “image + sound” pairs. He et al. [209] construct a new benchmark for

cross-media retrieval in which image, text, video, and audio are included. It is the first benchmark with 4

media types for fine-grained cross-media retrieval. However, this direction is still far from satisfactory.

Deep neural networks, including convolutional neural networks and recurrent neural networks, have

made the monomodal feature extraction and multimodal feature learning end-to-end trainable. The represen-805

tations from multimodal data can be automatically learned effectively, without the need of requiring expert

knowledge in a certain field, which makes the process of understanding of multimodal content more intelli-

gent. However, the disadvantages of deep networks for multimodal learning are obvious. It is well-known

that the deep networks depend on a massive of multiple-modality data to train, but the less biased datasets

are not so common. More importantly, deep networks for multimodal learning lacks of interpretability to810

some extent. Although joint embedding or coordinated embeddings methods can be utilized, it still needs to

figure out which modality (or its features) plays more important role for the final content understanding.

From a technical viewpoint, graph-based networks are an important direction for future research. Cur-

rently, graph representation is constructed within intra-modality to present the semantic relations, which can

be further explored in the future. Meanwhile, the exploration of graph-based networks can be deepened by815
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methods have higher retrieval efficiency using the binary hash codes.

examining scalability and heterogeneity [178]. Finally, generation-based tasks such as image generation and

image captioning are effective for unsupervised learning, since numerous labeled training data can be gener-

ated from the deep networks. Combined with reinforcement learning, the image generation process is more

controllable. For example, some fine-grained attributes including texture, shape and color can be specified

during deep network training. Once it understands the content between modalities, the deep network, like820

an agent, will synthesize photo-realistic images, which can be used in other applications.
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Appendix825

The progress of other multimodal application in recent years including image captioning, image gen-

eration and visual question answering. We list the topic-relevant representative works in several datasets.

The evaluation metric are these common-used in each task. These approaches make sense for improving

performance.
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Methods Year
CIDEr ROUGE-L METEOR BLEU1 BLEU2 BLEU3 BLEU4

KeyNotes
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

StructCap [138] 2016 94.3 95.8 53.5 68.2 25.0 33.5 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 Attention + VP-tree for visual features

Semantic-Attn [169] 2016 95.3 94.8 53.4 68.4 25.1 34.0 72.4 90.7 55.8 82.2 42.3 71.7 32.0 60.7 Visual attention

CGAN [27] 2017 102.0 - 52.7 - 24.8 - - - - - 39.3 - 29.9 - CGAN + Reinforcement learning

Adaptive-Attn [170] 2017 104.2 105.9 55.0 70.5 26.4 35.9 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 Adaptive visual attention

SCST [17] 2017 114.7 116.7 56.3 70.7 27.0 35.5 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 Reinforcement learning

RL-GAN [123] 2018 - - - - 24.3 - 71.6 - 51.8 - 37.1 - 26.5 - GAN + Reinforcement learning

SOT [5] 2018 106.1 108.7 55.5 69.9 25.9 34.2 78.7 93.5 61.5 85.5 46.5 74.8 34.5 63.3 Visual attention

SR-PL [19] 2018 117.1 - 57.0 - 27.4 - 80.1 - 63.1 - 48.0 - 35.8 - Reinforcement learning

Up-Down [17] 2018 117.9 120.5 57.1 72.4 27.6 36.7 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 Top-down and bottom-up attention

CAVP [18] 2018 121.6 123.8 58.2 73.1 28.1 37.0 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 Reinforcement learning

RFNet [108] 2018 122.9 125.1 58.2 73.1 28.2 37.2 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 Visual attention

iVQA [134] 2018 168.2 - 46.6 - 20.1 - 42.1 - 32.0 - 25.3 - 20.5 - Reinforcement learning

UnsupervisedIC [121] 2019 54.9 - 43.1 - 17.9 - 58.9 - 40.3 - 27.0 - 19.6 - VAE + GAN (unsupervised)

Graph-align [136] 2019 69.5 - - - 20.9 - 67.1 - 47.8 - 32.3 - 21.5 - VAE + Graph embed + cycle (unpaired)

Self-critical [202] 2019 112.6 115.3 56.1 70.4 26.9 35.4 77.6 93.1 61.3 86.1 46.5 76.0 34.8 64.6 Reinforcement learning

PAGNet [34] 2019 118.6 - 58.6 - 30.4 - 83.2 - 62.8 - 46.3 - 40.8 - Attention + Reinforcement learning

RL-CGAN [122] 2019 123.1 124.3 59.0 74.4 28.7 38.2 81.9 95.6 66.3 90.1 51.7 81.7 39.6 71.5 GAN + Reinforcement learning

SGAE [16] 2019 123.8 126.5 58.6 73.6 28.2 37.2 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 VAE + graph embedding

Table 2 Performance of image captioning on the MS-COCO dataset [41]
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Methods Year
Caltech-UCSD Birds200 Oxford Flowers102 MS-COCO

KeyNotes
IS FID IS FID IS FID

GAN-INT-CLS [8] 2016 2.88±.04 - 2.66±.03 - 7.88±0.07 - Vanilla GAN for image generation

TAC-GAN [120] 2017 - - 3.45±.05 - - - Discriminator learns class information

GAWWN [54] 2017 3.60±.07 - - - - - Conditional objection location is learned

StackGAN [51] 2017 3.70±.04 51.89 3.20±.01 55.28 8.45±.03 74.05 GAN in a stacked structure

StackGAN++ [52] 2018 4.04±.05 15.3 3.26±.01 48.68 8.30±.10 81.59 GAN in a tree-like structure

HDGAN [49] 2018 4.15±.05 - 3.45±.07 - 11.86±0.18 - GAN in a hierarchically-nested structure

AttnGAN [53] 2018 4.36±.03 - - - 25.89±.47 - Attentional generative network

Scene graphs [45] 2019 - - - - 7.3±0.1 - Graph convolution for graphs from text

Obj-GANs [171] 2019 - - - - 27.37±0.22 25.85 Attentive generator and object-wise discriminator

vmCAN [59] 2019 - - - - 10.36±0.17 - Visual-memory method in GAN

AAAE [118] 2019 - - - 103.46 - - Auto-encoders + GAN for adversarial approximation

Text-SeGAN [7] 2019 - - 4.03±0.07 - - - Semantic relevance matching in GAN

DAI [155] 2019 3.58±0.05 18.41±1.07 2.90±0.03 37.94±0.39 8.94±0.2 27.07±2.55 Dual inference mechanism disentangled variables

C4Synth [156] 2019 4.07±0.13 - 3.52±0.15 - - - Image generation using multiple captions

PPAN [50] 2019 4.35±.05 - 3.53±.02 - - - GAN in perceptual pyramid structure

MirrorGAN [154] 2019 4.56±0.05 - - - 26.47±0.41 - Task-oriented cycle consistency + attention

ControlGAN [172] 2019 4.58±0.09 - - - 24.06±0.6 - Attention + region-wise attribute generation

SD-GAN [210] 2019 4.67±0.09 - - - 35.69±0.5 - Disentangling high-/low-level semantics in GAN

‡ To evaluate the identification and diverse of generated image, Inception Score (IS) and Fréchett Inception Distance (FID)

are commonly used. For Inception Score, higher is better. For Fréchet Inception Distance, lower is better.

Table 3 Performance of image generation
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Methods Year
Open-ended

test-std

Open-ended

test-dev

MC

test-std

MC

test-dev
KeyNotes

Smem-VQA [150] 2016 58.24 57.99 - - Spatial memory network stores image region features

DMN+ [148] 2016 60.4 60.3 - - Improved dynamic memory network for VQA

MLB [198] 2016 65.07 64.89 68.89 - Low-rank bilinear pooling for similarity learning

MCB [197] 2016 66.5 66.7 70.1 70.2 Multimodal compact bilinear pooling for similarity learning

High-order Attn [166] 2017 - - 69.3 69.4 Attention mechanisms learn high-order feature correlations

DAN [165] 2017 64.2 64.3 69 69.1 Co-attention networks for multimodal feature learning

MLAN [163] 2017 65.3 65.2 70 70 Multi-level co-attention for feature alignment

SVA [212] 2017 66.1 66 - - Visual attention on grid-structured image region feature learning

MFB [164] 2017 66.6 66.9 71.4 71.3 Multi-modal factorized bilinear pooling for similarity learning

MUTAN [199] 2017 67.36 67.42 - - Multimodal tucker fusion for similarity learning

Graph VQA [144] 2017 70.42 - 74.37 - Graph representation for scene and question feature learning

MAN-VQA [147] 2018 64.1 63.8 69.4 69.5 Memory-augmented network for feature learning and matching

QGHC [200] 2018 65.9 65.89 - - Question-guided convolution for visual-textual correlations learning

Dual-MFA [213] 2018 66.09 66.01 69.97 70.04 Co-attention for visual-textual feature learning

VKMN [146] 2018 66.1 66 69.1 69.1 Visual knowledge memory network for feature learning

CVA [214] 2018 66.2 65.92 70.41 70.3 Cubic visual attention for object-region feature learning

DCN [186] 2018 67.02 66.89 - - Dense co-attention for feature fusion

DRAU [215] 2018 67.16 66.86 - - Recurrent co-attention for feature learning

ODA [151] 2018 67.97 67.83 72.23 72.28 Object-difference visual attention to fuse features

ALARR [133] 2018 68.43 68.61 71.28 68.43 Adversarial learning for pair-wise feature discrimination

DF [216] 2019 68.48 68.62 73.05 73.31 Differential network for visual-question feature learning

Relational Encoding [217] 2019 69.3 69.1 - - Textual attention for question feature encoding

DCAF [218] 2019 70.0 69.9 - - Dense co-attention for feature fusion

Table 4 Performance of visual question answering on VQA 1.0 dataset [211]
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