
DEEP IMAGE RETRIEVAL: A SURVEY 1

Deep Image Retrieval: A Survey
Wei Chen, Yu Liu, Weiping Wang, Erwin Bakker, Theodoros Georgiou,

Paul Fieguth, Li Liu, Senior Member, IEEE , and Michael S. Lew

Abstract—In recent years a vast amount of visual content has been generated and shared from various fields, such as social media
platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular,
searching databases for similar content, i.e., content based image retrieval (CBIR), is a long-established research area, and more efficient
and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the
process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms
and techniques, including insights and techniques from recent papers. We identify and present the commonly-used databases, benchmarks,
and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus
on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep
features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to
promote a global view of the field of category-based CBIR.

Index Terms—Content based image retrieval, deep learning, convolutional neural networks, literature survey

F

1 INTRODUCTION

CONTENT based image retrieval (CBIR) is the problem of
searching for semantically matched or similar images in a

large image gallery by analyzing their visual content, given a
query image that describes the user’s needs, as illustrated in
Figure 1(a). CBIR has been a longstanding research topic in the
computer vision and multimedia community [1, 2]. With the
present exponentially increasing amount of image and video
data, a development of appropriate information systems to ef-
ficiently manage such large image collections is badly needed,
with image searching being one of the most indispensable tech-
niques used for interacting with visual collections. Therefore
there is nearly endless potential for applications of CBIR, such
as person re-identification [3], remote sensing [4], medical im-
age search [5], and shopping recommendation in online mar-
ketplaces [6], among many others.

CBIR can broadly be grouped into instance level retrieval
and category level retrieval, as depicted in Figure 1(b). In in-
stance level image retrieval, a query image of a particular ob-
ject or scene (e.g., the Eiffel Tower) is given and the goal is to
find images containing the same object or scene that may be
captured under different viewpoints, illumination conditions,
or subject to occlusions [7, 8]. In contrast, for category level
image retrieval the goal is to find images of the same class as
the query (e.g., dogs, cars, etc.). Instance level retrieval is more
challenging and promising as it satisfies specific objectives for
many applications. Notice that we limit the focus of this survey
to instance-level image retrieval and in the following, if not
further specified, “image retrieval” and “instance retrieval” are
considered equivalent and will be used interchangeably.

Finding a desired image can require a search among thou-
sands, millions, or even billions of images. Hence, searching

Wei Chen, Erwin Bakker, Theodoros Georgiou, and Michael S. Lew are with Leiden
Institute of Advanced Computer Science, Leiden University, The Netherlands.
Yu Liu is with ESAT-PSI, KU Leuven, Belgium.
Weiping Wang is with College of Systems Engineering, NUDT, China.
Paul Fieguth is with the Systems Design Engineering Department, University of
Waterloo, Canada.
Li Liu is with College of Systems Engineering, NUDT, China, and with Center
for Machine Vision and Signal Analysis, University of Oulu, Finland.
Corresponding author: Professor Li Liu, li.liu@oulu.fi

the Eiffel
Tower

(a) The CBIR problem

Eiffel Tower Instance Level Image Retrieval

Category Level Image Retrieval

Query Image Retrieved Results from Gallery

Cat

(b)

Fig. 1: Illustration of (a) the CBIR problem, and (b) instance-
level retrieval versus category-level retrieval.

efficiently is as critical as searching accurately, to which con-
tinued efforts have been devoted [7, 8, 9, 10, 11]. To enable
accurate and efficient retrieval of massive image collections,
compact yet rich feature representations are at the core of CBIR.

In the past two decades, remarkable progress has been
made in image feature representations, which mainly consist of
two important stages: feature engineering and feature learning

ar
X

iv
:2

10
1.

11
28

2v
1

 [
cs

.C
V

]
 2

7
Ja

n
20

21

DEEP IMAGE RETRIEVAL: A SURVEY 2

TABLE 1: A summary and comparison of the primary surveys in the field of image retrieval.

Title Year Published in Main Contents

Image Search from Thousands to Billions
in 20 Years [12] 2013 TOMM This paper gives a good presentation of image search achievements from

1970 to 2013, but the methods are not deep learning-based.

Deep Learning for Content-Based Image
Retrieval: A Comprehensive Study [13] 2014 ACM MM

This paper introduces supervised metric learning methods for fine-tuning
AlexNet. It focuses on deep learning methods but lacks many details in

deep instance-based image retrieval.

Semantic Content-based Image Retrieval:
A Comprehensive Study [14] 2015 JVCI

This paper presents a comprehensive study on the entire process and the
achievements of CBIR. Mainly conventional methods are presented; deep

learning is introduced as a sub-section with limited details.
Socializing the Semantic Gap: A Compa-
rative Survey on Image Tag Assignment,

Refinement, and Retrieval [15]
2016 CSUR

A taxonomy is introduced to structure the growing literature of image
retrieval. Deep learning methods for feature learning is introduced as

future work.

Recent Advance in Content-based Image
Retrieval: A Literature Survey [16] 2017 arXiv

This survey presents image retrieval from 2003 to 2016, including query
categories, feature representation, feature organization. Neural networks

are introduced in a section and mainly discussed as a future direction.
Information Fusion in Content-based
Image Retrieval: A Comprehensive

Overview [17]
2017 Information

Fusion

This paper presents information fusion strategies in content-based image
retrieval. Deep convolutional networks for feature learning are introduced

briefly but not covered thoroughly.

A Survey on Learning to Hash [18] 2018 T-PAMI This paper focuses on hash learning algorithms and introduces the
similarity-preserving methods and discusses their relationships.

SIFT Meets CNN: A Decade Survey of
Instance Retrieval [8] 2018 T-PAMI

This paper presents a comprehensive review of instance retrieval using
SIFT and CNN-based methods. Feature learning methods using CNNs

are lacking details.

Deep Image Retrieval: A Survey 2020 Ours
Our survey focuses on deep learning methods. We expand the review with
in-depth details on CBIR, including structures of deep networks, types of
deep features, feature enhancement strategies, and network fine-tuning.

(particularly deep learning). In the feature engineering era
(i.e., pre-deep learning), the field was dominated by milestone
hand-engineered feature descriptors, such as the Scale-
Invariant Feature Transform (SIFT) [19]. The feature learning
stage, the deep learning era since 2012, begins with artificial
neural networks, particularly the breakthrough ImageNet and
the Deep Convolutional Neural Network (DCNN) AlexNet
[20]. Since then, deep learning techniques have impacted
a broad range of research areas, since DCNNs can learn
powerful feature representations with multiple levels of
abstraction directly from data, bypassing multiple steps in
traditional feature engineering. Deep learning techniques
have attracted enormous attention and have brought about
considerable breakthroughs in many computer vision tasks,
including image classification [20, 21, 22], object detection [23],
semantic segmentation [24], and image retrieval [10, 13, 14].

Excellent surveys for traditional image retrieval methods
can be found in [1, 2, 8]. This paper, in contrast, focuses on
deep learning based methods, and a comparison of our work
with other published surveys [8, 14, 15, 16] is shown in Table 1.
Deep learning for image retrieval is comprised of the essential
stages shown in Figure 2 and various methods, focusing on
one or more stages, have been proposed to improve retrieval
accuracy and efficiency. In this survey, we include comprehen-
sive details about these methods, including the structures of
deep networks, feature fusion, feature enhancement methods,
and network fine-tuning strategies, motivated by the following
questions that have been driving research in this domain:

1) By using off-the-shelf models only, how do deep features out-
perform hand-crafted features?

2) In case of domain shifts across training datasets, how can
we adapt off-the-shelf models to maintain or even improve
retrieval performance?

3) Since deep features are generally high-dimensional, how
can we effectively utilize them to perform efficient image
retrieval, especially for large-scale datasets?

1.1 Summary of Progress since 2012

After a highly successful image retrieval implementation
based on AlexNet [20], significant exploration of DCNNs for
retrieval tasks has been undertaken, broadly along the lines
of the preceding three questions just identified, above. That
is, the DCNN methods are divided into (1) off-the-shelf and
(2) fine-tuned models, as shown in Figure 3, with parallel
work on (3) effective features. Whether a DCNN is considered
off-the-shelf or fine-tuned depends on whether the DCNN
parameters are updated [25] or are based on DCNNs with
fixed parameters [25, 26, 27]. For feature maps researchers
have proposed encoding and aggregation methods, such as
R-MAC [28], CroW [10], and SPoC [7].

Recent progress for improving image retrieval can be cat-
egorized into network-level and feature-level perspectives, for
which a detailed categorization is shown in Figure 4. Broadly
this survey will examine the four areas outlined as follows:

(1) Improvements in Network Architectures (Section 2)

Using stacked linear filters (e.g. convolution) and non-
linear activation functions (ReLU, etc.), deep networks
with different depths obtain features at different levels.
Deeper networks with more layers provide a more powerful
learning capacity so as to extract high-level abstract and
semantic-aware features [21, 46]. It is possible to concatenate
multi-scale features in parallel, such as the Inception module
in GoogLeNet [47], which we refer to as widening.

(2) Deep Feature Extraction (Section 3.1)

Neurons of FC layers and convolutional layers have different
receptive fields, which provides three ways to extract features:
local features from convolutional layers [7, 59], global features
from FC layers [32, 60] and fusions of two kinds of features [61,
62], where the fusion scheme includes layer-level and model-
level methods. Deep features can be extracted from the whole
image or from image patches, which corresponds to single pass
and multiple pass feedforward schemes, respectively.

(3) Deep Feature Enhancement (Section 3.2)

DEEP IMAGE RETRIEVAL: A SURVEY 3

Single

 Pass

Single

Pass
Quantization

Hamming

distance

Hashing code

learning

Deep Feature Extraction

Multiple

 Pass

Deep Feature Enhancement Ranking list

Euclidean

distance,...

M patches

Pre-trained

DCNN
BoW,VLAD, FV

Dense sampling,
SPM, RP s,...

Pre-trained

DCNN

...

Fine-tuning via supervised

or unsupervised methods

Conv
Layers
Conv

Layers

PCA,

L2-norm,...

PCA,

L2-norm,...

+1

-1

+1

-1

Feature aggregation
Direct pooling,

SPoC, R-MAC,...

...

......

Conv
Layers

Conv
Layers

Conv
Layers

pooling

pooling

FC FC

FC

Feature
aggregation

Compact
features

Compact
codes

Fig. 2: In deep image retrieval, feature embedding and aggregation methods are used to enhance the discrimination of deep
features. Similarity is measured on these enhanced features using Euclidean or Hamming distances.

CNN
(off the shelf)

(Razavian et al.)

MOP-CNN
(Gong et al.)

Neural code
(Babenko et al.)

Feature
Transferability
(Yosinski et al.)

CNNH
(Xia et al.)

SPoC
(Babenko et al.)

VLAD-CNN
(Ng et al.)

RMAC
(Tolias et al.)

CroW
(Kalantidis et al.)

SWFV
(Qi et al.)

CWCF
(Jimenez et al.)

FSDCF
(Do et al.)

MPP
(Yoo et al.)

MOF
(Li et al.)

CCS
(Yan et al.)

BoW-BLCF
(Mohedano et al.)

SaliencyCWGMP
(Wang et al.)

DeepIndex
(Liu et al.)

SBA
(Xu et al.)

OMDSL
(Wu et al.)

AlexNet
(Krizhevsky et al.)

NetVLAD
(Arandjelovic et al.)

Patch-CKN
(Paulin et al.)

FV+SiameseNet
(Ong et al.)

RN-BoF
(Passalis et al.)

Non-metric
(Garcia et al.)

IME Layer
(Xu et al.)

SfM-CNN
(Radenovic et al.)

Triplet Network
(Gordo et al.)

OLAH-AML
(Huang et al.)

Mining on
Manifolds

(Iscen et al.)

SfM-GeM
(Radenovic et al.)

GSS-SV
(Liu et al.)

EGT
(Chang et al.)

TMLZSH
(Zou et al.)

DCCH
(Jose et al.)

Single-pass

Multiple-pass

Unsupervised

Supervised

Off-the-shelf Models

 TBH
(Shen et al.)

Fine-tuned Models

Fig. 3: Representative methods in deep image retrieval, which are most fundamentally categorized according to whether the
DCNN parameters are updated [25]. Off-the-shelf models (left) have model parameters which are not further updated or tuned
when extracting features for image retrieval. The relevant methods focus on improving representations quality either by feature
enhancement [10, 29, 30, 31] when using single pass schemes or by extracting representations for image patches [32] when
using multiple pass schemes. In contrast, in fine-tuned models (right) the model parameters are updated for the features to be
fine-tuned towards the retrieval task and addresses the issue of domain shifts. The fine-tuning may be supervised [33, 34, 35, 36,
37, 38, 39] or unsupervised [40, 41, 42, 43, 44, 45]. See Sections 3 and 4 for details.

Feature enhancement is used to improve the discriminative
ability of deep features. Directly, aggregate features can be
trained simultaneously with deep networks [17]; alternatively,
feature embedding methods including BoW [63], VLAD [64],
and FV [65] embed local features into global ones. These
methods are trained with deep networks separately (codebook-
based) or jointly (codebook-free). Further, hashing methods
[18] encode the real-valued features into binary codes to
improve retrieval efficiency. The feature enhancement strategy
can significantly influence the efficiency of image retrieval.

(4) Network Fine-tuning for Learning Representations (Section 4)

Deep networks pre-trained on source datasets for image clas-
sification are transferred to new datasets for retrieval tasks.
However, the retrieval performance is influenced by the do-
main shifts between the datasets. Therefore, it is necessary to
fine-tune the deep networks to the specific domain [34, 56, 66],
which can be realized by using supervised fine-tuning meth-

ods. However in most cases image labeling or annotation is
time-consuming and difficult, so it is necessary to develop un-
supervised methods for network fine-tuning.

1.2 Key Challenges

Deep learning has been successful in learning very powerful
features. Nevertheless, several significant challenges remain
with regards to

1) reducing the semantic gap,
2) improving retrieval scalability, and
3) balancing retrieval accuracy and efficiency.

We finish the introduction to this survey with a brief overview
of each of these challenges:
1. Reducing the semantic gap: The semantic gap characterizes
the difference, in any application, between the high-level con-
cepts of humans and the low-level features typically derived

DEEP IMAGE RETRIEVAL: A SURVEY 4

Deep Learning for Image Retrieval
Improvement in Deep Network Architecture (Section 2)

Deepen Networks: Alexnet [20], VGG [46], ResNet [21]
Widen Networks: GoogLeNet [47], DenseNet [22], etc.

Retrieval with Off-the-Shelf DCNN Models (Section 3)
Deep Feature Extraction (Section 3.1)

Network Feedforward Scheme (Section 3.1.1)
Single Feedforward Pass: MAC [48], R-MAC [28]
Multiple Feedforward Pass: SPM [32], RPNs [38]

Deep Feature Selection (Section 3.1.2)
Fully-connected Layer: Layer Concatenation [49]
Convolutional Layer: SPoC [7], CroW [10]

Feature Fusion Strategy (Section 3.1.3)
Layer-level Fusion: MoF [50], MOP [26]
Model-level Fusion: ConvNet fusion [46]

Deep Feature Enhancement (Section 3.2)
Feature Aggregation (Section 3.2.1)
Feature Embedding (Section 3.2.2)
Attention Mechanism (Section 3.2.3)

Non-parameteric: SPoC [7], TSWVF [51]
Parameteric: DeepFixNet+SAM [52, 53]

Deep Hash Embedding (Section 3.2.4)
Supervised Hashing: Metric Learning [35, 54]
Unsupervised Hashing: KNN [55], k-means [56]

Retrieval via Learning DCNN Representations (Section 4)
Supervised Fine-tuning (Section 4.1)

Classification-based Fine-tuning (Section 4.1.1)
Verification-based Fine-tuning (Section 4.1.2)

Transformation Matrix: Non-metric [36]
Siamese Networks: [37, 57]
Triplet Networks: [37, 57]

Unsupervised Fine-tuning (Section 4.2)
Manifold Learning Sample Mining: Diffusion Net [43]
AutoEncoder-based Fine-tuning: KNN [58], GANs [45]

Fig. 4: This survey is organized around four key aspects in
deep image retrieval, shown in boldface.

from images [15]. There is significant interest in learning deep
features which are higher-level and semantic-aware, to better
preserve the similarities of images [15]. In the past few years,
various feature learning strategies, including feature fusion [26,
50] and feature enhancement methods [7, 28, 51] have been
introduced into image retrieval. However, this area remains a
major challenge and continues to require significant effort.
2. Improving retrieval scalability: The tremendous numbers
and diversity of datasets lead to domain shifts for which ex-
isting retrieval systems may not be suited [8]. Currently avail-
able deep networks are initially trained for image classifica-
tion tasks, which leads to a challenge in extracting features,
since such features are less scalable and perform comparatively
poorly on the target retrieval datasets, so network fine-tuning
on retrieval datasets is crucial for mitigating this challenge.
The current dilemma is that the increase in retrieval datasets
raises the difficulty of annotation, making the development of
unsupervised fine-tuning methods a priority.
3. Balancing retrieval accuracy and efficiency: Deep features
are usually high dimensional, which therefore contain more se-
mantic information to support higher accuracy, yet this higher
accuracy is often at the expense of efficiency. Feature enhance-
ment methods, like hash learning, are one approach to tackling
this issue [18, 34], however hashing learning needs to carefully
consider the loss function design, such as quantization loss [9,

11], to obtain optimal codes for high retrieval accuracy.

2 POPULAR BACKBONE DCNN ARCHITECTURES

The hierarchical structure and extensive parameterization of
DCNNs has led to their success in a remarkable diversity of
computer vision tasks. For image retrieval, there are four mod-
els which predominantly serve as the networks for feature ex-
traction, including AlexNet [20], VGG [46], GoogLeNet [47],
and ResNet [21].

AlexNet is the first DCNN which improved ImageNet
classification accuracy by a significant margin compared
to conventional methods in ILSVRC 2012. It consists of 5
convolutional layers and 3 fully-connected layers. Input
images are usually resized to a fixed size during training and
testing stages.

Inspired by AlexNet, VGGNet has two widely used ver-
sions: VGG-16 and VGG-19, including 13 convolutional layers
and 16 convolutional layers, respectively, but where all of the
convolutional filters are small (local), 3 × 3 in size. VGGNet
is trained in a multi-scale manner where training images are
cropped and re-scaled, which improves the feature invariance
for the retrieval task.

Compared to AlexNet and VGGNet, GoogLeNet is
deeper and wider but has fewer parameters within its 22
layers, leading to higher learning efficiency. GoogLeNet has
repeatedly-used inception modules, each of which consists
of four branches where 5×5, 3×3, and 1×1 filter sizes are
used. Four branches are concatenated spatially to obtain the
final features for each module. It has been demonstrated that
deeper architectures are beneficial for learning higher-level
abstract features to mitigate the semantic gap [15].

Finally, ResNet is developed by adding more convolutional
layers to extract more abstract features. Skip connections are
added between convolutional layers to address the notorious
vanishing gradient problem when training this network.

DCNN architectures have developed significantly during
the past few years, for which we refer readers to recent surveys
[67, 68]. This paper focuses on introducing relevant techniques
including feature fusion, feature enhancement, and network
fine-tuning, based on popular DCNN backbones for perform-
ing image retrieval.

3 RETRIEVAL WITH OFF-THE-SHELF DCNN MOD-
ELS

Because of their size, deep CNNs need to be trained on excep-
tionally large-scale datasets, and the available datasets of such
size are those for image recognition and classification. One pos-
sible scheme then, is that deep models effectively trained for
recognition and classification directly serve as the off-the-shelf
feature detectors for the image retrieval task of interest in this
survey. That is, one can propose to undertake image retrieval
on the basis of DCNNs, trained for classification, and with their
pre-trained parameters frozen.

There are limitations with this approach, such that the deep
features may not outperform classical hand-crafted features.
Most fundamentally, there is a model-transfer or domain-shift
issue between tasks [8, 27, 69], meaning that models trained for
classification do not necessarily possess features well suited to
image retrieval. In particular, a classification decision can be
made as long as the features remain within the classification
boundaries, therefore the layers from such models may show
insufficient capacity for retrieval tasks where feature matching

DEEP IMAGE RETRIEVAL: A SURVEY 5

CC

CC

GeM

MAC R-MAC

H×W,MaxPooling

Feature Maps

H

W

C

(Channelwise)

C×1

H

W

C

1
2

K

1

K

MaxPooling
for each region
(Channelwise)

K

C×1

......

......

......
C×K

H

W

C
C×1

H×W,
Average
Pooling

(Channelwise)

C×1

1/()
cp

cy

SPoC

C

H
/2

W/2

H×W, SumPooling
(Channelwise)

C×1

CroW

CC

H×W, SumPooling
(Channelwise)

C×1

y

Global
Average
Pooling

CAM+CroW

H

W

C

H

W

C

H×W, SumPooling
(Channelwise)

C×1

Need to compute

for top K (K<L) classes

..
.

Channel Weights
Computing

Classifier

Class k

Class Activation Mapping (CAM)

Selected
Weights

C

H

W

C

H

W

C

H

W

C

H

W

Class L

Class 1

kC

2k

1k

, , 1 1 1{{{ } } }
i j c

H W C

i j cx = = =

, ,
()

c

i j c

px

, , , ,i j c i j c
x

2 2

2 2
, , 2

() ()
exp

2

W H

i j c

i j

 − + −
= −

, ,ij c i j c
x

(), ,1 { } ,
i j c

H W

ij cg x =

(), ,

1

2 { } ,
c i j c ij

Cg x =

(), ,

1

2 { } ,
c i j c ij

Cg x =

()

, ,

k

i j cij cM x

()

1

k

kc

C
c

ij ij

c

M x
=

=

(){ }kij ijM

Fig. 5: Representative methods in single feedforward
frameworks, focusing on convolutional feature maps: MAC
[48], R-MAC [28], GeM pooling [42], SPoC with the Gaussian
weighting scheme [7], CroW [10], and CAM+CroW [29]. Note
that g1() and g2() represent spatial-wise and channel-wise
weighting functions, respectively.

is more important than final classification probabilities. This
section will survey the strategies which have been developed
to improve the quality of feature representations, particularly
based on feature extraction / fusion (Section 3.1) and feature
enhancement (Section 3.2).

3.1 Deep Feature Extraction
3.1.1 Network Feedforward Scheme
a. Single Feedforward Pass Methods.

Single feedforward pass methods take the whole image and
feed it into an off-the-shelf model to extract features. The ap-
proach is relatively efficient since the input image is fed only
once. For these methods, both the fully-connected layer and
last convolutional layer can be used as feature extractors [70].

The fully-connected layer has a global receptive field so that
it is able to produce more semantic-aware features [13]. After
normalization and dimensionality reduction, these features are
used for direct similarity measurement without further feature
processing and admitting efficient search strategies [25, 26, 34].

(a) (b)

(c) (d)

Fig. 6: Image patch generation schemes: (a) Rigid grid; (b)
Spatial pyramid modeling (SPM) splits an image into different
scales and positions (blue, green and red boxes); (c) Dense
patch sampling, where a fixed-size sliding window samples the
image; (d) Region proposals (RP), in which the specific object
or instance is extracted as region proposals.

Using the fully-connected layer may result in insufficient
performance since it lacks geometric invariance and spatial in-
formation, so the last convolutional layer can be examined in-
stead. The research foci associated with the use of convolu-
tional features is to improve their discrimination, where repre-
sentative strategies are shown in Figure 5. One direction is to
treat regions in feature maps as different sub-vectors, thus com-
binations of different sub-vectors of all feature maps are used to
represent the input image. For instance, Gordo et al. [38] apply
regional maximum activation of convolutions (R-MAC) [28] to
obtain relevant regions on each feature map, which filters out
some irrelevant (background) information and is beneficial for
extracting instance-relevant features. Inspired by R-MAC, Li
et al. [59] propose a non-linear feature embedding method for
visual object retrieval and achieve remarkable performance im-
provements compared to the state of the art.

b. Multiple Feedforward Pass Methods.

Compared to single-pass schemes, multiple pass methods
are more time-consuming [8] because several patches are gen-
erated from an input image and are both fed into the network
before being encoded as a final global feature.

Multiple-pass strategies can lead to higher retrieval accu-
racy since representations are produced from two stages: patch
detection and patch description. Multi-scale image patches are
obtained using sliding windows [26, 71], random cropping [25,
57], and spatial pyramid model (SPM) [32], as illustrated in
Figure 6. For example, Xu et al. [72] randomly sample win-
dows within an image at different scales and positions, then
“edgeness” scores are calculated to represent the edge density
within the windows.

These patch detection methods lack retrieval efficiency
for large-scale datasets since irrelevant patches are also fed
into deep networks, therefore it is necessary to analyze
image patches [28]. As an example, Cao et al. [73] propose to
merge image patches into larger regions with different hyper-
parameters, then the hyper-parameter selection is viewed as
an optimization problem under the target of maximizing the
similarity between features of the query and the candidates.

DEEP IMAGE RETRIEVAL: A SURVEY 6

Instead of generating multi-scale image patches randomly
or densely, region proposal methods introduce a degree of pur-
pose in processing image objects, which is more efficient and
less memory demanding. Region proposals can be generated
using unsupervised object detectors, such as selective search
[74] and edge boxes [75]. Aside from using object detectors,
Xie et al. [76] introduce a manual object detection method in
which the proposal layers are defined according to the number
of objects. Region proposals can also be learned using deep net-
works, such as region proposal networks (RPNs) [23, 38] and
convolutional kernel networks (CKNs) [77], and then to apply
these deep networks into end-to-end fine-tuning scenarios for
learning similarity [78, 79].

3.1.2 Deep Feature Selection
a. Extracted from Fully-connected Layers

It is straightforward to select a fully-connected layer as a
feature extractor [25, 26, 34, 49]. With PCA dimensionality re-
duction and normalization [25], the similarity of images is mea-
sured using Euclidean or cosine distances. Only the last fully-
connected layer may limit the overall retrieval performance,
Jun et al. [49] propose to concatenate features from multiple
fully-connected layers, and Song et al. [78] indicate that making
a direct connection between the first fully-connected layer and
the last layer achieves coarse-to-fine improvements.

As noted, a fully-connected layer has a global receptive field
in which each neuron has connections to all neurons of the
previous layer. This property leads to two obvious limitations
for image retrieval: a lack of spatial information and a lack of
local geometric invariance [49].

For the first limitation, researchers focus on the inputs of
networks, i.e., using multiple feedforward passes [25]. Com-
pared to taking as input the whole image, discriminative fea-
tures from the image patches better retain spatial information.

For the second limitation, a lack of local geometric
invariance affects the robustness to image transformations
such as truncation and occlusion. To address these issues,
several works introduce methods which leverage intermediate
convolutional layers [7, 26, 48, 80].

b. Extracted from Convolutional Layers

Features from convolutional layers (usually the last layer)
preserve more structural details which are especially benefi-
cial for instance-level retrieval [48]. Usually, the robustness of
convolutional features is improved after pooling because con-
volutional layers preserve more local structural information,
such as edges and corners.

The neurons in a convolutional layer are connected only to
a local region of the input feature maps and share parameters
in a convolutional volume. The smaller receptive field ensures
that the produced features are more robust to image transfor-
mations like truncation and occlusion [7].

A convolutional layer arranges the spatial information well
and produces location-adaptive features [81, 82]. Various image
retrieval methods use convolutional layers as local detectors [7,
28, 29, 48, 80, 82]. For instance, Razavian et al. [48] make the first
attempt to perform spatial max pooling on the feature maps
of an off-the-shelf DCNN model; Babenko et al. [7] propose
sum-pooling convolutional features (SPoC) to obtain compact
descriptor feature maps pre-processed with a Gaussian center
prior (see Figure 5). Ng et al. [82] explore the correlations be-
tween activations at different locations on the feature maps,
thus improving the final feature descriptor. Kulkarni et al. [83]

use the BoW model to embed convolutional features separately.
Yue et al. [80] replace BoW [63] with VLAD [64], and are the first
to encode local features into VLAD features. This idea inspired
another milestone work [39] where, for the first time, VLAD is
used as a layer plugged into the last convolutional layer. The
plugged-in layer is end-to-end trainable via back-propagation.

3.1.3 Feature Fusion Strategy
a. Layer-level Fusion

Fusing features from different layers aims at combining dif-
ferent feature properties within a feature extractor. It is possible
to fuse multiple fully-connected layers in a deep network [49]:
For instance, Yu et al. [84] explore different methods to fuse the
activations from different fully-connected layers and introduce
the best-performed Pi-fusion strategy to aggregate the features
with different balancing weights, and Jun et al. [49] construct
multiple fully-connected layers in parallel on the top of ResNet
backbone, then concatenate the global features from these lay-
ers to obtain the combined global features.

Features from fully-connected layers contain high-level se-
mantic information, but lack detailed structural information,
while features from convolutional layers contain more struc-
tural information but suffer from background noise and seman-
tic ambiguity [61]. Thus, global features and local features can
complement each other when measuring semantic similarity
and can, to some extent, guarantee retrieval performance.

Global features and local features can be concatenated di-
rectly [61, 85, 86]. Before concatenation, convolutional feature
maps are filtered by sliding windows or region proposal nets.
Pooling-based methods can be applied for feature fusion as
well. For example, Li et al. [50] propose a Multi-layer Orderless
Fusion (MOF) approach, which is inspired by Multi-layer Or-
derless Pooling (MOP) [26] for image retrieval. However local
features can not play a decisive role in distinguishing subtle
feature differences because global and local features are treated
identically. For this limitation, Yu et al. [61] propose using a
mapping function to take more advantage of local features in
which they are used to refine the return ranking lists. In their
work, the exponential mapping function is the key for tapping
the complementary strengths of the convolutional layers and
fully-connected layers. Similarly, Cao et al. [86] unify the global
and local descriptors for two-stage image retrieval in which
attentively selected local features are employed to refine the
results obtained using global features.

It is worth introducing a fusion scheme to explore which
layer combination is better for fusion given their differences
of extracting features. For instance, Chatfield et al. [87] demon-
strate that fusing convolutional layers and fully-connected lay-
ers outperforms the methods that fuse only convolutional lay-
ers. In the end, fusing two convolutional layers with one fully-
connected layer achieves the best performance.

b. Model-level Fusion

It is possible to explore feature fusion on different models;
such fusion focuses on model complementarity to achieve im-
proved performance, categorized into two groups: intra-model
and inter-model.

Generally, intra-model fusion suggests multiple deep mod-
els having similar or highly compatible structures, while inter-
model fusion involves models with more differing structures.
For instance, the widely-used dropout strategy in AlexNet [20]
can be regarded as intra-model fusion: with random connec-
tions of different neurons between two fully-connected layers,

DEEP IMAGE RETRIEVAL: A SURVEY 7

each training epoch can be viewed as the combinations of dif-
ferent models. As a second example, Simonyan et al. [46] intro-
duce a ConvNet fusion strategy to improve the feature learning
capacity of VGG where VGG-16 and VGG-19 are fused. This
intra-model fusion strategy reduces the top-5 error by 2.7% in
image classification compared to a single counterpart network.
Similarly, Liu et al. [88] propose to mix different VGG variants
to strengthen the feature learning for fine-grained vehicle re-
trieval. Ding et al. [89] propose a selective deep ensemble (SDE)
framework to combine ResNet-26 and ResNet-50 improve the
accuracy of fine-grained instance retrieval. To attend to differ-
ent parts of the object in an image, Kim et al. [90] train an
ensemble of three attention modules to learn features with dif-
ferent diversities. Each module is based on different Inception
blocks in GoogLeNet.

Inter-model fusion is a way to bridge different features
given the fact that different deep networks have different
receptive fields [32, 53, 81, 91, 92, 93]. For instance, a two-
stream attention network [53] is proposed to implement
image retrieval where the mainstream network for semantic
prediction is VGG-16 while the auxiliary stream network
for predicting attention maps is DeepFixNet [94]. Similarly,
considering the importance and necessity of inter-model
fusion to bridge the gap between mid-level and high-level
features, Liu et al. [32] and Zheng et al. [81] propose to use
VGG-19 and AlexNet to learn combined features, while Ozaki
et al. [92] make an ensemble to concatenate descriptors from six
different models to boost retrieval performance. To illustrate
the effect of different parameter choices within the model
ensemble, Xuan et al. [93] combine ResNet and Inception V1
[47] for retrieval, concentrating on the embedding size and
number of embedded features.

Inter-model and intra-model fusion are relevant to model
selection. There are some strategies to determine how to com-
bine the features from two models. It is straightforward to con-
catenate all types of features from the candidate models and
then learning a metric based on the concatenated features [53],
which is a kind of “early fusion” strategy. Alternatively, it is also
possible to learn optimal metrics separately for the features
from each model, and then to uniformly combine these metrics
for final retrieval ranking [33], which is a kind of “late fusion”
strategy.

Discussion. Layer-level fusion and model-level fusion are
conditioned on the fact that the involved components (layers or
whole networks) have different feature description capacities.
For these two fusion strategies, the key question is what features
are the best to be combined? Some explorations have been made
for answering this question based on off-the-shelf deep models.
For example, Xuan et al. [93] illustrate the effect of combining
different numbers of features and different sizes within the en-
semble. Chen et al. [95] analyze the performance of embedded
features from image classification and object detection models
with respect to image retrieval. They study the discrimination
of feature embeddings of different off-the-shelf models which,
to some extent, implicitly guides the model selection when con-
ducting the inter-model level fusion for feature learning.

3.2 Deep Feature Enhancement
3.2.1 Feature Aggregation
Feature enhancement methods aggregate or embed features to
improve the discrimination of deep features. In terms of fea-
ture aggregation, sum/average pooling and max pooling are
two commonly used methods applied on convolutional feature

maps. In particular, sum/average pooling is less discrimina-
tive, because it takes into account all activated outputs from a
convolutional layer, as a result it weakens the effect of highly
activated features [30]. On the contrary, max pooling is particu-
larly well suited for sparse features that have a low probability
of being active. Max pooling may be inferior to sum/average
pooling if the output feature maps are no longer sparse [96].

Convolutional feature maps can be directly aggregated to
produce global features by spatial pooling. For example, Raza-
vian et al. [48, 71] apply max pooling on the convolutional fea-
tures for retrieval. Babenko et al. [7] leverage sum pooling with
a Gaussian weighting scheme to aggregate convolutional fea-
tures (i.e. SPoC). Note that this operation usually is followed
by L2 normalization and PCA dimensionality reduction.

As an alternative to the holistic approach, it is also possible
to pool some regions in a feature map [7, 48, 81], such as done
by R-MAC [28], where max pooling is used to aggregate some
regions on feature maps. Also, it is shown that the pooling
strategy used in the last convolutional layer usually yields su-
perior accuracy over other shallower convolutional layers and
even fully-connected layers [81].

3.2.2 Feature Embedding

Apart from direct pooling or regional pooling, it is possible to
embed the convolutional feature maps into a high dimensional
space to obtain compact features. The commonly used embed-
ding methods include BoW, VLAD, and FV. The dimensionality
of these embedded features can be reduced using PCA. Note
that BoW and VLAD can be extended by using other metrics,
such as Hamming distance [97]. Here we briefly describe the
principle of the embedding methods for the case of Euclidean
distance metric.

BoW [63] is a widely adopted encoding method in which
semantic similarity is measured using a standard distance met-
ric. BoW encoding takes advantage of sparse representations,
which is beneficial for fast retrieval on large-scale datasets. Let
~X = {~x1, ~x2, ..., ~xT } be a set of local features, each of which
has dimensionality D. BoW requires a pre-defined codebook
~C = {~c1,~c2, ...,~cK} with K centroids to cluster these local
descriptors, and maps each descriptor ~xt to the nearest word
~ck. For each centroid ~ck, we count and normalize the number
of occurrences by

g(~ck) =
1

T

T∑
t=1

φ(~xt,~ck) (1)

φ(~xt,~ck) =

{
1 if ~ck is the closest codeword for ~xt
0 otherwise (2)

Thus BoW considers the number of descriptors belonging to
each codebook k (i.e. 0-order feature statistics), then BoW rep-
resentation is the concatenation of all mapped vectors:

G
BoW

(~X) =
[
g(~c1), · · · , g(~ck), · · · , g(~cK)

]> (3)

BoW representation is the histogram of the number of local de-
scriptors assigned to each visual word, so that its dimension is
equal to the number of centroids. This method is simple to im-
plement to encode local descriptors, such as convolutional fea-
ture maps [50, 70, 83]. However, the embedded vectors are high
dimensional and sparse, which are not well suited to large-
scale datasets.

DEEP IMAGE RETRIEVAL: A SURVEY 8

VLAD [64] stores the sum of residuals for each visual word.
Specifically, similar to BoW, it generates K visual word cen-
troids, then each feature ~xt is assigned to its nearest visual
centroid ~ck and computes the difference (~xt − ~ck):

g(~ck) =
1

T

T∑
t=1

φ(~xt,~ck)(~xt − ~ck) (4)

where φ(~xt,~ck) as defined in (2). Finally, the VLAD represen-
tation is stacked by the residuals for all centroids, with dimen-
sion (D ×K), i.e.,

G
V LAD

(~X)=
[
· · · , g(~ck)>, · · ·

]>
. (5)

VLAD captures first order feature statistics, i.e., (~xt−~ck). Simi-
lar to BoW, the performance of VLAD is affected by the number
of clusters, thereby larger centroids produce larger vectors that
are harder to index. For image retrieval, for the first time, Ng
et al. [80] embed the feature maps from the last convolutional
layer into VLAD representations, however VLAD has higher
effectiveness than BoW.

The FV method [65] extends BoW by encoding the first and
second order statistics continuously. FV clusters the set of lo-
cal descriptors by a Gaussian Mixture Model (GMM), with K
components, to generate a dictionary C = {µk; Σk;wk}Kk=1,
where wk, µk, Σk denote the weight, mean vector, and covari-
ance matrix of the k-th Gaussian component, respectively [98].
The covariance can be simplified by keeping only its diagonal
elements, i.e., σk =

√
diag(Σk). For each local feature xt, a

GMM is given by

γk(~xt)=wk × pk(~xt)/(
K∑
j=1

wjpj(xt))
K∑
j=1

wk = 1 (6)

where pk(~xt) = N (~xt, µk, σ
2
k). All local features are assigned

into each component k in the dictionary, which is computed as

gwk
=

1

T
√
wk

T∑
t=1

(γk(~xt)− wk)

guk
=
γk(~xt)

T
√
wk

T∑
t=1

(
~xt − µk
σk

)
,

gσ2
k

=
γk(~xt)

T
√

2wk

T∑
t=1

[(
~xt − µi
σk

)2

− 1

] (7)

The FV representation is produced by concatenating vectors
from the K components:

G
FV

(~X)=
[
gw1

, · · · , gwK
, gu1

, · · · , guK
, gσ2

1
, · · · , gσ2

K

]>
(8)

The FV representation defines a kernel from a generative pro-
cess and captures more statistics than BoW and VLAD. FV vec-
tors do not increase computational costs significantly but re-
quire more memory due to the larger feature vector sizes. Ap-
plying FV without memory controls may lead to suboptimal
performance [99].

Discussion. Traditionally, sum pooling and max pooling
are directly plugged into deep networks and used end-to-end,
whereas the embedding methods, including BoW, VLAD, and
FV, are initially trained separately with pre-defined vocabular-
ies [32, 104]. For these three methods, their properties should be
considered when embedding deep features. For instance, BoW
and VLAD are computed in the rigid Euclidean space where
the performance is closely related to the number of centroids.
The FV embedding method can capture higher order statistics

Channel-wise

summation

& Norm

Parametric

operations

Feature maps

xx

 Input feature maps

Non-parametric

operations

xx

Feature mapsRefined feature maps Image

(a) (b)

x'x' x'x'CNN

via

C

 Input feature maps Refined feature maps

Spatial-wise

summation

& Norm

 Input feature maps Refined feature maps

H

W

(a) (b)

2

CNNCNN

 Attention

prediction

network

 Attention

prediction

network

Auxiliary stream

Main stream

Attentive

 feature maps

 Input feature maps Refined feature maps

(c)

Sigmoid

activation

FCFC

1×1× C 1×1× C1 1
C

GAP

(d)

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

H

C

W

(b)

C

H

W

C

H

W

..
.

H

C

W

C

W

Refined feature maps

(a)

(c) (d)

…

…

… …

11

1H

1W

HW

…

…

… …

11

1H

1W

HW
C

H

W

C

H

W

H

C

W

C

W

Refined feature maps

C

H

W

C

H

W

GAP

H

C

W

C

W

Refined feature maps

C×1

..
.

C×1

 Attention
prediction
network

 Attention
prediction
network

CNNCNN

C

…

…

… …

11

1H

1W

HW

…

…

… …

11

1H

1W

HW

C

…

…

… …

11

1H

1W

HW

C

H

W

C

H

W

C

W

C

W

Attentive

 feature maps

Attention
 tensorAuxiliary

stream

Main
stream

 Attention
prediction
network

CNN

C

…

…

… …

11

1H

1W

HW

C

H

W

C

W

Attentive

 feature maps

Attention
 tensorAuxiliary

stream

Main
stream

1

C

1

1 1

H W

ij

i j

x
= =

=
Norm

1

1

C

Channel-wise
weighting

2

1

C
c

ij

c

x
=

=
Norm

Spatial-wise
weighting

Feature maps xFeature maps x Feature maps xFeature maps x

Feature maps xFeature maps x

2

H W

Fig. 7: Four attention mechanisms are shown, divided
into two categories. (a)-(b) Non-parametric mechanisms: The
attention is based on convolutional feature maps. Channel-
wise attention in (a) produces a C-dimensional importance
vector α1 [10, 31, 100]. Similarly, spatial-wise attention in (b)
computes a 2-dimensional attention map α2 [10, 29, 62, 82].
(c)-(d) Parametric mechanisms: The attention weights β are
provided by a sub-network with trainable parameters (e.g. θ
in (c)) [101, 102]. Likewise, some off-the-shelf models [94, 103]
can be used to predict the attention maps from the input image
directly.

than BoW or VLAD, thus the FV embedding improves the ef-
fectiveness of feature enhancement at the expense of a higher
memory cost. When any one of these methods is used, it is nec-
essary to integrate them in an end-to-end manner so as to guar-
antee training and testing efficiency. For example, the VLAD
method is integrated into deep networks where each spatial
column feature is used to construct clusters via k-means [80].
This idea led to a follow-up approach, NetVLAD [39], where
deep networks are fine-tuned with the VLAD vector. The FV
embedding method is also explored and combined with deep
networks for retrieval tasks [37, 105].

3.2.3 Attention Mechanisms
The core idea of attention mechanisms is to highlight the most
relevant features and to avoid the influence of irrelevant acti-
vations, realized by computing an attention map. Approaches
to obtain attention maps can be categorized into two groups:
non-parametric and parametric-based, as shown in Figure 7,
where the main difference is whether the importance weights
in the attention map are learnable.

Non-parametric weighting is a straightforward method
to highlight feature importance. The corresponding attention
maps can be obtained by channel-wise or spatial sum-pooling,
as in Figure 7(a,b). For the spatial-wise pooling of Figure
7(b), Babenko et al. [7] apply a Gaussian center prior scheme
to spatially weight the activations of a convolutional layer
prior to aggregation. Kalantidis et al. [10] propose a more
effective CroW method to weight and pool feature maps.
These spatial-wise methods only concentrate on weighting
activations at different spatial locations, without considering
the relations between these activations. Instead, Ng et al. [82]
explore the correlations among activations at different spatial
locations on the convolutional feature maps. In addition to
spatial-wise attention mechanisms, channel-wise weighting
methods of Figure 7(a) are also popular non-parametric
attention mechanisms. Xu et al. [31] rank the weighted feature
maps to build the “probabilistic proposals” to further select

DEEP IMAGE RETRIEVAL: A SURVEY 9

regional features. Similarly, Jimenez et al. [29] combine CroW
and R-MAC to propose Classes Activation Maps (CAM) to
weight feature maps for each class. Qi et al. [51] introduce
Truncated Spatial Weighted FV (TSWVF) to enhance the
representation of Fisher Vector.

Attention maps can be learned from deep networks, as
shown in Figure 7(c,d), where the input can be either image
patches or feature maps from the previous convolutional layer.
The parametric attention methods are more adaptive and are
commonly used in supervised metric learning. For example,
Li et al. [101] propose stacked fully-connected layers to learn
an attention model for multi-scale image patches. Similarly,
Noh [102] designs a 2-layer CNN with a softplus output layer
to compute scores which indicate the importance of different
image regions. Inspired by R-MAC, Kim et al. [106] employ
a pre-trained ResNet101 to train a context-aware attention
network using multi-scale feature maps.

Instead of using feature maps as inputs, a whole image can
be used to learn feature importance, for which specific net-
works are needed. For example, Mohedano [52] explore differ-
ent saliency models, including DeepFixNet [94] and Saliency
Attentive Model (SAM)[103], to learn salient regions for input
images. Similarly, Yang et al. [53] introduce a two-stream net-
work for image retrieval in which the auxiliary stream, Deep-
FixNet, is used specifically for predicting attention maps.

In a nutshell, attention mechanisms offer deep networks
the capacity to highlight the most important regions of a given
image, widely used in computer vision. For image retrieval
specifically, attention mechanisms can be combined with su-
pervised metric learning [82, 90, 107].

3.2.4 Deep Hash Embedding
Real-valued features extracted by deep networks are typically
high-dimensional, and therefore are not well-suited to retrieval
efficiency. As a result, there is significant motivation to trans-
form deep features into more compact codes. Hashing algo-
rithms have been widely used for large-scale image search due
to their computational and storage efficiency [18, 108].

Hash functions can be plugged as a layer into deep net-
works, so that hash codes can be trained and optimized with
deep networks simultaneously. During hash function training,
the hash codes of originally similar objects are embedded as
close as possible, and the hash codes of dissimilar objects are
as separated as possible. A hash function may be formulated
as

bnk = g(xn) = g(f(xn;θ)) k = 1, . . . ,K (9)

where binary hash codes bn ∈ {+1,−1}K are generated by a
hash function g(·). Because hash codes are non-differentiable
their optimization is difficult, so g(·) can be relaxed to be dif-
ferentiable by using tanh or sigmoid functions [18].

When binarizing real-valued features, it is crucial (1) to pre-
serve image similarity and (2) to improve hash code quality
[18]. These two aspects are at the heart of hashing algorithms
to maximize retrieval accuracy.

a. Hash Functions to Preserve Image Similarity

Preserving similarity seeks to minimize the inconsistencies be-
tween the real-valued features and corresponding hash codes,
for which a variety of strategies have been adopted.

The design of the objective loss function can significantly
influence similarity preservation, which includes both
supervised and unsupervised approaches. With the class label
available, many loss functions are designed to learn hash

codes in a Hamming space. As a straightforward method,
one can optimize the difference between matrices computed
from the binary codes and their supervision labels [109].
Other studies regularize hash codes with a center vector, for
instance a class-specific center loss is devised to encourage
hash codes of images to be close to the corresponding centers,
reducing the intra-class variations [108]. Similarly, Kang et
al. [110] introduce a max-margin t-distribution loss which
concentrates more similar data into a Hamming ball centered
at the query term, such that a reduced penalization is applied
to data points within the ball, a method which improves the
robustness of hash codes when the supervision labels may
be inaccurate. Moreover metric learning, including Siamese
loss [54], triplet loss [35, 111, 112], and adversarial learning
[111, 113], is used to retain semantic similarity where only
dissimilar pairs keep their distance within a margin. In terms
of unsupervised hashing learning, it is essential to capture
some relevance among samples, which has been accomplished
by using Bayes classifiers [114], KNN graphs [55, 58, 115],
k-means algorithms [56], and network structures such as
AutoEncoders [116, 117, 118] and generative adversarial
networks [45, 55, 119, 120].

Separate from the loss function, it is also important to
design deep network frameworks for learning. For instance,
Long et al. [112] apply unshared-weight CNNs on two datasets
where a triplet loss and an adversarial loss are utilized to
address the domain shifts. Considering the lack of label
information, Cao et al. [113] present coined Pair Conditional
WGAN, a new extension of Wasserstein generative adversarial
networks (WGAN), to generate more samples conditioned on
the similarity information.

b. Improving Hash Function Quality

Improving hash code quality aims at making the binary codes
uniformly distributed, that is, maximally filling and using the
hash code space, normally on the basis of bit uncorrelation
and bit balance [18]. Bit uncorrelation implies that different bits
have little redundancy of information, so that a given set of bits
can aggregate more information within a given code length.
Bit uncorrelation can be encouraged via regularization terms
such as orthogonality [121] and mutual information [122]. Bit
balance means that each bit should have a 50% chance of being
+1 or -1, thereby maximizing code variance and information
[18].

4 RETRIEVAL VIA LEARNING DCNN REPRESENTA-
TIONS

In Section 3, we presented feature fusion and enhancement
strategies for which off-the-shelf DCNNs only serve as
extractors to obtain features. However, in most cases, deep
features may not be sufficient for high accuracy retrieval, even
with the strategies which were discussed. In order for models
to have higher scalability and to be more effective in retrieval
tasks, one important solution is in fine-tuning, to update the
pre-stored parameters [13, 27, 66], a common practice in deep
image retrieval. However fine-tuning does not contradict or
render irrelevant the feature processing methods of Section
3; indeed, those strategies are complementary and can be
incorporated as part of network fine tuning.

This section focuses on supervised and unsupervised fine-
tuning methods for the updating of network parameters.

DEEP IMAGE RETRIEVAL: A SURVEY 10

(a) (b)

(g)

(d)

CC

Elementwise
Multiplication

Elementwise
Addition

Feature
Concatenation

(c)
or

nI
pI or

nI
pI

(e) (f)

(h)

Shared
weights

FC

Conv
Layers
Conv

Layers

Conv
Layers
Conv

Layers

FC

FC FC

aI

pI

D×1

D×1

Conv
Layers
Conv

Layers

FC FC

nI D×1

Shared
weights

FC FC

Triplet
Loss

CE
Loss

L2L2

Shared
weights

FC

Conv
Layers

Conv
Layers

FC

FC FC

aI

pI

D×1

D×1

Conv
Layers

FC FC

nI D×1

Shared
weights

FC FC

Triplet
Loss

CE
Loss

L2

Shared
Weights

Conv
Layers
Conv

Layers

Conv
Layers
Conv

Layers

aI

pI D×1

Conv
Layers
Conv

Layers

nI D×1

Shared
Weights

Triplet
Loss

Attention
Module

Attention
Module

Attention
Module

Attention
Module

Attention
Module

Attention
Module

L2L2

L2L2

L2L2

Shared
Weights

Conv
Layers

Conv
Layers

aI

pI D×1

Conv
Layers

nI D×1

Shared
Weights

Triplet
Loss

Attention
Module

Attention
Module

Attention
Module

L2

L2

L2

Shared
Weights

FC

Conv
Layers
Conv

Layers

Conv
Layers
Conv

Layers

FC

FC FC

aI

pI

D×1

D×1

Conv
Layers
Conv

Layers

FC FC

nI D×1

Label Needed

Embedding Space

(, ,)a p n

TripletLoss

I I I

Shared
Weights

L2L2

L2L2

L2L2

Shared
Weights

FC

Conv
Layers

Conv
Layers

FC

FC FC

aI

pI

D×1

D×1

Conv
Layers

FC FC

nI D×1

Label Needed

Embedding Space

(, ,)a p n

TripletLoss

I I I

Shared
Weights

L2

L2

L2

or

Label
Needed

Embedding
 Space

Shared
Weights

Conv
Layers
Conv

Layers

Conv
Layers
Conv

Layers

aI

D×1

D×1

L2

L2

D×1

D×1

2×D×1

Parameters
Frozen

Similarity
Network

FC

Conv
Layers
Conv

Layers

Conv
Layers
Conv

Layers

FC

FC FC

CC
FC FC

Similarity
 Score

aI

or
nI

pI or
nI

pI

D×1

D×1

2×D×1

Parameters
Frozen

Similarity
Network

FC

Conv
Layers

Conv
Layers

FC

FC FC

C
FC FC

Similarity
 Score

aI

or
nI

pI

CE Loss

aI

Conv
Layers

FC FC

CE Loss

aI

Conv
Layers

FC FC

Shared
Weights

Conv
Layers
Conv

Layers

Conv
Layers
Conv

Layers

aI

pI

Conv
Layers
Conv

Layers

nI

Shared
Weights

RPN

Triplet
Loss

RoI
Pooling

RoI
Pooling

RoI
Pooling

L2L2

RPN

RPN

L2L2

D×1

D×1

D×1

L2L2

Shared
Weights

Conv
Layers

Conv
Layers

aI

pI

Conv
Layers

nI

Shared
Weights

RPN

Triplet
Loss

RoI
Pooling

RoI
Pooling

RoI
Pooling

L2

RPN

RPN

L2

D×1

D×1

D×1

L2

RPN

Classification for each RoI

RoI
Pooling

MultiClass
Classification

BBox
Regressor

Regionwise descriptors

All RoIs

Conv
Layers

FC FC

aI

RPN

Classification for each RoI

RoI
Pooling

MultiClass
Classification

BBox
Regressor

Regionwise descriptors

All RoIs

Conv
Layers

FC FC

aI

Feature
maps

Objectness

classification

Feature maps
with proposal

condidates

Bbox

regressor

C
o

n
v

RPN block

Objectness

classification

Feature maps
with proposal

condidates

Bbox

regressor

C
o

n
v

RPN block

(,)a pLoss I I

(,)a nLoss I I

L2 NormalizationL2L2 L2 NormalizationL2

D×1

Feature for
retrieval

Fig. 8: Schemes of supervised metric learning. Anchor, positive, and negative images are indicated by xa, xp, xn, respectively. (a)
classification-based; (b) using a linear or non-linear transformation matrix for learning the similarity of image pairs; (c) Siamese
networks; (d) region proposal networks (RPNs) to locate the RoI and highlight specific regions or instances; (e) triplet loss for
fine-tuning; (f) inserting the RPNs of (d) into DCNNs, such that the RPNs extract regions or instances at the convolutional
layer; (g) an attention block into DCNNs to highlight regions; (h) combining classification-based and verification-based loss for
fine-tuning.

4.1 Supervised Fine-tuning
4.1.1 Classification-based Fine-tuning
When class labels of a new dataset are available, it is preferable
to begin with a previously-trained DCNN, trained on a sepa-
rate dataset, with the backbone DCNN typically chosen from
one of AlexNet, VGG, GoogLeNet, or ResNet. The DCNN can
then be subsequently fine-tuned, as depicted in Figure 8(a), by
optimizing its parameters on the basis of a cross entropy loss
LCE :

LCE(p̂i, yi) = −
c∑
i

(yi×log(p̂i)) (10)

Here yi and p̂i are the ground-truth labels and the predicted
logits, respectively, and c is the total number of categories. The
milestone work in such fine-tuning is [34], in which AlexNet
is re-trained on the Landmarks dataset with 672 pre-defined
categories. The fine-tuned network produces superior features
on landmark-related datasets like Holidays [123], Oxford-5k,
and Oxford-105k [124]. The newly-updated layers are used as
global or local feature detectors for image retrieval.

A classification-based fine-tuning method improves the
model-level adaptability for new datasets, which, to some
extent, has mitigated the issue of model transfer in deep
image retrieval. However, there still exists room to improve
in terms of classification-based supervised learning. On

the one hand, the fine-tuned networks are quite robust to
inter-class variability, but may have some difficulties in
learning discriminative intra-class variability to distinguish
particular objects. On the other hand, class label annotation
is time-consuming and labor-intensive for some practical
applications. To this end, verification-based fine-tuning
methods are combined with classification methods to further
improve network capacity.

4.1.2 Verification-based Fine-tuning

With affinity information indicating similar and dissimilar
image pairs, verification-based fine-tuning methods learn an
optimal metric which minimizes or maximizes the distance
of pairs to validate and maintain their similarity. Compared
to classification-based learning, verification-based learning
focuses on both inter-class and intra-class samples.

Verification-based learning involves two types of informa-
tion [13]:

1) A pair-wise constraint, corresponding to a Siamese
network as in Figure 8(c), in which input images are
paired with either a positive or negative sample;

2) A triplet constraint, associated with triplet networks as
in Figure 8(e), in which anchor images are paired with
both similar and dissimilar samples [13].

DEEP IMAGE RETRIEVAL: A SURVEY 11

These verification-based learning methods are categorized
into global supervised approaches (Figure 8(e)) and local
supervised approaches (Figure 8(d)), where the former learn a
metric on global features by satisfying all constraints, whereas
the latter focus on local areas by only satisfying the given local
constraints (e.g. region proposals).

To be specific, consider a triplet set X={(xa, xp, xn)} in a
mini-batch, where (xa, xp) indicates a similar pair and (xa, xn)
a dissimilar pair. Features f(x;θ) of one image are extracted
by a deep network f(·) with parameters θ, for which we can
represent the affinity information for each similar or dissimilar
pair as

Dij = D(xi, xj) = ||f(xi;θ)− f(xj ;θ)||22 (11)

a. Refining with Transformation Matrix.

Learning the similarity among the input samples can be
implemented by optimizing the weights of a linear transfor-
mation matrix [36]. It transforms the concatenated feature
pairs into a common latent space using a transformation
matrix W∈Rd×d, where d is the feature dimension. Then, the
similarity score of these pairs are predicted via a sub-network
SW (xi, xj) = fW (f(xi;θ) ∪ f(xj ;θ);W) [36, 134]. In other
words, the sub-network fW predicts how similar the feature
pairs are. Given the affinity information of feature pairs
Sij = S(xi, xj)∈ {0, 1}, the binary labels 0 and 1 indicate the
similar (positive) or dissimilar (negative) pairs, respectively.
The training of function fW can be achieved by using a
regression loss:

LW (xi, xj) =|SW (xi, xj)− Sij(sim(xi, xj) +m)−
(1− Sij)(sim(xi, xj)−m)|

(12)

where sim(xi, xj) can be the cosine function for guiding train-
ing W . m is defined as a margin and remains equal in follow-
ing loss functions. By optimizing the regression loss and up-
dating the transformation matrixW , deep networks maximize
the similarity of similar pairs and minimize that of dissimilar
pairs. It is worth noting that the pre-stored parameters in the
deep models are frozen when optimizing W . The pipeline of
this approach is depicted in Figure 8(b) where the weights of
the two DCNNs are not necessarily shared.

b. Fine-tuning with Siamese Networks.

Siamese networks are important options to implement met-
ric learning for fine-tuning, as shown in Figure 8(c). It is a struc-
ture composed of two branches that share the same weights
across the layers. Siamese networks are trained on paired data
consisting of an image pair (xi, xj) according to S(xi, xj) ∈
{0, 1}. A Siamese loss function is formulated as:

LSiam(xi, xj) =
1

2
S(xi, xj)D(xi, xj) +

1

2
(1− S(xi, xj)) max(0, m−D(xi, xj))

(13)

A standard Siamese network and a Siamese loss are
employed to learn the similarity between the semantically
relevant samples under different scenarios. For example, Simo
et al. [135] introduce a Siamese network to learn the similarity
between paired image patches, which focuses more on the
specific regions within an image. Ong et al. [37] leverage the
Siamese network to learn image features which are then fed
into the Fisher Vector model for further encoding. In addition,
Siamese network can also be applied for hashing learning in

which the Euclidean distance formulation D(·) in Eq. 13 is
replaced by Hamming distance [54].

c. Fine-tuning with Triplet Networks.

Triplet networks [134] optimize the similar and dissimilar
pairs simultaneously. As shown in Figure 8(e), the plain triplet
networks adopt a ranking loss for tr-training:

LTriplet(xa, xp, xn) = max(0,m+D(xa, xp)−D(xa, xn)))
(14)

This loss indicates that the distance of an anchor-negative pair
D(xa, xn) should be larger than that of an anchor-positive pair
D(xa, xp) by a certain margin m. The triplet loss is used to
learn fine-grained image features [57, 91, 136], and used for
constraining hash codes learning [35, 111, 112].

To focus on specific regions or objects, local supervised
metric learning has been explored [43, 79, 137, 138]. In these
methods, some regions or objects are extracted using region
proposal networks (RPNs) [23] which subsequently can be
plugged in deep networks and trained in an end-to-end
manner. As shown in Figure 8(d), Faster R-CNN [23] is
Fine-tuned for instance search [79]. RPNs yield the regressed
bounding box coordinates of objects and are trained by the
multi-class classification loss. The final networks extract better
regional features by RoI pooling and perform the spatial
ranking for instance retrieval.

RPNs [23] enable deep models to learn regional features for
particular instances or objects [38, 138]. RPNs used in the triplet
formulation are shown in Figure 8(f). For training, besides the
triplet loss, regression loss (PRNs loss) is used to minimize
the regressed bounding box according to ground-truth region
of interest. In some cases, jointly training an RPNs loss and
triplet loss leads to unstable results. This is addressed by the
authors [38] first training a CNN to produce R-MAC using a
rigid grid. Afterwards, the parameters in convolutional layers
are fixed and RPNs are trained to replace the rigid grid.

Furthermore, attention mechanism is also combined with
metric learning [107, 137], see Figure 8(g). The attention
module usually is end-to-end trainable and takes as input
the convolutional feature maps. For instance, Song et al. [137]
introduce a convolutional layer as attention layers to explore
spatial-semantic information, the highlighted regions in
images significantly improve the discrimination for inter-class
and intra-class features for image retrieval.

Recently, jointly optimizing the triplet loss and classification
loss function is being studied [49, 85]. This is depicted in Figure
8(h). Fine-tuned models that only use triplet constraint may be
inferior classification accuracy for similar instances [85]. The
classification loss does not predict the intra-class similarity, but
locate the relevant images at different levels. Given these con-
siderations, it is natural to combine and optimize triplet con-
straint and classification loss jointly [49]. The overall joint func-
tion is formulated as:

LJoint =α·LTriplet(xi,a, xi,p, xi,n)+β ·LCE(p̂i, yi) (15)

where cross-entropy loss (CE loss) LCE is defined as in Eq.
(10) and triplet loss LTriplet is equal to Eq. (14). α and β are
the trade-off hyper-parameters to tune the two loss functions.

An implicit drawback of Siamese loss in Eq. 13 is that it
may penalize similar image pairs even the margin between
these pairs is at a small or zero distance, which may degrade
the performance [139]. The constraint is too strong and unbal-
anced. Meanwhile, it is hard to map the features of similar pairs

DEEP IMAGE RETRIEVAL: A SURVEY 12

(a) Single-margin
Siamese loss

(d) Quadruple loss

Anchor Distance marginNegative Positive SimilarProxy positiveProxy negativeProxy anchor

(b) Triplet loss
(c) Double-margin

Siamese loss
(e) Angular loss

(i) Mixed loss (j) Proxy-NCA loss(g) Lifted structured loss (k) Proxy-anchor loss(h) Ranked list loss (l) Hardness-aware loss

(f) N-pair loss

m1 m2

N̂
N

N

m1 m2

Fig. 9: Illustrations of sample mining strategies in metric learning. Here, we take 3 classes for illustration, where different
shapes indicate different classes. Loss term that includes m1 and m2 denotes this loss involves two margins. Multiple pairs are
considered in some loss terms and assigned with distinct weights during training, indicated by different line width. (a)-(c) have
been introduced in the text. (d) Quadruple loss [125]: a sample similar to the anchor is used to construct a double margin. (e)
Angular loss [126]: the angle at the negative of triple triangles is computed to obtain higher order geometric constraints. (f) N-pair
loss [127]: it identifies a positive sample from N −1 negative samples of N-1 classes. (g) Lift structured loss [128]: it considers the
structure relationships of three positive and three negative samples. (h) Ranked list loss [129]: it considers all samples to explore
intrinsic structured information. (i) Mixed loss [130]: it captures three positive and three negative samples which are initially
closely distributed, another anchor-negative pair initially lies very close to the anchor. (j) Proxy-NCA loss [131]: it computes
proxy positive and negative samples for each class, and are trained with a true anchor sample. (k) Proxy-anchor loss [132]: the
anchor sample is represented by a proxy. (l) Hardness-aware loss [133]: the synthetic negative is mapped from an existing hard
negative, their hard levels are manipulated adaptively within a certain range.

to the same point when images contain complex contents or
scenes. To tackle this limitation, Cao et al. [140] adopt a double-
margin Siamese loss [139] to relax the penalty for similar pairs.
To be specific, the threshold between the similar pairs is set to
a margin m1 instead of being zero. In this case, the original
single-margin Siamese loss is re-formulated as following:

L(xi, xj) =
1

2
S(xi, xj) max(0, D(xi, xj)−m1)+

1

2
(1− S(xi, xj)) max(0,m2 −D(xi, xj))

(16)

where m1>0 and m2>0 are the margins affecting the similar
and dissimilar pairs, respectively. Therefore, the double margin
Siamese loss only applies a contrastive force where the distance
of a similar pair is larger than m1. The mAP metric of retrieval
is improved when using the double margin Siamese loss [139].

Discussion. Most verification-based supervised learning
methods rely on the basic Siamese or triplet networks. The
follow-up studies are focusing on exploring methods to
further improve their capacities for robust feature similarity
estimation. Generally, the network structure, loss function,
and sample selection are important factors for the success of
verification-based methods [141].

For a loss function, various loss functions have been pro-
posed recently [125, 127, 128, 129, 131]. Some of the loss func-
tions use more samples or additional constraints. For example,
Chen et al. [125] incorporate Quadruple samples for constrain-
ing relationships between anchor, positive, negative, and simi-
lar images. The N-pair loss [127] and lifted structure loss [128]
even define constraints on all images and employ the structural
information of samples in a mini-batch.

The sampling strategy greatly affects the feature learning
and training convergence rate. To date, various sampling
strategies such as clustering have been introduced. For
comparison, we illustrate 12 sampling strategies in Figure 9.
Aside from sampling within a mini-batch, other work explore
to mine samples outside a mini-batch even from the whole

dataset. This may be beneficial for stabilizing optimization
due to a larger data diversity and richer training information.
For example, Wang et al. [142] propose a cross-batch memory
(XBM) mechanism that memorizes the embedding of past
iterations, allowing the model to collect sufficient hard
negative pairs across multiple mini-batches. Harwood et al.
[143] provide a framework named smart mining to collect hard
samples from the entire training set. It is reasonable to achieve
better performance when more samples are used to fine-tune
network. However, the possible additional computational cost
during training is a core issue to be addressed.

Recently, directly optimizing the average precision (AP)
metric using the listwise AP loss [144] is a way to consider
a large number of image simultaneously. Training with this
loss has been demonstrated to improve retrieval performance
[144, 145, 146]. However, Average precision, as a metric,
is normally non-differentiable and non-smooth. To directly
optimize the AP loss, the AP metric needs to be relaxed by
using methods such as soft-binning approximation [144, 145],
sigmoid function [146].

4.2 Unsupervised Fine-tuning
Supervised network fine-tuning becomes infeasible when
there is not enough supervisory information because these
information is costly to assemble or sometimes unavailable.
Given these limitations, unsupervised fine-tuning methods for
image retrieval are quite necessary but less studied [147].

For unsupervised learning, one direction is to mine some
relevances among features to obtain ranking information.
Another one is to devise novel unsupervised frameworks (e.g.
AutoEncoders). To this end, we categorize the unsupervised
fine-tuning methods into manifold learning-based and
AutoEncoder-based methods.

4.2.1 Mining Samples with Manifold Learning
Manifold learning focuses on capturing intrinsic correlations
on the manifold structure to mine some revelances. We show

DEEP IMAGE RETRIEVAL: A SURVEY 13

this process in Figure 10. Initial similarities between the origi-
nal extracted features are used for constructing an affinity ma-
trix. Then, the values in this matrix are re-evaluated and up-
dated using manifold learning [148]. According to the mani-
fold similarity in the updated affinity matrix, positive and hard
negative samples are selected for metric learning using pair
loss [43, 149], triplet loss [150, 151], or N-pair loss [147], etc.
Note that this is different from the aforementioned methods for
verification-based fine-tuning methods where the hard positive
and negative samples are explicitly selected from an ordered
dataset according to the given affinity information.

It is important to capture the geometry relations from the
manifold of deep features. Generally, there are two steps in-
cluded [148]. First, the affinity matrix (see Figure 10) is inter-
preted as a weighted KNN graph, where each vector is repre-
sented by a node, and edges are defined by the pairwise affini-
ties of two connected nodes. Then, the pairwise affinities are re-
evaluated in the context of all other elements, by diffusing the
similarity values through the graph [44, 149, 150, 151]. These
two steps are known as the diffusion process. Recently, some
new similarity diffusion methods are proposed like the regu-
larized diffusion process (RDP) [152] and the regional diffusion
mechanism [149]. For more details, we refer to the survey [148]
which lists 72 variants of diffusion methods.

Most existing algorithms follow a similar principle (i.e. the
random walk algorithm [148]). The differences lie in three
aspects: similarity initialization, transition matrix definition,
and iteration scheme. For the first aspect, the similarity
initialization in an affinity matrix affects the subsequent
KNN graph construction. Usually, an inner product [44, 147]
or Euclidean distance [41] is directly computed for the
affinities. Also a Guassian kernel function can be used for
initialization of an affinity matrix [148, 151]. Iscen et al. [149]
consider regional similarity from image patches to build
the affinity matrix. For the second aspect, the formation of
transition matrix (e.g. row-stochastic matrix [148]) determines
probabilities of transiting from one node to another in the
graph. These probabilities are proportional to the affinities
between nodes, which can be measured by Geodesic distance
(e.g. the summation of weights of relevant edges). Finally, an
iteration scheme guarantees the values in affinity matrix are
re-valuated and updated by the manifold similarity until some
kinds of convergence are achieved. Most existing algorithms
are iteration-based [148, 150], as illustrated in Figure 10.

Diffusion process algorithms are indispensable for unsu-
pervised metric learning. Better image similarity is guaranteed
when it is improved on the mentioned initialization methods
(e.g. regional similarity [149] or high order information [41]
for similarity initialization). However, the diffusion process re-
quires more computations and complex search due to the itera-
tion scheme [151]. This limitation cannot meet the efficiency re-
quirements of image retrieval. For mitigating this, Nicolas et al.
[147] apply the closed-form convergence solution of a random
walk in each mini-batch to estimate the manifold similarities
instead of running many iterations. Some studies replace the
diffusion process on a KNN graph with a diffusion network
[43], which is derived from graph convolution networks [153].
Their end-to-end framework allows efficient computation dur-
ing the training and testing stage.

Once the manifold space is learned, samples are mined by
computing geodesic distances based on the Floyd-Warshall al-
gorithm or by comparing the set difference [150]. The selected
samples are fed into deep networks to perform fine-tuning.

CNN

Original
Feature

Representations

Affinity
Matrix

Transition
Matrix

Converge

No

Yes

Iterative
Manifold

Representations

CNN

CNN

CNN

Triplet
Loss

Stage I: Manifold Learning Stage II: Model Fine-tuning

Shared
Weights

Initial
Probability

xx

Random Walk

aI

nI

pI

CNN model is
transferred to stage II

KNN Graph
Construction

Affinity
Update

Manifold
Similarity

Computing

Manifold
Guided

Selection

Triplets

Shared
Weights

DatasetDataset

Fig. 10: Paradigm of manifold learning for unsupervised metric
learning.

It is possible to explore the proximity information to make
clusterings in the Euclidean space, subsequently the training
set is split into different groups. For example, Tzelepi et al.
[154] explore a fully unsupervised fine-tuning method by clus-
tering. In this method, the KNN algorithm is used to compute
the k nearest features, then the model is fine-tuned to mini-
mize the squared distance between each query feature and its
k nearest features. As another example, Radenovic et al. [40,
42] use Structure-from-Motion (SfM) for clustering to explore
sample reconstructions to select images for triplet loss. Clus-
tering methods depend on rigid Euclidean distance so that it is
difficult to reveal the intrinsic relationship between objects.

4.2.2 AutoEncoder-based Frameworks

An AutoEncoder is a kind of neural network that aims to re-
construct its output as close as its input. In principle, an input
image is encoded as features into a latent space, and these fea-
tures are then reconstructed to the original input image using
a decoder. Here, the encoder and decoder can be comprised of
convolutional neural networks.

In an AutoEncoder, there exist different levels (e.g. pixel-
level or instance-level) of reconstruction. These different reso-
lutions of reconstruction affect the effectiveness of an AutoEn-
coder. For example, pixel-level reconstruction may degrade the
learned features of an encoder by focusing on some trivial vari-
ations in a reconstructed image since a natural image usually
contains a lot of trivial factors like location, color, and pose.

An AutoEncoder is an optional framework for supporting
another methods. For example, unsupervised hash learning
can be implemented by using AutoEncoders [45, 116, 117, 118].
Except for the reconstruction loss [45, 118], it is highly
necessary to mine feature relevance to explore other objective
functions. This is usually realized by using clustering
algorithm [118] based on the fact that features from an off-
the-shelf network initially contain rich semantic information
to keep their semantic structure [55, 58, 114]. For example, Gu
et al. [118] introduce a modified cross-entropy based on the
k-means clustering algorithm where a deep model learns to
cluster iteratively and yields binary codes while retaining the
structures of the input data distributions. Zhou et al. [58] and
Deng et al. [55] propose a self-taught hashing algorithm using
a KNN graph construction to generate pseudo labels that are
used to analyze and guide network training. Other techniques
such as Bayes net are also used to predict sample similarity.
For instance, Yang et al. [114] adopt a Bayes optimal classifier
to assign semantic similarity labels to data pairs which have a
higher similarity probability.

Fourthermore, an AutoEncoder can also be integrated
into other frameworks, such as graph convolutional networks
[153] and object detection model [155] to learn better binary

DEEP IMAGE RETRIEVAL: A SURVEY 14

latent variables. For eaxmple, Shen et al. [45] combine graph
convolutional networks [153] to learn the hash codes from
an AutoEncoder. In this method, the similarity matrix for
graph learning is computed on the binary latent variables
from the Encoder. Generative adversarial networks (GANs)
are also explored in the unsupervised hashing framework
[45, 55, 119, 120]. The adversarial loss in GANs is the classical
objective to use. By optimizing this loss, the synthesized
images generated from hash codes gradually keep semantic
similarity consistent for the original images. The pixel-level
and feature-level content loss are used to improve the
generated image quality [119]. Some other loss items are
employed in GANs to enhance the hash codes learning.
For instance, a distance matching regularizer is utilized to
propagate the correlations between high-dimensional real-
valued features and low-dimensional hash codes. Two loss
functions that aim at promoting independence of binary
codes are introduced in [120]. To summarize, using GANs for
unsupervised hash learning is promising, but there exist much
room for further exploration.

5 THE STATE OF THE ART PERFORMANCE

5.1 Datasets

To demonstrate the effectiveness of these noted methods, we
choose 4 commonly used datasets: Holidays, Oxford-5k (in-
cluding the extended Oxford-105k), Paris-6k (including the ex-
tended Paris-106k) and UKBench for a performance compari-
son. Details about these datasets are given below.

UKBench [156] consists of 10,200 images of various objects.
The whole dataset has 2,550 groups of images. Each group in-
cludes 4 images of the same object from different viewpoints or
illumination conditions. Each image in the dataset can be used
as a query image, thus the number of query images is 10,200.

Holidays [123] consists of 1,491 images collected from
personal holiday albums. Most images are scene-related. The
dataset comprises 500 groups of similar images with a query
image for each group. In each group, the first image is used as
a query image for performance evaluation.

Oxford-5k [124] consists of 5,062 images for 11 particular
Oxford buildings. Each image is represented by 5 queries by
a hand-drawn bounding box, thus there are 55 query Regions
of Interest (RoI) in total. An additional disjoint set of 100,000
distractor images is added to obtain Oxford-100k.

Paris-6k [157] includes 6,412 images collected from Flickr. It
is categorized into 12 groups about specific Paris architecture.
The dataset has 500 query images for evaluation. There are also
55 queries with bounding boxes. Images are annotated with the
same four types of labels as used in the Oxford-5k dataset.

Annotations and evaluation protocols in Oxford-5k and
Paris-6k are updated; additional queries and distractor images
are added into the two datasets, producing the Revisited
Oxford and Revisited Paris datasets [158]. Due to the popularity
of Oxford-5k and Paris-6k, we mainly make performance
evaluations on these two original datasets.

5.2 Evaluation Metrics

Average precision. Average precision (AP) refers to the cover-
age area under the precision-recall curve. A larger AP means a
higher precision-recall curve and better retrieval performance.
AP can be calculated using Eq. (17)

AP =

∑N
k=1 P (k) · rel(k)

R
(17)

where R denotes the number of relevant results for the query
image. P (k) is the precision of the top k retrieved images.
rel(k) is an indicator function equal to 1, if the item within
rank k is a relevant image and 0 otherwise. N is the total
number of images. Mean average precision (mAP) is adopted
for the evaluation over all query images, i.e., 1

Q

∑Q
q=1AP (q),

where Q is the number of query images.
N-S score is a metric initially specific for UKBench [156]. In

this dataset, there are 4 relevant images for all queries, the N-S
score is the average 4 times for top-4 precision over the dataset.

20
14

20
15

20
16

20
17

20
18

20
19

20
20

80

85

90

95

80.18 [26]

89.7 [71]

94.2 [38]

95.13 [159] 95.7 [152] 95.5 [160]

94.0 [161]

78.34 [13]

84.4 [71]

88.95 [162]

95.8 [149]
95.8 [163] 96.2 [164] 96.2 [161]

91.1 [25] 91.3 [7]

96.3 [69]

98.1 [165] 98.8 [166]

86.83 [13] 86.5 [28]

95.8 [167]

96.0 [42]
97.0 [163]

97.8 [164]
97.4 [161]

m
A

P(
%

)

Holidays
Oxford-5k
UKBench
Paris-6k

(a)
SPoC MAC CroW R-MAC GeM

30

35

40

45

50

55

60

65

70

75

80

m
A

P(
%

)

Oxford5k
Oxford105k
Paris6k
Paris106k

 CAM
+CroW(b)

Fig. 11: (a) Performance improvement from 2014 to 2020. (b)
mAP comparison of different feature aggregation methods
shown in Figure 5.

5.3 Performance Comparison and Analysis

Overview. We conclude with the performance over these 4
datasets from 2014 to 2020 in Figure 11(a). At early period,
DCNNs acted as powerful extractors and achieved good
results, e.g., mAP is 78.34% in [13] on Oxford-5k. Subsequently,
the results increased significantly when some crucial factors
were adopted, including feature fusion [159, 162, 166], feature
aggregation [28, 48], and feature fine-tuning [152, 161]. For
instance, the retrieval accuracy on UKBench reaches an mAP
of 98.8% in [166] when an undirected graph is defined to fuse
features and estimate their correlations. Network fine-tuning
improves performance greatly. The accuracy increases steadily
from 78.34% [13] to 96.2% [164] on the Oxford-5k dataset when
manifold learning is used to fine-tune deep networks.

We report the results of methods using off-the-shelf models
(Table 3) and fine-tuning networks (Table 4). In Table 3, single
pass and multiple pass are analyzed, while supervised fine-
tuning and unsupervised fine-tuning are compared in Table 4.

Evaluation for single feedforward pass. The common prac-
tice using this scheme is to enhance feature discrimination. In
Table 3, we observe that fully-connected layers as feature ex-
tractors may reach a lower accuracy (e.g., 74.7% on Holidays in
[34]), compared to the counterpart convolutional layers. As the
fully-connected layers lack structural information for instance-
level retrieval. Further, layer-level feature fusion strategy im-
proves retrieval accuracy. For example, Yu et al. [61] combined
three layers (Conv4, Conv5, and FC6) (e.g., an mAP of 91.4%
on Holidays), outperforming the performance of non-fusion
method in [7] (e.g., mAP is 80.2%). Moreover, convolutional
features embedded by BoW model reach a competitive perfor-
mance on Oxford-5k and Paris-6k (73.9% and 82.0%, respec-
tively), while its codebook size is 25k, which may affect the
retrieval efficiency. For single pass scheme, methods shown in
Figure 5 improve the discrimination of convolutional feature
maps and perform differently in Table 3 (e.g., 66.9% of R-MAC
[157], 58.9% of SPoC [7] on Oxford-5k). We view this as a criti-
cal factors and further analyze.

DEEP IMAGE RETRIEVAL: A SURVEY 15

Evaluation for multiple feedforward pass. The methods
exemplified in Figure 6 are reported their results in multiple
pass scheme. Among them, it seems that dense patch and
Grid methods can achieve relatively better results, compared
to other two methods. Extracting image patches densely using
Overfeat [168] can reach best results on the 4 datasets [25].
Using rigid grid method reach competitive results (e.g., an
mAP of 87.2% on Paris-6k) [104]. These two methods consider
more patches, even background information when used for
feature extraction. Instead of generating patches densely,
region proposals and spatial pyramid modeling have a degree
of purpose in processing image objects. This may be more
efficient and less memory demanding. Using multiple pass
scheme, spatial information is maintained better than the
case using the single pass method. For example, a shallower
network (AlexNet) and region proposal networks are used in
[74], its result on UKBench is 3.81 (N-Score), higher than the
one using deeper networks, such as [7, 34, 61]. Besides feeding
image patches into the same network, model-level fusion also
exploit complementary spatial information to improve the
retrieval accuracy. For instance, as demonstrated in [32], which
combines AlexNet and VGG, the results on the Holidays
(81.74% of mAP) and UKBench (3.32 of N-Score) dataset are
better than these in [50] (76.75% and 3.00, respectively).

Evaluation for supervised fine-tuning. Compared to
the off-the-shelf models, fine-tuning deep networks usually
improves accuracy, see Table 4. For instance, the result on
Oxford-5k [28] by using a pre-trained VGG is improved from
66.9% to 81.5% in [37] when a single-margin Siamese loss
is used. Similar trends can be also observed on the Paris-6k
dataset. Although classification-based fine-tuning method is
not excel at learning intra-class variability (e.g., an mAP of
55.7% on Oxford-5k in [34]), its performance may be improved
with powerful DCNNs and feature enhancement methods
such as the attention mechanism in [102], leading to an mAP
of 83.8% on Oxford-5k. As for verification-based fine-tuning
methods, in some cases, the loss used for fine-tuning is
essential for performance improvement. For example, RPN
is re-trained using regression loss on Oxford-5k and Paris-6k
(75.1% and 80.7%, respectively) [79]. Its results are lower than
the results from [36] (88.2% and 88.2%, respectively) where
a transformation matrix is used to learn visual similarity.
However, when RPN is trained by using triplet loss such as
[138], the effectiveness of retrieval is improved significantly
where the results are 86.1% (on Oxford-5k) and 94.5% (on
Paris-6k). Further, feature embedding methods are important
for retrieval accuracy. For example, Ong et al. [37] embedded
Conv5 feature maps by Fisher Vector and achieved an mAP of
81.5% on Oxford-5k, while embedding feature maps by using
VLAD achieves an mAP of 62.5% on this dataset [39, 40].

Evaluation for unsupervised fine-tuning. Compared to
supervised network fine-tuning, unsupervised fine-tuning
methods are relatively less explored. The difficulty for
unsupervised fine-tuning is to mine relevance of samples
without ground-truth labels. In general, unsupervised
fine-tuning methods produce lower performance than the
supervised fine-tuning methods. For instance, supervised
fine-tuning network by using Siamese loss in [169] achieves
an mAP 88.4% on Holidays, while unsupervised fine-tuning
network using the same loss function in [40, 42, 150] achieve
87.5%, 83.1%, and 82.5%, respectively. However, unsupervised
fine-tuning methods can achieve a similar accuracy even
outperform the supervised fine-tuning if a suited feature

TABLE 2: Evaluations of mAP (%), N-S score, and average
search time per image. “†” refers to the query time is evaluated
in a global diffusion manner, while “†” refers to the time is
evaluated in a regional diffusion way.

Oxford-5k
(+100k)

Paris-6k
(+100k) Holidays UKBench

mAP Time mAP Time mAP Time N-S Time

[152] 91.3
(88.4)

5.45 ms
(809 ms) - - 95.66 3.11 ms 3.93 4.91 ms

[164] 92.6
(91.8)

2 ms
(10 ms) - - - - - -

[149]† 85.7
(-)

20 ms
(-)

94.1
(-)

20 ms
(-) - - - -

[149]‡ 95.8
(-)

600 ms
(-)

96.9
(-)

700 ms
(-) - - - -

[170] 64.9
(58.8)

0.81 ms
(0.82 ms) - - - - - -

[42] 64.8
(57.9)

0.77 ms
(0.73 ms) - - - - - -

[36] 55.5
(-)

0.35 ms
(-)

71.0
(-)

0.35 ms
(-) - - - -

embedding method is used. For instance, Zhao et al. [151]
explored global feature structure with modeling the manifold
learning, producing an mAP of 85.4% (on Oxford-5k) and
96.3% (on Paris-6k). This is similar to the supervised method
[138], whose results are 86.1% (on Oxford-5k) and 94.5% (on
Paris-6k). As another example, the precision of ResNet-101
fine-tuned by cross-entropy loss achieves to 83.8% on Oxford-
5k [102], while the precision is further improved to 92.0%
when IME layer is used to embed features and fine-tuned in
an unsupervised way [41]. Note that fine-tuning strategies
are related to the type of the target retrieval datasets. As
demonstrated in [105], fine-tuning on different datasets may
hurt the final performance.

Retrieval efficiency is also an important criterion in deep
image retrieval. Deep learning methods are usually based on
large-size datasets. The training and testing of retrieval meth-
ods are mostly done on GPUs. Most prior work focus more on
retrieval accuracy but less on efficiency. We report the retrieval
accuracy and retrieval efficiency on 4 datasets in Table 2. The
recorded time (in ms) indicates the average time for searching
each query image. From these statistics, we observe some im-
portant trends. First, in general, the average retrieval time for
each query image is less than 1s. Concretely, the recorded time
is up to 809ms on Oxford-105k in [152], whose mAP is 88.4%.
The retrieval time is 600ms on Oxford-5k and 700ms on Paris-6k
in [149], whose time cost is caused by processing 21 regional
features on each query image. Second, we observe the retrieval
accuracy-efficiency balancing issue, which is significantly ob-
vious on the Oxford-5k dataset. The average retrieval time are
both less than 1ms in prior work [36, 42, 170], whose mAPs are
lower than 70% (i.e., 55.5%, 64.8%, and 64.9%, respectively). In
contrast, the prior work [149, 152, 164] reach relatively higher
mAPs (i.e., 95.8%, 92.6%, and 91.3%, respectively), while this
higher accuracy is at the expense of efficiency (more than 2ms
even up to 600ms). Therefore, the trade-off of accuracy and
efficiency is also an important factor to take into account in
deep image retrieval, especially for large-scale datasets.

In addition, we explore other important factors which
are common for retrieval, including the depth of networks,
retrieval feature dimension, and feature aggregation methods.

The depth of networks. We compare the efficacy of DCNNs
depth, following the DCNN fine-tuning protocols 1 in [42]. For

1. https://github.com/filipradenovic/cnnimageretrieval-pytorch

DEEP IMAGE RETRIEVAL: A SURVEY 16

AlexNet VGG GoogLeNet ResNet-50 ResNet-101
40

45

50

55

60

65

70

75

80

85
m

A
P(

%
)

Oxford5k
Oxford105k
Paris6k
Paris106k

0

10

20

30

40

50

60

70

80

90

m
A

P(
%

)

Oxford5k
Oxford105k
Paris6k
Paris106k

1024128 256 512 20486432 8192
Feature dimension

4096

(b)(a)

Fig. 12: (a) The effectiveness of different DCNNs on 4 datasets.
All models are fine-tuned by the same loss function. The
results are tested on the convolutional features with default
dimension; (b) The impact of feature dimension on retrieval
performance. These features are extracted by using ResNet-50.

fair comparisons, all convolutional feature maps from these
networks are aggregated by MAC method [48], and fine-tuned
by using the same learning rate. That means, the adopted meth-
ods are the same except the DCNNs have different depths. We
use the default feature dimension (i.e. AlexNet (256-d), VGG
(512-d), GoogLeNet (1024-d), ResNet-50/101 (2048-d)). The re-
sults are reported in Figure 12(a). We observe that the deeper
networks is more beneficial for accuracy improvement, by ex-
tracting more discriminative features.

Feature dimension. We focus on varying the feature di-
mension of ResNet-50 from 32-d to 8092-d, by adding a fully-
collected layers on the top of pooled convolutional features.
The results are shown in Figure 12(b). It is expected that higher-
dimension features capture much more semantics and are help-
ful for retrieval. The accuracy is achieving to a bottleneck as
the dimension is increasing. For ResNet-50, we observe that
the default feature dimension can produce competitive results.

Feature aggregation methods. For this factor, we mainly
focus on the methods embedding convolutional feature maps,
as depicted in Figure 5. We use the off-the-shelf VGG (without
updating parameters) on the Oxford and Paris datasets. The
results are reported in Figure 11(b). We observe that different
ways to aggregate the same off-the-shelf DCNN make differ-
ence for retrieval performance. The reported results provide
a reference for feature aggregation when using convolutional
layers for performing retrieval tasks.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this survey, we reviewed the recent works on deep
learning methods for image retrieval, and categorized it into
deep image retrieval of off-the-shelf models and fine-tuned
models according to the parameter updates of deep networks.
Concretely, the off-the-shelf group is concerned with obtaining
high-quality features by freezing the pre-stored parameters
where network feedforward schemes, layer selection, and
feature fusion methods are presented. While fine-tuned
based methods deal with updating networks with optimal
parameters for feature learning in both supervised and
unsupervised approaches. For each group, we presented the
corresponding methods and compared their differences. The
corresponding experimental results are collected and analyzed
for all the categorized works.

Deep learning has shown significant progress and
spotlighted its capacity for image retrieval. Despite the
great success, there are still many unsolved problems. Here,

we introduce some promising trends as future research
directions. We hope that this survey not only provides a better
understanding of image retrieval but also facilitates future
research activities and application developments in this field.

(1) Zero-shot Learning for Image Retrieval.

The popularity of media platforms and the rapid develop-
ment of novel techniques makes it very convenient for people
to share their images. As a result, the number of images in-
creases immensely. In this case, there often exist “unseen“ im-
ages or categories. However, most datasets are static and offer
a limited amount of objects and categories for feature learn-
ing. Thus, the retrieval algorithms or systems may suffer from
the scarcity of the appropriate training data for these unseen
images. Therefore, it is needed to extend conventional image
retrieval methods to a zero-shot learning scenario, where we
can retrieve both seen and unseen categories from the system.
Furthermore, combined with unsupervised methods, the zero-
shot learning algorithms can significantly improve the flexibil-
ity and generalization of image retrieval systems.

(2) End-to-End Unsupervised Retrieval.

Using supervisory information, network training or fine-
tuning is more likely to mitigate the semantic gap. However,
the sophisticated supervised learning algorithms are in most
cases not very general because there is usually not enough su-
pervisory information available. Thereby, it is necessary to ex-
plore unsupervised image retrieval, which has been studied
less [147]. Therefore, as a solution, the earlier noted manifold
learning is a way to mine the samples using relevance context
information. The self-supervision information is learned based
on graph discovery in the manifold space. However, the whole
training process is not end-to-end yet. Currently, graph convo-
lutional networks [153] have been used to replace the diffusion
process for end-to-end training [43].

(3) Incremental Image Retrieval.

Current image retrieval focuses on static datasets and is
not suited for incremental scenarios [171, 172]. That is, most
of these approaches assume that images from all categories
are available during training. This assumption may be restric-
tive in real-world applications as new categories are constantly
emerging. Repetitive fine-tuning on both old and new images
is time-consuming and inefficient, while fine-tuning only on
the new images may lead to catastrophic forgetting, thereby
resulting in severe degradation of the retrieval performance
for the old categories. Therefore, one practical direction would
be to build an up-to-date retrieval model to handle incremental
streams of new categories, while retaining its previous perfor-
mance on existing categories without forgetting.

(4) Deploy Image Retrieval for Practical Applications.

Existing image retrieval technologies are trained and eval-
uated on standard benchmarks such as the Oxford and Paris
datasets, and various metric learning methods are explored for
retrieval on fine-grained datasets. However, these technologies
are still far from the real-world applications such as face search,
fashion search, person re-identification, shopping recommen-
dation system, or medical image retrieval. In these practical
applications, the purpose of image retrieval, may not just be
retrieving images for general content on standard benchmarks,
but also for more refined information. It is challenging to de-
ploy image retrieval for specific scenario. For example, as a spe-
cific instance search topic, person re-identification systems may

DEEP IMAGE RETRIEVAL: A SURVEY 17

encounter images with low-resolution or with inferior quality
due to inadequate illumination. Existing techniques such as
Attention mechanisms and the region proposal networks etc.
can be adopted to guarantee performance. On the other hand,
it is valuable to explore multi-modal retrieval in practical ap-
plications. That means, image retrieval can also be combined
with other auxiliary modalities such as words, phrases, and
sentences to meet different retrieval expectations of users.

REFERENCES

[1] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 12, pp. 1349–1380, 2000.

[2] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based
multimedia information retrieval: State of the art and challenges,”
ACM Trans. Multimedia Comput. Commun. Appl. (TOMM), vol. 2,
no. 1, pp. 1–19, 2006.

[3] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in ICCV, 2015, pp. 1116–
1124.

[4] U. Chaudhuri, B. Banerjee, and A. Bhattacharya, “Siamese graph
convolutional network for content based remote sensing image
retrieval,” Comput. Vis. Image Underst., vol. 184, pp. 22–30, 2019.

[5] L. R. Nair, K. Subramaniam, and G. Prasannavenkatesan, “A review
on multiple approaches to medical image retrieval system,” in
Intelligent Computing in Engineering, 2020, vol. 1125, pp. 501–509.

[6] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “Deepfashion: Powering
robust clothes recognition and retrieval with rich annotations,” in
CVPR, 2016, pp. 1096–1104.

[7] A. Babenko and V. Lempitsky, “Aggregating local deep features for
image retrieval,” in ICCV, 2015, pp. 1269–1277.

[8] L. Zheng, Y. Yang, and Q. Tian, “SIFT meets CNN: A decade survey
of instance retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
no. 5, pp. 1224–1244, 2018.

[9] Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen, “Deep quantization
network for efficient image retrieval.” in AAAI, 2016, pp. 3457–3463.

[10] Y. Kalantidis, C. Mellina, and S. Osindero, “Cross-dimensional
weighting for aggregated deep convolutional features,” in ECCV,
2016, pp. 685–701.

[11] R. Furuta, N. Inoue, and T. Yamasaki, “Efficient and interactive
spatial-semantic image retrieval,” in MMM, 2018, pp. 190–202.

[12] L. Zhang and Y. Rui, “Image search—from thousands to billions in
20 years,” ACM Trans. Multimedia Comput. Commun. Appl. (TOMM),
vol. 9, no. 1s, p. 36, 2013.

[13] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li,
“Deep learning for content-based image retrieval: A comprehensive
study,” in ACM MM, 2014, pp. 157–166.

[14] A. Alzu’bi, A. Amira, and N. Ramzan, “Semantic content-based
image retrieval: A comprehensive study,” J. Vis. Commun. Image
Represent., vol. 32, pp. 20–54, 2015.

[15] X. Li, T. Uricchio, L. Ballan, M. Bertini, C. G. Snoek, and A. D. Bimbo,
“Socializing the semantic gap: A comparative survey on image tag
assignment, refinement, and retrieval,” ACM Comput. Surv. (CSUR),
vol. 49, no. 1, pp. 1–39, 2016.

[16] W. Zhou, H. Li, and Q. Tian, “Recent advance in content-based image
retrieval: A literature survey,” arXiv preprint arXiv:1706.06064, 2017.

[17] L. Piras and G. Giacinto, “Information fusion in content based image
retrieval: A comprehensive overview,” Inf. Fusion, vol. 37, pp. 50–60,
2017.

[18] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning
to hash,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp.
769–790, 2018.

[19] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in NeurIPS,
2012, pp. 1097–1105.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in CVPR, 2017, pp.
4700–4708.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in NeurIPS,
2015, pp. 91–99.

[24] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[25] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: an astounding baseline for recognition,” in
CVPR workshops, 2014, pp. 806–813.

[26] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless
pooling of deep convolutional activation features,” in ECCV, 2014,
pp. 392–407.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NeurIPS, 2014, pp. 3320–3328.

[28] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with
integral max-pooling of CNN activations,” in ICLR, 2015, pp. 1–12.

[29] A. Jiménez, J. M. Alvarez, and X. Giró Nieto, “Class-weighted
convolutional features for visual instance search,” in BMVC, 2017,
pp. 1–12.

[30] T.-T. Do, T. Hoang, D.-K. L. Tan, H. Le, T. V. Nguyen, and N.-M.
Cheung, “From selective deep convolutional features to compact
binary representations for image retrieval,” ACM Trans. Multimedia
Comput. Commun. Appl. (TOMM), vol. 15, no. 2, pp. 1–22, 2019.

[31] J. Xu, C. Wang, C. Qi, C. Shi, and B. Xiao, “Unsupervised part-based
weighting aggregation of deep convolutional features for image
retrieval,” in AAAI, 2018, pp. 7436–7443.

[32] Y. Liu, Y. Guo, S. Wu, and M. S. Lew, “Deepindex for accurate and
efficient image retrieval,” in ICMR, 2015, pp. 43–50.

[33] P. Wu, S. C. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao, “Online
multimodal deep similarity learning with application to image
retrieval,” in ACM MM, 2013, pp. 153–162.

[34] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural
codes for image retrieval,” in ECCV, 2014, pp. 584–599.

[35] C.-Q. Huang, S.-M. Yang, Y. Pan, and H.-J. Lai, “Object-location-
aware hashing for multi-label image retrieval via automatic mask
learning,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4490–4502,
2018.

[36] N. Garcia and G. Vogiatzis, “Learning non-metric visual similarity
for image retrieval,” Image Vis. Comput., vol. 82, pp. 18–25, 2019.

[37] E.-J. Ong, S. Husain, and M. Bober, “Siamese network of
deep fisher-vector descriptors for image retrieval,” arXiv preprint
arXiv:1702.00338, 2017.

[38] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image
retrieval: Learning global representations for image search,” in
ECCV, 2016, pp. 241–257.

[39] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic,
“NetVLAD: CNN architecture for weakly supervised place
recognition,” in CVPR, 2016, pp. 5297–5307.

[40] F. Radenović, G. Tolias, and O. Chum, “CNN image retrieval learns
from BoW: Unsupervised fine-tuning with hard examples,” in ECCV,
2016, pp. 3–20.

[41] J. Xu, C. Wang, C. Qi, C. Shi, and B. Xiao, “Iterative manifold
embedding layer learned by incomplete data for large-scale image
retrieval,” IEEE Trans. Multimedia, vol. 21, no. 6, pp. 1551–1562, 2018.

[42] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning CNN image
retrieval with no human annotation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 7, pp. 1655–1668, 2017.

[43] C. Liu, G. Yu, M. Volkovs, C. Chang, H. Rai, J. Ma, and S. K. Gorti,
“Guided similarity separation for image retrieval,” in NeurIPS, 2019,
pp. 1554–1564.

[44] C. Chang, G. Yu, C. Liu, and M. Volkovs, “Explore-exploit graph
traversal for image retrieval,” in CVPR, 2019, pp. 9423–9431.

[45] Y. Shen, J. Qin, J. Chen, M. Yu, L. Liu, F. Zhu, F. Shen, and L. Shao,
“Auto-encoding twin-bottleneck hashing,” in CVPR, 2020, pp. 2818–
2827.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015, pp. 1–9.

[48] A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki, “Visual
instance retrieval with deep convolutional networks,” ITE Trans.
Media Technol. Appl., vol. 4, no. 3, pp. 251–258, 2016.

[49] H. Jun, B. Ko, Y. Kim, I. Kim, and J. Kim, “Combination of
multiple global descriptors for image retrieval,” arXiv preprint
arXiv:1903.10663, 2019.

[50] Y. Li, X. Kong, L. Zheng, and Q. Tian, “Exploiting hierarchical
activations of neural network for image retrieval,” in ACM MM,
2016, pp. 132–136.

[51] C. Qi, C. Shi, J. Xu, C. Wang, and B. Xiao, “Spatial weighted fisher
vector for image retrieval,” in ICME, 2017, pp. 463–468.

[52] E. Mohedano, K. McGuinness, X. Giró-i Nieto, and N. E. O’Connor,
“Saliency weighted convolutional features for instance search,” in
CBMI, 2018, pp. 1–6.

[53] F. Yang, J. Li, S. Wei, Q. Zheng, T. Liu, and Y. Zhao, “Two-stream
attentive CNNs for image retrieval,” in ACM MM, 2017, pp. 1513–

DEEP IMAGE RETRIEVAL: A SURVEY 18

1521.
[54] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing

for fast image retrieval,” in CVPR, 2016, pp. 2064–2072.
[55] C. Deng, E. Yang, T. Liu, J. Li, W. Liu, and D. Tao, “Unsupervised

semantic-preserving adversarial hashing for image search,” IEEE
Trans. Image Process., vol. 28, no. 8, pp. 4032–4044, 2019.

[56] H. Hu, K. Wang, C. Lv, J. Wu, and Z. Yang, “Semi-supervised
metric learning-based anchor graph hashing for large-scale image
retrieval,” IEEE Trans. Image Process., pp. 739–754, 2018.

[57] D. Deng, R. Wang, H. Wu, H. He, Q. Li, and X. Luo, “Learning deep
similarity models with focus ranking for fabric image retrieval,”
Image Vis. Comput., vol. 70, pp. 11–20, 2018.

[58] K. Zhou, Y. Liu, J. Song, L. Yan, F. Zou, and F. Shen, “Deep self-taught
hashing for image retrieval,” in ACM MM, 2015, pp. 1215–1218.

[59] Y. Li, Z. Miao, J. Wang, and Y. Zhang, “Nonlinear embedding neural
codes for visual instance retrieval,” Neurocomputing, vol. 275, pp.
1275–1281, 2018.

[60] K. Yan, Y. Wang, D. Liang, T. Huang, and Y. Tian, “CNN vs. SIFT for
image retrieval: Alternative or complementary?” in ACM MM, 2016,
pp. 407–411.

[61] W. Yu, K. Yang, H. Yao, X. Sun, and P. Xu, “Exploiting the
complementary strengths of multi-layer CNN features for image
retrieval,” Neurocomputing, vol. 237, pp. 235–241, 2017.

[62] X.-S. Wei, J.-H. Luo, J. Wu, and Z.-H. Zhou, “Selective convolutional
descriptor aggregation for fine-grained image retrieval,” IEEE Trans.
Image Process., vol. 26, no. 6, pp. 2868–2881, 2017.

[63] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” in CVPR, 2003, pp. 1470–1477.

[64] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in CVPR, 2010,
pp. 3304–3311.

[65] T. Jaakkola and D. Haussler, “Exploiting generative models in
discriminative classifiers,” in NeurIPS, 1999, pp. 487–493.

[66] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and
transferring mid-level image representations using convolutional
neural networks,” in CVPR, 2014, pp. 1717–1724.

[67] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A
survey,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020.

[68] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artif.
Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020.

[69] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson,
“Factors of transferability for a generic convnet representation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1790–1802,
2016.

[70] E. Mohedano, K. McGuinness, N. E. O’Connor, A. Salvador,
F. Marqués, and X. Giro-i Nieto, “Bags of local convolutional features
for scalable instance search,” in ICMR, 2016, pp. 327–331.

[71] A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson, “A baseline
for visual instance retrieval with deep convolutional networks,” in
ICLR, 2015.

[72] D. Xu, X. Alameda-Pineda, J. Song, E. Ricci, and N. Sebe, “Cross-
paced representation learning with partial curricula for sketch-based
image retrieval,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4410–
4421, 2018.

[73] J. Cao, L. Liu, P. Wang, Z. Huang, C. Shen, and H. T. Shen, “Where
to focus: Query adaptive matching for instance retrieval using
convolutional feature maps,” arXiv preprint arXiv:1606.06811, 2016.

[74] K. Reddy Mopuri and R. Venkatesh Babu, “Object level deep feature
pooling for compact image representation,” in CVPR Workshops,
2015, pp. 62–70.

[75] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in ECCV, 2014, pp. 391–405.

[76] L. Xie, R. Hong, B. Zhang, and Q. Tian, “Image classification and
retrieval are one,” in ICMR, 2015, pp. 3–10.

[77] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional
kernel networks,” in NeurIPS, 2014, pp. 2627–2635.

[78] J. Song, Q. Yu, Y.-Z. Song, T. Xiang, and T. M. Hospedales,
“Deep spatial-semantic attention for fine-grained sketch-based
image retrieval.” in ICCV, 2017, pp. 5552–5561.

[79] A. Salvador, X. Giró-i Nieto, F. Marqués, and S. Satoh, “Faster r-cnn
features for instance search,” in CVPR Workshops, 2016, pp. 9–16.

[80] J. Yue-Hei Ng, F. Yang, and L. S. Davis, “Exploiting local features
from deep networks for image retrieval,” in CVPR workshops, 2015,
pp. 53–61.

[81] L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian, “Good practice in
CNN feature transfer,” CoRR, vol. abs/1604.00133, 2016.

[82] T. Ng, V. Balntas, Y. Tian, and K. Mikolajczyk, “SOLAR: Second-order
loss and attention for image retrieval,” in ECCV, 2020, pp. 253–270.

[83] P. Kulkarni, J. Zepeda, F. Jurie, P. Perez, and L. Chevallier, “Hybrid

multi-layer deep CNN/aggregator feature for image classification,”
in ICASSP, 2015, pp. 1379–1383.

[84] D. Yu, Y. Liu, Y. Pang, Z. Li, and H. Li, “A multi-layer deep fusion
convolutional neural network for sketch based image retrieval,”
Neurocomputing, vol. 296, pp. 23–32, 2018.

[85] C. Shen, C. Zhou, Z. Jin, W. Chu, R. Jiang, Y. Chen, and X.-S. Hua,
“Learning feature embedding with strong neural activations for fine-
grained retrieval,” in ACM MM, 2017, pp. 424–432.

[86] B. Cao, A. Araujo, and J. Sim, “Unifying deep local and global
features for efficient image search,” in ECCV, 2020, pp. 726–743.

[87] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return
of the devil in the details: Delving deep into convolutional nets,” in
BMVC, 2014.

[88] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative
distance learning: Tell the difference between similar vehicles,” in
CVPR, 2016, pp. 2167–2175.

[89] Z. Ding, L. Song, X. Zhang, and Z. Xu, “Selective deep ensemble for
instance retrieval,” Multimed. Tools. Appl., pp. 1–17, 2018.

[90] W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon, “Attention-based
ensemble for deep metric learning,” in ECCV, 2018, pp. 736–751.

[91] T. Bui, L. Ribeiro, M. Ponti, and J. Collomosse, “Sketching out
the details: Sketch-based image retrieval using convolutional neural
networks with multi-stage regression,” Comput. Graph., vol. 71, pp.
77–87, 2018.

[92] K. Ozaki and S. Yokoo, “Large-scale landmark retrieval/recognition
under a noisy and diverse dataset,” in CVPR Workshop, 2019.

[93] H. Xuan, R. Souvenir, and R. Pless, “Deep randomized ensembles
for metric learning,” in ECCV, 2018, pp. 723–734.

[94] J. Pan, E. Sayrol, X. Giro-i Nieto, K. McGuinness, and N. E. O’Connor,
“Shallow and deep convolutional networks for saliency prediction,”
in CVPR, 2016, pp. 598–606.

[95] B.-C. Chen, L. S. Davis, and S.-N. Lim, “An analysis of object
embeddings for image retrieval,” arXiv preprint arXiv:1905.11903.

[96] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of
feature pooling in visual recognition,” in ICML, 2010, pp. 111–118.

[97] F. Wang, W.-L. Zhao, C.-W. Ngo, and B. Merialdo, “A hamming
embedding kernel with informative bag-of-visual words for video
semantic indexing,” ACM Trans. Multimedia Comput. Commun. Appl.
(TOMM), vol. 10, no. 3, pp. 1–20, 2014.

[98] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716, 2012.

[99] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image
classification with the fisher vector: Theory and practice,” Int. J.
Comput. Vis., vol. 105, no. 3, pp. 222–245, 2013.

[100] D.-j. Jeong, S. Choo, W. Seo, and N. I. Cho, “Regional deep feature
aggregation for image retrieval,” in ICASSP, 2017, pp. 1737–1741.

[101] G. Li and Y. Yu, “Visual saliency detection based on multiscale deep
CNN features,” IEEE Trans. Image Process., vol. 25, no. 11, pp. 5012–
5024, 2016.

[102] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Largescale image
retrieval with attentive deep local features,” in ICCV, 2017, pp. 3456–
3465.

[103] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human
eye fixations via an lstm-based saliency attentive model,” IEEE Trans.
Image Process., vol. 27, no. 10, pp. 5142–5154, 2018.

[104] J. Cao, Z. Huang, and H. T. Shen, “Local deep descriptors in bag-of-
words for image retrieval,” in ACM MM, 2017, pp. 52–58.

[105] V. Chandrasekhar, J. Lin, O. Morere, H. Goh, and A. Veillard, “A
practical guide to CNNs and fisher vectors for image instance
retrieval,” Signal Process., vol. 128, pp. 426–439, 2016.

[106] J. Kim and S.-E. Yoon, “Regional attention based deep feature for
image retrieval,” in BMVC, 2018, pp. 209–223.

[107] B. Chen and W. Deng, “Hybrid-attention based decoupled metric
learning for zero-shot image retrieval,” in CVPR, 2019, pp. 2750–
2759.

[108] C. Deng, E. Yang, T. Liu, and D. Tao, “Two-stream deep hashing
with class-specific centers for supervised image search,” IEEE Trans.
Neural. Netw. Learn. Syst., 2019.

[109] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao, “Deep sketch hashing:
Fast free-hand sketch-based image retrieval,” in CVPR, 2017, pp.
2862–2871.

[110] R. Kang, Y. Cao, M. Long, J. Wang, and P. S. Yu, “Maximum-margin
hamming hashing,” in ICCV, 2019, pp. 8252–8261.

[111] F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking
based hashing for multi-label image retrieval,” in CVPR, 2015, pp.
1556–1564.

[112] F. Long, T. Yao, Q. Dai, X. Tian, J. Luo, and T. Mei, “Deep domain
adaptation hashing with adversarial learning,” in ACM SIGIR, 2018,
pp. 725–734.

[113] Y. Cao, B. Liu, M. Long, J. Wang, and M. KLiss, “Hashgan: Deep

DEEP IMAGE RETRIEVAL: A SURVEY 19

learning to hash with pair conditional wasserstein gan,” in CVPR,
2018, pp. 1287–1296.

[114] E. Yang, T. Liu, C. Deng, W. Liu, and D. Tao, “Distillhash:
Unsupervised deep hashing by distilling data pairs,” in CVPR, 2019,
pp. 2946–2955.

[115] J. Zhang and Y. Peng, “Ssdh: semi-supervised deep hashing for large
scale image retrieval,” IEEE Trans. Circuits Syst. Video Technol., 2017.

[116] M. A. Carreira-Perpinán and R. Raziperchikolaei, “Hashing with
binary autoencoders,” in CVPR, 2015, pp. 557–566.

[117] T.-T. Do, D.-K. Le Tan, T. T. Pham, and N.-M. Cheung, “Simultaneous
feature aggregating and hashing for large-scale image search,” in
CVPR, 2017, pp. 6618–6627.

[118] Y. Gu, S. Wang, H. Zhang, Y. Yao, W. Yang, and L. Liu,
“Clustering-driven unsupervised deep hashing for image retrieval,”
Neurocomputing, vol. 368, pp. 114–123, 2019.

[119] J. Song, “Binary generative adversarial networks for image
retrieval,” in AAAI, 2017.

[120] K. G. Dizaji, F. Zheng, N. S. Nourabadi, Y. Yang, C. Deng, and
H. Huang, “Unsupervised deep generative adversarial hashing
network,” in CVPR, 2018, pp. 3664–3673.

[121] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in CVPR, 2015, pp. 2475–2483.

[122] F. Cakir, K. He, S. A. Bargal, and S. Sclaroff, “Hashing with mutual
information,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 10,
pp. 2424–2437, 2019.

[123] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and
weak geometric consistency for large scale image search,” in ECCV,
2008, pp. 304–317.

[124] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
CVPR, 2007, pp. 1–8.

[125] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond triplet loss:
a deep quadruplet network for person re-identification,” in CVPR,
2017, pp. 403–412.

[126] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning
with angular loss,” in ICCV, 2017, pp. 2593–2601.

[127] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in NeurIPS, 2016, pp. 1857–1865.

[128] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric
learning via lifted structured feature embedding,” in CVPR, 2016,
pp. 4004–4012.

[129] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. M. Robertson,
“Ranked list loss for deep metric learning,” in CVPR, 2019, pp. 5207–
5216.

[130] L. Chen and Y. He, “Dress fashionably: Learn fashion collocation
with deep mixed-category metric learning,” in AAAI, 2018, pp. 2103–
2110.

[131] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh,
“No fuss distance metric learning using proxies,” in ICCV, 2017, pp.
360–368.

[132] S. Kim, D. Kim, M. Cho, and S. Kwak, “Proxy anchor loss for deep
metric learning,” in CVPR, 2020, pp. 3238–3247.

[133] W. Zheng, Z. Chen, J. Lu, and J. Zhou, “Hardness-aware deep metric
learning,” in CVPR, 2019, pp. 72–81.

[134] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,
B. Chen, and Y. Wu, “Learning fine-grained image similarity with
deep ranking,” in CVPR, 2014, pp. 1386–1393.

[135] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-
Noguer, “Discriminative learning of deep convolutional feature
point descriptors,” in ICCV, 2015, pp. 118–126.

[136] M. Tzelepi and A. Tefas, “Exploiting supervised learning for
finetuning deep CNNs in content based image retrieval,” in ICPR,
2016, pp. 2918–2923.

[137] J. Song, T. He, L. Gao, X. Xu, and H. T. Shen, “Deep region hashing
for efficient large-scale instance search from images,” arXiv preprint
arXiv:1701.07901, 2017.

[138] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “End-to-end
learning of deep visual representations for image retrieval,” Int. J.
Comput. Vis., vol. 124, no. 2, pp. 237–254, 2017.

[139] J. Lin, O. Morere, A. Veillard, L.-Y. Duan, H. Goh, and
V. Chandrasekhar, “Deephash for image instance retrieval: Getting
regularization, depth and fine-tuning right,” in ICMR, 2017, pp. 133–
141.

[140] J. Cao, Z. Huang, P. Wang, C. Li, X. Sun, and H. T. Shen, “Quartet-
net learning for visual instance retrieval,” in ACM MM, 2016, pp.
456–460.

[141] J. Lu, J. Hu, and J. Zhou, “Deep metric learning for visual
understanding: An overview of recent advances,” IEEE Signal
Process. Mag., vol. 34, no. 6, pp. 76–84, 2017.

[142] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch
memory for embedding learning,” in CVPR, 2020, pp. 6388–6397.

[143] B. Harwood, B. Kumar, G. Carneiro, I. Reid, T. Drummond et al.,
“Smart mining for deep metric learning,” in ICCV, 2017, pp. 2821–
2829.

[144] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for
average precision,” in CVPR, 2018, pp. 596–605.

[145] J. Revaud, J. Almazán, R. S. Rezende, and C. R. d. Souza, “Learning
with average precision: Training image retrieval with a listwise loss,”
in ICCV, 2019, pp. 5107–5116.

[146] A. Brown, W. Xie, V. Kalogeiton, and A. Zisserman, “Smooth-ap:
Smoothing the path towards large-scale image retrieval,” in ECCV,
2020, pp. 677–694.

[147] N. Aziere and S. Todorovic, “Ensemble deep manifold similarity
learning using hard proxies,” in CVPR, 2019, pp. 7299–7307.

[148] M. Donoser and H. Bischof, “Diffusion processes for retrieval
revisited,” in CVPR, 2013, pp. 1320–1327.

[149] A. Iscen, G. Tolias, Y. Avrithis, T. Furon, and O. Chum, “Efficient
diffusion on region manifolds: Recovering small objects with
compact CNN representations,” in CVPR, 2017, pp. 2077–2086.

[150] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Mining on manifolds:
Metric learning without labels,” in CVPR, 2018, pp. 7642–7651.

[151] Y. Zhao, L. Wang, L. Zhou, Y. Shi, and Y. Gao, “Modelling diffusion
process by deep neural networks for image retrieval,” in BMVC,
2018, pp. 161–174.

[152] B. Song, X. Bai, Q. Tian, and L. J. Latecki, “Regularized diffusion
process on bidirectional context for object retrieval,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 5, pp. 1213–1226, 2018.

[153] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[154] T. Maria and T. Anastasios, “Deep convolutional image retrieval: A
general framework,” Signal Process. Image Commun., vol. 63, pp. 30–
43, 2018.

[155] R.-C. Tu, X.-L. Mao, B.-S. Feng, and S.-Y. Yu, “Object detection based
deep unsupervised hashing,” in IJCAI, 2019, pp. 3606–3612.

[156] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in CVPR, 2006, pp. 2161–2168.

[157] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost
in quantization: Improving particular object retrieval in large scale
image databases,” in CVPR, 2008, pp. 1–8.

[158] F. Radenovic, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revisit-
ing oxford and paris: Large-scale image retrieval benchmarking,” in
CVPR, 2018.

[159] A. Alzu’bi, A. Amira, and N. Ramzan, “Content-based image re-
trieval with compact deep convolutional features,” Neurocomputing,
vol. 249, pp. 95–105, 2017.

[160] S. S. Husain and M. Bober, “Remap: Multi-layer entropy-guided
pooling of dense cnn features for image retrieval,” IEEE Trans. Image
Process., vol. 28, no. 10, pp. 5201–5213, 2019.

[161] L. T. Alemu and M. Pelillo, “Multi-feature fusion for image retrieval
using constrained dominant sets,” Image Vis Comput, vol. 94, p.
103862, 2020.

[162] L. Zheng, S. Wang, J. Wang, and Q. Tian, “Accurate image search
with multi-scale contextual evidences,” Int. J. Comput. Vis., vol. 120,
no. 1, pp. 1–13, 2016.

[163] A. Iscen, Y. Avrithis, G. Tolias, T. Furon, and O. Chum, “Fast spectral
ranking for similarity search,” in CVPR, 2018, pp. 7632–7641.

[164] F. Yang, R. Hinami, Y. Matsui, S. Ly, and S. Satoh, “Efficient
image retrieval via decoupling diffusion into online and offline
processing,” in AAAI, vol. 33, 2019, pp. 9087–9094.

[165] J. Yang, J. Liang, H. Shen, K. Wang, P. L. Rosin, and M.-H. Yang,
“Dynamic match kernel with deep convolutional features for image
retrieval,” IEEE Trans. Image Process., vol. 27, no. 11, pp. 5288–5302,
2018.

[166] L. P. Valem and D. C. G. Pedronette, “Graph-based selective rank
fusion for unsupervised image retrieval,” Pattern Recognit Lett, 2020.

[167] H.-F. Yang, K. Lin, and C.-S. Chen, “Cross-batch reference learning
for deep classification and retrieval,” in ACM MM, 2016, pp. 1237–
1246.

[168] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated recognition, localization and
detection using convolutional networks,” in ICLR, 2014.

[169] Y. Lv, W. Zhou, Q. Tian, S. Sun, and H. Li, “Retrieval oriented deep
feature learning with complementary supervision mining,” IEEE
Trans. Image Process., vol. 27, no. 10, pp. 4945–4957, 2018.

[170] Q. Wang, J. Lai, L. Claesen, Z. Yang, L. Lei, and W. Liu, “A novel
feature representation: Aggregating convolution kernels for image
retrieval,” Neural Networks, vol. 130, pp. 1–10, 2020.

[171] D. Wu, Q. Dai, J. Liu, B. Li, and W. Wang, “Deep incremental hashing
network for efficient image retrieval,” in CVPR, 2019, pp. 9069–9077.

[172] W. Chen, Y. Liu, W. Wang, T. Tuytelaars, E. M. Bakker, and M. Lew,
“On the exploration of incremental learning for fine-grained image
retrieval,” in BMVC, 2020.

D
E

E
P

IM
A

G
E

R
E

TR
IE

VA
L:A

S
U

R
V

E
Y

20

TABLE 3: mAP (%) evaluation on four benchmarks. “&” means the models or the layers are combined together to learn features. “PCAw indicates PCA with whitening is performed on the extracted features.
“MP” means Max Pooling. “SP” means Sum Pooling. The patch extraction methods, including SPM, RP, etc. are illustrated in Figure 6. The network with “♣” has a similar architecture with AlexNet. “(-)”
means corresponding results were not reported.

Methods Used Base Output Feat. Feat. Holidays UKB Oxford5k Paris6k Brief Conclusions and Highlights
Type in DCNN Layer Enhance. Dim. (+100k) (+100k)

(1
)

R
et

ri
ev

al
w

it
h

O
ff

-t
he

-S
he

lf
D

C
N

N
M

od
el

s

Single Feed [34] AlexNet FC6 PCA 128 74.7
3.42
(N-S)

43.3
(38.6) -

A milestone work in which AlexNet is fine-tuned on the landmarks for retrieval.
Performance of compressed neural codes of different layers are investigated.

Single Feed [28] VGG16 Conv5
R-MAC

+
PCAw

512 - -
66.9

(61.6)
83.0

(75.7)

Adopting the sliding windows with different scales on the convolutional
feature maps to preserve spatial information. Re-ranking methods are also used

to improve the retrieval accuracy further.

Single Feed [10] VGG16 Conv5
CroW

+
PCAw

256 85.1 -
68.4

(63.7)
76.5

(69.1)

The spatial- and channel- wise weighting mechanism are utilized to highlight
crucial convolutional features. Different feature dimensions are tested on 3

datasets. Query expansion is explored to improve retrieval accuracy.

Single Feed [70] VGG16 Conv5
BoW

+
PCAw

25k - - 73.9
(59.3)

82.0
(64.8)

An important work encodes the convolutional activations as local features into
BoW descriptors. The global features and local features are explored in the

work where local features have higher accuracy than global ones.

Single Feed [7] VGG16 Conv5
SPoC

+
PCAw

256 80.2 3.65
(N-S)

58.9
(57.8)

-
Exploring Gassian weighting scheme i.e., the centering prior, to improve the

feature representation. Full query image is fed into networks when the
Oxford-5k and Oxford-105k datasets are used.

Single Feed [61] VGG16
FC6

& Conv4
& Conv5

SP 4096 91.4 3.68
(N-S)

61.5
(-)

-
Exploring combinations of different fully-connected layers and convolutional

layers in different deep networks which demonstrates the complementary
properties between high-layer and low-layer for image retrieval.

Single Feed [31] VGG16 Conv5 SP+PCAw 4096 - -
86.1

(80.4)
79.1

(73.6)

Ranking “probabilistic proposals” on the feature maps in an unsupervised
manner to weight then select regional representations. Global semantic

representations are concatenated from all regional representations.

Multiple
Feed

SPM [32]
AlexNet

&
VGG19

FC6-7
FC17-18

BoW
+

PCA
512 81.74∗

3.32∗

(N-S) - 75.35∗
Exploring layer-level and model-level fusion (combination) methods to extract

features, deep features are further embedded into BoW descriptors separately. ∗
indicates the results are from “fc7+fc18” combination.

Multiple
Feed

SPM [50] CNN-M♣
[87]

Conv3
& Conv5

& FC7

SP or MP
+

BoW
20k 76.75

3.00
(N-S) - -

Exploring the combinations of different fully-connected layers and
convolutional layers within the same deep network. Hamming embedding

method is also investigated to improve the retrieval results significantly.

Multiple
Feed

Dense
Patch [48] VGG16 Conv5

SP or MP
+

PCAw
32k 89.6

95.1
(mAP)

84.3
(-)

87.9
(-)

Investigating an efficient pipeline for visual instance retrieval. Image
sub-patches are extracted in a dense manner. Geometric invariance is taken into

consideration when spatial max pooling is used to aggregate patch features.

Multiple
Feed

Dense
Patch [25]

Overfeat
[168] FC PCAw 15k 84.3

91.1
(mAP)

68.0
(-)

79.5
(-)

A milestone work which explores deep network to accomplish image retrieval.
Image sub-patches are extracted at different locations with different sizes.

Retrieval results are based on the sum of all patch features.

Multiple
Feed

Dense
Patch [26] AlexNet FC7

VLAD
+

PCAw
2048 80.2 - - -

The image patches are extracted in a dense manner which are more dense than
the extraction method used in [25]. Multi-scale patch features are further

embedded into VLAD descriptors.

Multiple
Feed

RP [60]
Goog-
LeNet Conv5

VLAD
+

PCAw

128 84.13 3.81
(N-S)

64.84
(-)

76.76
(-)

Fusing complementary CNN and SIFT features for retrieval which includes 3
level contents. Features are learned for object proposals. Object-level and

point-level features concatenation schemes are explored.

Multiple
Feed

RP [100] VGG19 Conv5
SP
+

PCAw

512 88.6 -
74.1
(-)

80.2
(-)

Exploring to extract the spatial- and channel-wise weights to highlight
important which mitigates the feature burstiness issue. Images are retrieved in a

region-by-region manner.

Multiple
Feed

RP [74] AlexNet FC6
MP +
PCAw

512 88.46
3.81
(N-S)

60.71
(-)

66.23
(-)

Exploring the impact of proposal number. Features of patch are aggregated in
an orderless manner. Fine-tuning methods are also explored.

Multiple
Feed

Grid [104] VGG19 Conv5
BoW

+
PCAw

500k 84.6 - 83.3
(-)

87.2
(-)

Image sub-patches are obtained using uniform square mesh. Patch features are
encoded into BoW descriptors. Voting scores between matched local descriptors

are used to solve the burstiness issue.

D
E

E
P

IM
A

G
E

R
E

TR
IE

VA
L:A

S
U

R
V

E
Y

21

TABLE 4: Continued for Table 3. “On Sup.” means the metric learning methods are in a supervised manner while “On Unsup.” means in an unsupervised manner. “Classification based” means the models
are fine-tuned using the classification-based loss function (CE loss) in Eq. 10. “S-M constra. Loss” refers the single margin contrastive loss in Eq. 13, while “D-M constra. Loss” denotes the double margin
contrastive loss in Eq. 16. Regression loss is in the form of Eq. 12. Triplet loss is in the form of Eq. 14.

Methods Used Base Output Feat. Loss Feat. Holidays UKB Oxford5k Paris6k Brief Conclusions and HighlightsType in DCNN Layer Enhance. Func. Dim. (+100k) (+100k)

(2
)

R
et

ri
ev

al
vi

a
Le

ar
ni

ng
D

C
N

N
R

ep
re

se
nt

at
io

ns

On
Sup.

Classifi-
cation
based

[102]
ResNet-
101

Conv4
Block

Attention
+

PCAw

CE
Loss 2048 - -

83.8
(82.6)

85.0
(81.7)

Exploring the FCN to construct feature pyramids of different sizes. The
ResNet-101 is fine-tuned and tested on the large-scale Google-Landmarks

dataset, also evaluated on the Holidays and Oxford datasets.

On
Sup.

Classifi-
cation
based

[34] AlexNet FC6 PCA
CE

Loss 128 78.9
3.29
(N-S)

55.7
(52.3) -

The first work about fine-tuning the pre-trained network for image
retrieval using classification-based loss function. Compressed neural codes

and different layers in deep networks are investigated.

On
Sup.

Matrix
Trans. [36] VGG16 Conv5 PCAw

Regre-
ssion
Loss

512 - -
88.2

(82.1)
88.2

(82.9)

Visual similarity learning of similar and dissimilar pairs are performed by a
neural network. The neural network is optimized by using regression loss,

while the parameters of the backbone network are not updated.

On
Sup.

Fine-
tuned
RPN

[79] VGG16 Conv5
MP
and
SP

Regre-
ssion
Loss

512 - -
75.1
(-)

80.7
(-)

RPN is fine-tuned, which is based on output bounding box coordinates and
class scores, for specific region query, the resultant features are

region-targeted and suitable for object retrieval.

On
Sup.

Siamese
Net. [37] VGG16 Conv5

FV
+

PCAw

S-M
Contra.
Loss

512 - -
81.5

(76.6)
82.4
(-)

Integrating Fisher Vector method on the top of VGG to encode features in
an end-to-end manner instead of max pooling, the parameters in GMM

model and the backbone network are optimized simultaneously.

On
Sup.

Siamese
Net. [169] VGG16 Conv5 SP

S-M
Contra.
Loss

512 88.4 3.91
(N-S)

- -
SIFT features are used as supervisory information for mining positive and

negative samples to fine-tune ResNet50 within a siamese structure, the
learning objective loss functions are SIFT-based and CNN-based.

On
Sup.

Siamese
Net. [140] VGG16 FC6 PCA

D-M
Contra.
Loss

128 71.2 87.5
(mAP)

48.5
(-)

48.8
(-)

Quartet-net learning is explored to improve feature discrimination where
double-margin contrastive loss is used for fine-tuning. Quartet-net helps

avoid over-fitting when training on large-scale datasets.

On
Sup.

Triplet
Net. [39] VGG16

VLAD
Layer PCAw

Triplet
Loss

256 79.9 -
62.5
(-)

72.0
(-)

A milestone work in which VLAD is integrated at the last convolutional
layer of VGG16 network as a plugged layer, opens up the possibility of

end-to-end learning for other ranking tasks.

On
Sup.

Triplet
Net. [138]

ResNet-
101

Conv5
Block

MP
+

PCAw

Triplet
Loss

2048 90.3 -
86.1

(82.8)
94.5

(90.6)

Using RPN to fine-tune the backbone networks which include VGG and
ResNet-101. Comparison between VGG and ResNet-101 demonstrates the

deeper network achieves better retrieval results.

On
Unsup.

Siamese
Net. [150] VGG16 Conv5

MP
+

PCAw

S-M
Contra.
Loss

64 87.5 -
78.2

(72.6)
85.1

(78.0)

Exploring manifold learning for mining positive and negative samples in a
fully unsupervised manner. The method is tested for features in global and

regional kind, and surpasses the fully supervised approaches.

On
Unsup.

Siamese
Net. [42] VGG16 Conv5

GeM
Pooling

S-M
Contra.
Loss

512 83.1 -
82.0

(76.9)
79.7

(72.6)

Fine-tuning CNNs on an unordered dataset in a fully automated manner.
Positive and negative samples are selected using Structure-from-Motion

and Reconstructed 3D models. Multi-scale strategy is adopted.

On
Unsup.

Siamese
Net. [40] VGG16 Conv5 PCAw

S-M
Contra.
Loss

512 82.5 -
77.0

(69.2)
83.8

(76.4)

Employing Structure-from-Motion to select positive and negative samples
from an unordered images which demonstrates the learned whitening has

better results than PCA whitening. AlexNet and VGG are compared.

On
Unsup.

Siamese
Net. [41]

ResNet-
101

IME
Layer MP

Regre-
ssion
Loss

2048 - -
92.0

(87.2)
96.6

(93.3)

Graph-based manifold learning is explored within an IME layer to mine the
matching and non-matching pairs in unodered datasets. Image regions are

extracted at 3 different scales to obtain pyramid features.

On
Unsup.

Triplet
Net. [151]

ResNet-
101

Conv5
Block SP

Triplet
Loss 2048 - -

85.4
(85.1)

96.3
(94.7)

Exploring global feature structure with modeling the manifold learning to
select positive and negative pairs. It effectively improves retrieval without

the aid of additional labels, and needs to access to database in advance.

