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This paper presents a novel approach for texture classification, generalizing the well-known local binary pattern
(LBP) approach. In the proposed approach, two different and complementary types of features (pixel intensities
and differences) are extracted from local patches. The intensity-based features consider the intensity of the
central pixel (CI) and those of its neighbors (NI); while for the difference-based feature, two components
are computed: the radial-difference (RD) and the angular-difference (AD). Inspired by the LBP approach,
two intensity-based descriptors CI-LBP and NI-LBP, and two difference-based descriptors RD-LBP and
AD-LBP are developed. All four descriptors are in the same form as conventional LBP codes, so they can be
readily combined to form joint histograms to represent textured images. The proposed approach is compu-
tationally very simple: it is totally training-free, there is no need to learn a texton dictionary, and no tuning
of parameters. We have conducted extensive experiments on three challenging texture databases (Outex,
CUReT and KTHTIPS2b). Outex results show significant improvements over the classical LBP approach,
which clearly demonstrates the great power of the joint distributions of these proposed descriptors for
gray-scale and rotation invariant texture classification. The proposed method produces the best classifica-
tion results on KTHTIPS2b, and results comparable to the state-of-the-art on CUReT.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Texture classification is a fundamental issue in computer vision and
image processing, playing a significant role in a wide range of applica-
tions that includemedical image analysis, remote sensing, object recog-
nition, document analysis, environment modeling, content-based
image retrieval etc. [1]. For four decades, texture analysis has been an
area of intense research, however analyzing real world textures has
proven to be surprisingly difficult, in many cases caused by natural
texture inhomogeneity of varying illumination, scale changes, and
variability in surface shape.

Recently, the orderless Bag-of-Words (BoW) [5, 2, 3, 8] approach,
representing texture images statistically as histograms over a discrete
texton dictionary, has proven extremely popular and successful in
texture classification tasks. Robust and discriminative local texture
descriptors and global statistical histogram characterization have sup-
plied complementary components toward the BoW feature extraction
of texture images. The former attempts to extract a collection of powerful
and distinctive appearance descriptors from local patches; while the
latter first utilizes the fact that texture images contain self-repeating
patterns by vector-quantifying (typically by k-means) the local feature
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vectors to form a texton dictionary, and then represent texture images
statistically as compact histograms over the learned texton dictionary.

In this simple and efficient BoW framework, it is generally agreed
that the local descriptors play a much more important role, and have
therefore received considerable attention [2-5, 8, 9, 6]. The ap-
proaches can be grouped into sparse and dense types, with the sparse
approach using appearance descriptors at a sparse set of detected in-
terest points. Noticeable sparse descriptors include SPIN, SIFT and
RIFT [8, 10]. In contrast, dense approaches use appearance descriptors
pixel by pixel [2-5, 9]. The sparse approach largely relies on the sparse
output of local interest region detectors, which might miss important
texture primitives and fail to provide enough regions for a robust statis-
tical characterization of the texture.

Among the most popular dense descriptors are the various filter
banks, such as Gabor filters [11], the filter bank of Schmid [5], the filter
bank of Leung and Malik [5], the MR8 [2], the filter bank of Crosier [9]
and many others [12]. The design of a filter bank is nontrivial and likely
to be application dependent. Although enormous efforts have been
carried out along this direction, the supremacy of filter bank-based de-
scriptors for texture analysis has been challenged by several authors [4,
3, 7] who have demonstrated that using the intensities or differences in
a local small patch directly can produce superior or comparable classifi-
cation performance to filter banks with large spatial support. In [7], the
authors propose sparse modeling of local texture patches, however the
sparse texton learning and sparse coding process is computationally ex-
pensive. Two particularly important works along these lines are the
VZ-Joint classifier [3] and the LBP method [4]. The simple, elegant and
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efficient local texture descriptor LBP may be the preferable choice over
VZ-Joint classifier since LBP uses a pre-defined texton dictionary and
does not need to use nearest neighbor to obtain the texton labels, a
time consuming step.

Due to its impressive computational efficiency and good texture
discriminative property, the dense LBP descriptor [4] has gained con-
siderable attention since its publication [13], and has already been
used in many other applications, including visual inspection, image
retrieval, dynamic texture recognition, remote sensing, biomedical
image analysis, face image analysis, motion analysis, environment
modeling, and outdoor scene analysis [14–16, 18, 19, 34].1 Despite
the great success of LBP in computer vision and pattern recognition,
the conventional LBP operator comes with disadvantages and
limitations:

1. The LBP operator produces long histograms which are sensitive to
image rotation.

2. The LBP has small spatial support; in its basic form, the LBP operator
cannot properly detect large-scale textural structures.

3. LBP loses local textural information, since only the signs of differ-
ences of neighboring pixels are utilized.

4. LBP is very sensitive to noise. The slightest fluctuation above or
below the value of the central pixel is treated as equivalent to a
major contrast between the central pixel and its surroundings.

On the basis of the above issues, researchers have proposed a variety
of LBP variants. In terms of locality, the authors in [20] propose to ex-
tract global features from Gabor filter responses as a complementary
descriptor. In order to recover the loss of information created by com-
puting the LBP value, the local image contrast has been introduced by
Ojala et al. [4] as a complementary measure, and better performance
has been reported therein. Moreover, Guo et al. [21] propose to include
the information contained in the magnitudes of local differences as
complementary to the signs used by LBP, and claim better performance.

Regarding LBP robustness, especially to noise, the influential work
by Ojala et al. [4] extends basic LBP to a multiresolution context, and
rotation invariant patterns are introduced and successfully used in reduc-
ing the dimension of the LBP histogram and enhancing robustness and
speed. Ahonen et al. introduce soft histograms [28], and Tan and Triggs
[29] introduced local ternary patterns (LTP), using tertiary numbers in-
stead of binary. Noting that uniform LBPs are not necessary to occupy
the major pattern proportions, Liao et al. [20] proposed to use dominant
LBP (DLBP) which considers the most frequently occurred patterns in a
texture image.

Very recently, Heikkilä et al. [22] exploit circular symmetric LBP
(CS-LBP) for local interest region description, and Chen et al. present
a WLD descriptor by including orientation information as a robust de-
scriptor [23].

The LBP approach is based on the assumption that the local differ-
ences of the central pixel and its neighbors are independent of the cen-
tral pixel itself. However, in practice an exact independence is not
warranted: the superiority of both VZ-Joint and VZ-MRF classifiers
over LBP clearly demonstrates the benefits of explicitly including the in-
formation contained in the central pixel [3].

The fundamental question being raised here is whether explicitly
modeling the joint distribution of the central pixel and its neighbors
is an advantage or not, and how to effectively include the missing
between-scale information so that better texture classification can
be achieved? Motivated by the work of Varma and Zisserman [3]
and the LBP approach studied by Ojala et al. [4], in this paper we pro-
pose a simple, yet very powerful and novel local texture descriptor to
generalize the conventional LBP approach. In the proposed approach,
two different but complementary types of features in a local patch,
the pixel intensities and the pixel differences, are utilized by using a
1 A bibliography of LBP-related research can be found at http://www.cse.oulu.fi/
MVG/LBP_Bibliography/.
common concept, the LBP coding strategy. The pixel intensities are di-
vided into two components: the intensity of the central pixel and the in-
tensities of its neighboring pixels. For pixel differences, we study radial
and angular differences.

All four descriptors (two intensity based, two difference based)
are in the same form as the conventional LBP codes, thus they can be
readily combined to form a joint histogram. The fusing of these descrip-
torswill be shown to lead to significantly improved classification results
on the experimental protocols designed for verifying the performance
of the LBP approach in [4]. The key to our proposed approach is that it
employs the advantages of VZ-Joint/VZ-MRF in its strong performance
from having a joint distribution, and those of LBP in computational
efficiency.

The paper is organized as follows: we start with a brief review of the
classical LBP approach in Section 2, followed by details of the derivation
of the proposed descriptors and the classification scheme. In Section 3,
we verify the proposed approachwith extensive experiments on popular
texture datasets and comparisons with various state-of-the-art texture
classification techniques. Section 4 provides concluding remarks and pos-
sible extensions of the proposed method. A short, preliminary version of
this work appeared in [26].

2. Proposed descriptors

This section begins by reviewing conventional LBP, followed by
the new descriptors designed to address the limitations of LBP. Finally,
the multiresolution analysis and classification scheme of this work is
presented.

2.1. A brief review of LBP

The LBP method, first proposed by Ojala et al. [25, 4], encodes the
pixel-wise information in textured images. Images are probed locally
by sampling grayscale values at a central point x0, 0 and p points xr, 0,
…,xr,p−1 spaced equidistantly around a circle of radius r (the choice
of which acts as a surrogate for controlling the scale of description),
as shown in Fig. 1. In LBP, a “local pattern” operator describes the re-
lationships between a pixel and its neighborhood pixels; all neigh-
bors that have values higher than or equal to the value of the
central pixel are given a value of 1, and all those lower a value of 0.
The binary values associated with the neighbors are then read se-
quentially, clockwise, to form a binary number which may be used
to characterize the local texture. Formally,

LBPp;r ¼
Xp−1

n¼0

s xr;n−x0;0
� �

2n
; s xð Þ ¼ 1; x≥ 0

0; x b 0 :

�
ð1Þ
Fig. 1. A central pixel x0, 0 and its p circularly and evenly spaced neighbors {xr, i}i=0
p−1 on

radius r.

http://www.cse.oulu.fi/MVG/LBP_Bibliography/
http://www.cse.oulu.fi/MVG/LBP_Bibliography/


Fig. 2. Overview of the proposed approach.
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Relative to the origin at (0,0), the coordinates of the neighbors are
given by r sin(2πn/p), r cos(2πn/p). The gray values of neighbors
which do not fall exactly in the center of pixels are estimated by
interpolation.

Given an N×M image I, let LBPp, r(i, j) be the identified LBP pattern
of each pixel (i,j), then the whole textured image is represented by a
histogram vector h of length K:

h kð Þ ¼
XN
i¼1

XM
j¼1

δ LBPp;r i; jð Þ−k
� �

ð2Þ
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Fig. 3. The proposed NI-LBP preserves weak edge patterns. Two 5×5 example image patch
108 and 52.4 respectively. (b1) NI-LBP patterns of (b) at two resolutions with thresholds o
where 0≤k≤K−1, K=2p is the number of LBP codes, and δ(•) is the
Dirac delta function. This formulation has several attractive properties
that favor its usage: gray-scale invariance, computational speed, fewpa-
rameters, satisfactory discriminant power, and rotation invariance
achieved by simple cyclic shifts.

On the other hand, the basic LBP operator produces rather long
histograms (2p distinct values), and it can become intractable to estimate
h due to the overwhelming dimensionality of h with large p. Moreover,
it is easy to realize that due to theway LBP numbers are created, they are
very sensitive to noise: the slightest fluctuation above or below the value
of the central pixel is treated the same way as a major contrast between
the central pixel and its surroundings. Oneway to avoid noisy patterns is
to simply ignore them: a noisy pattern due to its randomness will create
neighbors that fluctuate above and below the value of the central pixel,
with 0 s and the 1 s frequently succeeding each other. Therefore, one im-
provement suggested by Ojala et al. [4] is to consider only the so-called
“uniform” patterns by proposing the LBPp, r

riu2 operator, merging nonuni-
form patterns directly into one pattern. The success of the LBPp, r

riu2 opera-
tor also comes from that fact that the “uniform” patterns appear to be
fundamental properties of local image textures [4], and represent some
prominent and salient local texture structures. The LBPp, rriu2 operator is for-
mally defined as

LBPriu2
p;r ¼ ∑p−1

n¼0 s xr;n−x0;0
� �

; if U LBPp;r

� �
≤2

pþ 1; otherwise

(
ð3Þ

where

U LBPp;r

� �
¼

Xp−1

n¼0

s xr;n−x0;0
� �

−s xr;mod nþ 1;p
� �

−x0;0
� ���� ��� ð4Þ

where superscript riu2 denotes the rotation invariant “uniform” patterns
that haveU values atmost 2. Therefore,mapping from LBPp, r to LBPp, rriu2 re-
sults in only p+1 distinct groups of patterns, leading to a much shorter
histogram representation for the whole image.

It is obvious that LBP oversimplifies local structure and loses textural
information. Therefore, Ojala et al. [4] made a further important correc-
tion by including the local contrast of each pattern and proposing a
complementary local descriptor called VARp, r. Using the 2D joint histo-
gram of LBPp, rriu2 and VARp, r, denoted as LBPp, r

riu2/VARp, r is demonstrated
in [4].
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es are shown in (a,b). (a1) NI-LBP patterns of (a) at two resolutions with thresholds of
f 90 and 85.4 respectively. (a2,b2) are the patterns given by LBP.



Table 1
Comparison of the detail mean classification accuracy for NI-LBP, LBP and MBP on test
suite Outex_TC_00000. Results are obtained as the average of the 100 test groups. The
patch size used is 3×3. The 1NN classifier is used. The distance measure is χ2. Each
image is normalized to have zero mean and unit standard deviation. “NI-LBP (512)” en-
codes the binary value of the center pixel, similar to “MBP (512)”. “MBP (256)” excludes
the binary value of the center pixel. Since LBP uses the value of the center pixel as the
threshold, therefore it is unnecessary to include the center pixel in this case. The numbers
in the brackets denote the number of bins of the histogram.

Class NI-LBP (512) NI-LBP (256) LBP MBP (512) MBP (256)

canvas001 100.0% 100.0% 100.0% 100.0% 100.0%
canvas002 100.0% 100.0% 100.0% 100.0% 100.0%
canvas003 100.0% 100.0% 100.0% 100.0% 100.0%
canvas005 100.0% 100.0% 100.0% 100.0% 100.0%
canvas006 100.0% 100.0% 100.0% 100.0% 100.0%
canvas009 100.0% 100.0% 100.0% 100.0% 100.0%
canvas011 100.0% 100.0% 100.0% 100.0% 100.0%
canvas021 100.0% 100.0% 100.0% 100.0% 100.0%
canvas022 100.0% 100.0% 100.0% 100.0% 100.0%
canvas023 99.6% 99.4% 99.6% 99.8% 99.8%
canvas025 100.0% 100.0% 100.0% 100.0% 100.0%
canvas026 100.0% 100.0% 100.0% 100.0% 100.0%
canvas031 100.0% 100.0% 100.0% 100.0% 100.0%
canvas032 100.0% 100.0% 100.0% 100.0% 100.0%
canvas033 95.5% 96.0% 92.0% 94.4% 92.5%
canvas035 100.0% 100.0% 100.0% 100.0% 100.0%
canvas038 95.5% 98.2% 100.0% 99.7% 99.6%
canvas039 99.8% 99.5% 100.0% 99.6% 99.8%
tile005 100.0% 100.0% 100.0% 100.0% 100.0%
tile006 100.0% 99.6% 100.0% 99.8% 99.7%
carpet002 100.0% 100.0% 100.0% 100.0% 100.0%
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In conventional LBP the central pixel is discarded (despite the im-
plicit use of the intensity of the central pixel as the threshold to
achieve local gray-scale invariance), and only the joint distribution
of the neighborhood around each pixel is considered. However, in
their recent extensive texture study, Zhang et al. [8] suggested that
it is vital to use a combination of several detectors and descriptors.
Motivated by the work of Lazebnik et al. [10] and Zhang et al. [8], in
this paper we seek to propose a method which possesses the
strengths of combining complementary local features, with those of
LBP in computational efficiency and smaller support regions.

2.2. Intensity-based descriptors

The brightness level at a point in an image is highly dependent on
the brightness levels of its neighboring points unless the image is
simply random noise [24]. In MRF modeling [24], the probability of
the central pixel depends only on its neighborhood as

p Ι xcð Þð jΙ xð Þ;∀x≠xcÞ ¼ p Ι xcð Þð jΙ xð Þ;∀x∈N xcð ÞÞ ð5Þ

where xc is a site in the 2D integer lattice on which the image I has
been defined and N xcð Þ is the neighborhood of that site. The center
pixel also has discriminant information, however its distribution is
conditioned on its neighbors alone.

Inspired by such MRF models, and related to the ideas explored by
Varma and Zisserman [3], we propose to use only local neighborhood
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Fig. 4. Three different original texture patterns (a, b, c) and their corresponding LBPs
(a1, b1, c1), NI-LBPs (a2, b2, c2), MBPs (a3, b3, c3) and VAR values. All three LBP patterns
(a1, b1, c1) are the same. Patterns in (a) and (b) would be considered as the same pattern
type by LBP, though corresponding textural surfaces might be quite different from each
other. By incorporating LBP with local variance information, patterns in (a) and (b)
could be distinguished, while patterns in (b) and (c) would still be considered as the
same pattern type because of the same variance. But they are different in configuration,
which is not due to the rotation but underlying textural properties. In terms of MBP,
MBP can distinguish (a) and (b). However,MBP cannot distinguish (b) and (c). In contrast,
all three NI-LBPs are different. Therefore, all three patterns can be distinguished by our
proposed NI-LBP.

carpet004 100.0% 100.0% 100.0% 100.0% 100.0%
carpet005 100.0 99.6% 100.0% 99.4% 96.5%
carpet009 99.9% 99.9% 99.3% 95.2% 94.4%
Mean 99.76% 99.68% 99.62% 99.50% 99.26%
distributions in our NI-LBP descriptor. We explicitly model the joint
distribution of the central pixels and its neighbors, in order to test
how significant this conditional probability distribution is for
classification.

Next, inspired by the coding strategy of LBP, we define the following
NI-LBP descriptor (see also Fig. 2):

NI−LBPp;r ¼
Xp−1

n¼0

s xr;n−μ
� �

2n
; s x ¼ð Þ 1; x≥ 0

0; x b 0

�
ð6Þ

where μ ¼ 1
2∑

p−1
n¼0 xr;n. Similar to LBPp, r

riu2, the rotation invariant version
of NI−LBP, denoted by NI−LBPp, r

riu2, can also be defined to achieve rota-
tion invariant classification.

Regarding the selection of the threshold μ, although it was moti-
vated by intuition and experimental studies, it is also selected in
order to preserve LBP characteristics and to increase robustness.
Hafiane et al. [17] proposed Median Binary Pattern (MBP) which
seeks to derive the localized binary pattern by thresholding the pixels
against theirmedian value over a 3×3 neighborhood. InMBP, the central
pixel is also included in this filtering process, resulting 29 binary
patterns.

NI-LBP, LBP and MBP differ in the selection of thresholding value.
The capability of encoding image configuration and pixelwise rela-
tionships might be different as they use different thresholds. For illus-
tration purpose, Fig. 4 gives three different example local texture
patterns. The patterns shown in Fig. 4(a) and (b) would be classified
into the same class. But the textural surfaces they represent are quite
different from each other, which means they probably belong to dif-
ferent classes. While the other three descriptors NI-LBP, MBP and
VAR can all tell the difference between (a) and (b). This is why
Ojala et al. use the combination of LBP and VAR. However, the joint
histogram of LBP and VAR cannot fully solve the problem. The classi-
ficationmight be misled without considering the relationships among
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Fig. 5. Comparison of the robustness to additiveGaussiannoise of different signal-to-noise
ratios (SNR) for the proposed NI-LBP and the conventional LBP on the Outex textures: (a)
NI−LBP8, 1 vs. LBP8,1; (b) NI−LBP8,1

riu2 vs. LBP8,1riu2. We have used all the original texture im-
ages present in the Outex_TC_00010 training set (20 samples of illuminant “inca” and
angle 0 in each of the 24 texture classes, totaling 480 images). Training is done with all
the 480 noise free images and testing is donewith the same images, but added with addi-
tive Gaussian noise with different SNR. The nearest neighbor classifier is used for
classification.
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neighborhood intersection. Taking the patterns in Fig. 4(b) and (c)
for example, which would be considered as the same pattern type
according to LBP and VAR, they are actually two patterns with differ-
ent textural properties. Moreover, MBP also fails to distinguish patterns
(b) and (c). Clearly, our proposed NI-LBP approach can distinguish
all the three different patterns, as shown in (a2) (b2) and (c2).
Therefore, the proposed NI-LBP approach is more discriminative
and effective.

In order to make further comparisons, we conducted texture clas-
sification on test suite Outex_TC_00000, which was used in [17]. The
results are listed in Table 1. For test suite Outex_TC_00000, there are
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Fig. 6. Comparing the proportions (%) of “Uniform” patterns of all patterns for each t
24 texture classes, with each class having 20 monochrome texture
images (128×128) with incandescent constant illumination and a
spatial resolution 100 dpi. The images in each class are divided into
two nonoverlap groups with 10 images as training and the other 10
as testing. Outex_TC_00000 provides 100 couples of test and train
files for this category, we have performed experiments on all the
100 couples and we report classification accuracy as the average
over the 100 couples. Note that in [17], the authors selected randomly
one couple in their evaluation, see Table 1 in [17]. From Table 1, we
can clearly observe that our NI-LBP performs the best, especially for
two texture classes canvas033 and carpet009.

Furthermore, LBP thresholding at the value of the central pixel x0, 0
tends to be sensitive to noise, particularly in near-uniform image regions,
and smooths weak illumination gradients. While MBP thresholding
against the median value is claimed to be robust to “salt and pepper”
noise [17]. However, MBP is not robust to Gaussian noise. In contrast,
the proposed NI-LBP descriptor has the following advantages:

1. Thresholding at μ is equivalent to making the local neighborhood
vector zero-mean, therefore resistant to local lighting effects, and
specifically invariant to gray scale changes.

2. Compared with LBP, weak edges are preserved by NI-LBP, as illus-
trated in Fig. 3. We can clearly observe that LBP does not match the
visual patterns, producing output unrelated to the peak in (a) or
the edge in (b). In contrast, the proposed NI-LBP outputs more
consistent patterns, owing to the better thresholding of μ.

3. Better noise robustness, as shown in Fig. 5.

Recall that the local contrast measure proposed by Ojala et al. [4] is
defined as follows:

VARp;r ¼
1
2

Xp−1

n¼0

xr;n−μ
� �2

; where μ ¼ 1
2

Xp−1

n¼0

xr;n : ð7Þ

Wecan see thatNI−LBPp, r andVARp, r capture similar types of texture
information, with slight differences:

1. VARp, r achieves rotation invariance by summing up the whole var-
iation in the circular neighborhood, whereas NI−LBPp, r is rotation
sensitive, by default;

2. NI−LBPp, r is independent of gray scale, whereas VARp, r is not;
3. Finally, VARp, r is continuous-valued and needs to be quantized.

The latter quantization step has associated limitations of additional
training to determine threshold values, and the difficulty in setting
the number of bins. Too few bins will fail to provide enough discrimina-
tive information while too many bins would make the feature size too
Basic LBP
RD-LBP
AD-LBP
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Fig. 7. Proposed multiresolution scheme.
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large. Although there are some rules to guide selection [4], it is hard to
obtain an optimal number of bins in terms of accuracy and feature
size. On the basis of the above discussion, we expect that the pro-
posed NI−LBPp, r will be a better choice over VARp, r.

To make it consistent with the binary coding strategy, the 1D dis-
tribution of the central pixels' intensity is represented by two bins,
i.e.,

CI−LBP ¼ s x0;0−μr

� �
; s xð Þ ¼ 1; x≥ 0

0; x b 0

�
ð8Þ

where μI is the mean of the whole image.

2.3. Difference-based descriptors

As a parallel development to the intensity descriptors just devel-
oped, we also propose pixel differences in radial and angular directions
on a circular grid, different from the traditional pixel differences
which are computed in horizontal and vertical directions. More spe-
cifically, we propose two different descriptors, Radial Difference
Local Binary Pattern and Angular Difference Local Binary Pattern
Table 2
Summary of texture datasets used in our experiments.

Experiment # 1

Texture
dataset

Texture
classes

Samples per
class

Sample size Test suite

Brodatz 16 8 180×180 Contrib TC 00001
000–009)

Outex 24 20 127×128 Outex TC 00010

Outex TC 00012 (

Outex TC 00012 (

Experiment # 2
Texture
dataset

Dataset
notation

Image rotation Controlled
illumination

Scale variation

CUReT Dc √ √
KTH-TIPS2b DKT2b √ √
(denoted as RD-LBP and AD-LBP respectively, as illustrated in
Fig. 2). We define the RD-LBP descriptor as follows:

RD−LBPp;r;δ ¼
Xp−1

n¼0

s ΔRad
δ;n

� �
2n

; s xð Þ ¼ 1; x≥ 0
0; x b 0

�
ð9Þ

where Δδ,n
Rad=xr, n−xr− δ, n is the radial difference computed with

given integer radial displacement δ, xr,n and xr− δ,n correspond to
the gray values of pairs of pixels of δ equally spaced pixels of the
same radial direction.

Similarly, the AD-LBP descriptor is defined as

AD−LBPp;r;δ;ε

Xp−1

n¼0

s ΔAng
δ;n

� �
2n

; s xð Þ ¼ 1; x≥ ε
0; x b ε

�
ð10Þ

where Δδ,n
Ang=xr,n−xr,mod(n+ δ,p) is the angular difference computed

with given angular displacement δ(2π/p), where δ is an integer such
that 1≤δ≤p/2, xr,n and xr,mod(n+ δ,p) correspond to the gray values
of pairs of pixels of δ equally spaced pixels on a circular radius r,
and function mod(x,y) is the modulus x of y. ε is a threshold value,
Training or
testing

Number of
angles

Illuminant
used

Samples in
total

(problem Training 1 “inca” 16
Testing 9 “inca” 1008
Training 1 “inca” 480
Testing 9 “inca” 3840

problem 000) Training 1 “inca” 480
Testing 10 “tl84” 4320

problem 001) Training 1 “inca” 480
Testing 10 “horizon” 4320

Texture classes Sample size Samples per
class

Samples in
total

61 200×200 92 5612
11 200×200 432 4752



Table 3
Abbreviations for the notations of methods.

Name of Proposed method Abbreviation

LBPp, r
riu2 LBP

VARp, r VAR
LBPp, r

riu2/VARp, r LBP/VAR

CI-LBP CI
NI−LBPp, r

riu2 NI
RD−LBPp, r

riu2 RD
RD−LBPp, r

riu2/CI−LBP RD/CI
NI−LBPp, r

riu2/CI−LBP NI/CI
NI−LBPp, r

riu2/RD−LBPp, r
riu2 NI/RD

NI−LBPp, r
riu2/RD−LBPp, r

riu2/CI−LBP NI/RD/CI
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and is 1% of the pixel value range in our experiments. We experimen-
tally set ε=0.01. We can see that when δ=p/2, our descriptor
AD−LBPp, r, p/2, ε is equivalent to the CS-LBP descriptor proposed by
Heikkilä [22] for local interesting region description.

As discussed in Section 2.1, limiting attention to the uniform binary
patterns has attractive and elegant advantages over using all the binary
patterns, specifically that the uniform patterns represent meaningful
and fundamental characteristics of the texture, they appear to be the
major parts of all binary patterns and are relatively reliable, and they
lead to texture image representation of low dimensionality. We wish
to see to what extent the proposed descriptors maintain these proper-
ties; Fig. 6 shows the proportions of the uniform patterns for three dif-
ferent descriptors (Basic LBP, RD-LBP and AD-LBP), extracted from
texture images of test suite Outex_TC_00010. It can clearly be seen
that the proportions of the uniform patterns of AD-LBP are too small
to provide a reliable and meaningful description of texture. Conse-
quently, we have decided against including AD-LBP descriptor in fur-
ther experiments in this paper, and focus instead on RD-LBP.

Based on the above analysis, in order to produce acceptable dimen-
sionality of histogram features,wemerely use the uniformpatternsmo-
tivated by thework of Ojala et al. [4]. The uniform patterns produce low
dimensionality features so that they can be conveniently used together
for pattern classification. There are twoways to combine theNI-LBP and
RD-LBP codes: calculating the histograms separately and concatenating,
or jointly, calculating a joint two dimensional histogram of the NI-LBP
and RD-LBP codes, represented as NI-LBP/RD-LBP. Following the work
of Varma and Zisserman [3] and Guo et al. [21], who showed the joint
Fig. 8. 128×128 samples of the textures f
approach to produce better results, we will prefer joint histogramming
(shown in Fig. 2). Following [4], we use only joint distributions of oper-
ators that have the same (p,r) values, although nothing would prevent
us from using joint distributions of operators computed from different
neighborhoods.

2.4. Multiresolution analysis and classification

The proposed descriptors described above are extracted from a sin-
gle resolutionwith a circularly symmetric neighbor set of p pixels placed
on a circle of radius r (as in Fig. 2). Now clearly by altering (p,r), we can
realize operators for any quantization of the angular space and for any
spatial resolution. Motivated by the idea of [4], we conduct the multire-
solution analysis by combining the information provided bymultiple de-
scriptors of varying (p,r), as illustrated in Fig. 7. The histogram feature
vector ofmultiresolution analysis is obtained by concatenating the histo-
grams from a single resolution analysis realized with different (p, r).

To perform the actual texture classification, there are two crucial
components: (i) texture feature extraction, and (ii) the classifier
and the associated similarity measure used within the classifier. In
this work the focus is on evaluating the discrimination properties of
the proposed descriptors, so for classification we wish to make as
few assumptions as possible and have chosen a non-parametric tech-
nique, since non-parametric classifiers can handle a large number of
classes, avoid parameter overfitting, and require no learning/training.
Of non-parametric classifiers, the k nearest neighbor (kNN) is one of
the most popular and simplest methods, which we adopt with
k=1. The samples are then classified according to their normalized
histogram feature vectors hi and hi, using χ2 distance metric

χ2 hi; hj
� �

¼ 1
2
∑
k

hi kð Þ− hj kð Þ
h i2

hi kð Þ þ hj
kð Þ ð11Þ

the same distance metric used in [2, 3, 27, 30].

3. Experimental evaluation

In this section, we demonstrate the performance of the proposed
method with comprehensive experiments on six texture datasets,
summarized in Table 2, which are derived from four popular publicly
rom Brodatz used in Experiment #1.



Fig. 9. 128×128 samples of the 24 textures from Outex used in Experiment #1.

Table 4
Classification accuracies (%) on Contrib_TC_00001, where training is done at just one rotation angle and the average accuracy over 10 angles. The results for LBP, VAR, and LBP/VAR
are quoted directly from the original paper by Ojala et al. [4].

2∗Method 2∗(p, r) 2∗Bins Rotation angle for training 2∗Average

0° 20° 30° 45° 60° 70° 90° 120° 135° 150°

LBP (16, 2) 18 96.2 99.0 98.6 98.9 98.5 99.1 97.6 98.6 98.7 97.5 98.3
VAR (16, 2) 128 89.9 84.5 986.2 90.5 87.3 85.6 91.0 89.8 90.8 88.5 88.4
LBP/VAR [4] (8, 1)+(16, 2)+(24, 3) 864 100 99.7 99.5 99.8 99.6 99.7 99.8 99.6 99.8 99.9 99.7

2∗NI (8, 1) 10 65.4 85.5 81.3 76.6 77.0 78.4 68.8 81.4 75.8 76.5 76.7
(16, 2) 18 87.6 95.2 92.3 93.6 89.4 96.0 88.9 91.3 93.4 90.1 91.8
(24, 3) 26 96.2 93.4 97.6 96.6 98.3 96.7 97.1 96.7 92.6 98.2 96.4

2∗RD (8, 1) 10 68.8 86.4 84.4 76.0 84.9 84.4 70.2 84.1 76.1 84.7 80.0
(16, 2) 18 89.2 92.9 96.7 97.8 96.1 92.6 88.4 94.7 96.7 97.3 94.3
(24, 3) 26 87.6 90.6 98.2 90.8 96.5 93.8 89.5 98.6 89.5 94.2 92.9

2∗RD/CI (8, 1) 20 87.1 84.7 94.3 88.6 95.9 95.1 85.8 94.8 90.3 95.0 92.2
(16, 2) 36 92.7 94.6 96.8 97.3 98.4 95.6 91.8 99.4 96.7 98.6 96.2
(24, 3) 52 96.9 95.8 95.6 92.8 96.5 94.3 96.9 99.1 95.3 95.9 95.9

2∗NI/CI (8, 1) 20 74.8 90.4 86.4 80.3 82.5 85.2 74.4 86.2 80.6 82.2 82.2
(16, 2) 36 95.6 99.2 98.8 98.0 98.2 99.4 93.8 98.3 96.9 97.4 97.6
(24, 3) 52 99.1 98.7 99.4 99.4 100 100 99.7 97.5 97.3 99.1 99.1

2∗NI/RD/CI (8, 1) 100 70.2 88.9 87.0 80.0 85.2 85.5 71.9 87.1 81.6 84.9 82.2
(16, 2) 324 100 100 100 100 100 100 100 100 100 100 100
(24, 3) 676 98.2 100 100 100 100 100 99.6 99.9 99.9 100 99.8

2∗100.0% (8, 1) 200 78.1 94.5 92.2 91.1 93.0 92.0 76.2 92.4 91.8 92.6 89.4
(16, 2) 648 100 100 100 100 100 100 100 100 100 100 100
(24, 3) 1352 98.8 100 100 100 100 100 99.8 100 99.8 100 99.8
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Table 5
Classification accuracies (%) for the three Outex test suites, where training was done at angle 0 and testing at the remaining 9 angles. The mean accuracy is the average over the three
test suites. The results for LBP, VAR, and LBP/VAR are quoted directly from the original paper by Ojala et al. [4].

The bold numbers indicate the highest classification score achieved on each dataset.
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available texture databases namely, the Brodatz [31], the Outex [32],
the CUReT [3], and the KTHTIPS2b [27, 30] databases. The presenta-
tion of the experimental results is divided into two groups with cor-
responding objectives.

Experiment #1, presented in Section 3.2, aims at investigating the
proposed approach for gray scale and rotation invariant texture clas-
sification, comparing our proposed descriptors with the classical LBP
and VAR descriptors proposed by Ojala et al. [4] and with other LBP
based approaches [21, 33, 20]. This setup utilizes all the same texture
test suites and experimental setup as those used by Ojala et al. [4]
(except that additional training angles where tested for Out-
ex_TC_00010 and Outex_TC_00012).

Experiment #2, presented in Section 3.3, examines the classifica-
tion performance of the proposed approach for two more realistic
and challenging texture classification tasks:

1. Material classification dealing with exemplar identification, where
instances are imaged from single images obtained under unknown
viewpoint and illumination, using the popular CUReT database [3].

2. Material categorization where each material consists of instances
imaged from multiple different physical samples under different
viewpoints, illuminations and imaging distances, using the material
database KTHTIPS2b [27, 30].

In both cases, comparisons are made with state-of-the-art
methods that have reported results on these datasets.

3.1. Methods tested

LBP and VAR [4]: three descriptors: joint LBPp, rriu2/V ARp, r,LBPp, rriu2 and
VARp, r, are used in comparison. We follow the experimental setup in
[4] for these three descriptors, see [4] for details. VAR needs
pretraining.
Table 6
The number of misclassified samples for each texture class and rotation angle for NI−LBP1

ri

and “horizon” (bold). Only texture classes with misclassified samples are shown, and all ot
from Ojala et al. [4], where however only results for Outex_TC_00010 are shown.

Texture 0° 5° 10° 15° 30° 45

canvas001 • • • • • • • • • • • • • 1 • •

canvas033 • • • • 2 • 1 3 2 1 3 3 • 1 2 1
canvas038 • • 1 • • 1 • • 2 • • 1 • • 2 •

tile005 • 4 1 • 5 • • 3 1 • 5 • • 2 • •

tile006 • • 3 • 1 3 3 2 2 • 4 2 2 8 2
carpet002 • • • • • • • • • • • • • 1 • •

total 0 4 5 0 8 4 4 9 7 3 8 8 2 6 12 3
DLBP and NGF [20]: DLBP is an LBP variant extracting the dominant
LBP patterns in texture image for classification. It is suggested in [20]
that DLBP in combination with another complementary Gabor based
descriptor NGF, which captures global texture information, can yield
improved and robust classification results. This method also needs
pretraining.

CLBP [21]: A local texture patch is represented by its center pixel,
the sign and magnitude of the differences of the neighborhoods
against the center pixel. CLBP is training free.

The following three state-of-the-art approaches all need a time
consuming universal texton dictionary learning stage:

VZ-MR8 [2, 3]: Eight filter responses derived from the responses of
38 filters with large spatial support. A complicated anisotropic
Gaussian filteringmethod was used to calculate the MR8 responses,
a texton dictionary is learned from theMR8 feature space, and a his-
togrammodel is learned for an image by labeling each of the image
pixels with the texton that lies closest to it in filter response space.
VZ-Joint [3]: The VZ-Joint is identical to the VZ-MR8 except the
local descriptor used, instead of using a dense filter bank descriptor,
the raw pixel intensities of an N×N square neighborhood around
that point are taken as features.
VZ-MRF [3]: A texture image is represented using a two-
dimensional histogram: one for the quantized bins of the patch
center pixel, the other for the learned textons from the patch
with the center pixel excluded. The number of bins for the center
pixel in [3] is as large as 200, and the size of the texton dictionary
is 61×40=2440, resulting in an extremely high dimensionality of
2440×200=488,000.

Implementation details: To make the comparisons as meaningful as
possible, we keep our experimental settings as in [4]. The descriptor
6, 2
u2 /LBP _R16, 2riu2 /CI on test suites Outex_TC_00010 (italic), Outex_TC_00012 “tl84” (plain)
her texture classes are all correctly classified. This table can be compared with Table 5

° 60° 75° 90° Total All

• • • 1 • • 1 • • • • • 3 • 3
3 2 • 5 4 3 6 5 3 8 4 9 31 22 62
• 2 • • 5 • 2 4 1 4 8 1 6 26 33
2 • • 1 • • • • • 1 • • 23 2 25
4 5 3 4 4 2 4 3 5 4 6 19 22 38 79
1 • • • • • 1 • • 1 • • 4 • 4
9 9 3 10 13 5 12 12 9 18 18 29 89 88 206



Fig. 10. Some example texture samples from tile005 (top row) and tile006 (bottom row). We can see that they look fairly similar.

95L. Liu et al. / Image and Vision Computing 30 (2012) 86–99
abbreviations are summarized in Table 3. In all experiments, each tex-
ture sample is normalized to be zero mean and unit standard deviation.
Results for the CUReT database are reported over 100 randompartitions
of training and testing sets. 1NN is used for classification.

3.2. Experiment #1

3.2.1. Image data and experimental setup
Contrib_TC_00001: This test suite consists of 16 texture classes

from the Brodatz database [31] (a few shown in Fig. 8). This test
suite was designed for rotation invariant texture classification note [2]
http://www.ee.oulu.fi/mvg/page/image_data. There are eight samples
of size 180×180 in each class, out of which the first sample is utilized
for training and the other seven as testing. Given ten rotation angles,
the classifier is trained with samples artificially rotated to just one
angle and tested against samples rotated to the other nine angles. In
each experiment, the classifier was trained with 16 images and tested
with 1008 (16×7×9) samples, 63 in each of the 16 texture classes.
Table 7
Classification accuracies (%) of descriptor NI/RD/CI for Outex_TC_00010 and Outex_TC_0001

Test suite (p, r) Rotation Angle for Train (“inca”)

0° 5° 10°

7∗ [c] Outex_
TC_00012
(“tl84”)

(8, 1) 90.9 91.6 92.1
(16, 2) 98.0 98.3 99.1
(24, 3) 97.3 98.3 98.5
(8, 1)+(16, 2) 97.4 98.0 98.4
(8, 1)+(24, 3) 97.7 93.3 98.7
(16, 2)+(24, 3) 98.3 99.0 99.3
(8, 1)+(16, 2)+(24, 3) 98.5 98.9 99.1

7∗ [c] Outex_
TC_00012
(“horizon”)

(8, 1) 92.7 92.8 93.3
(16, 2) 98.0 98.0 98.3
(24, 3) 96.2 97.0 97.0
(8, 1)+(16, 2) 98.2 97.8 98.3
(8, 1)+(24, 3) 97.8 97.5 97.7
(16, 2)+(24, 3) 97.8 98.3 98.2
(8, 1)+(16, 2)+(24, 3) 97.8 98.4 98.4

7∗ [c] Outex_
TC_00010
(“inca”)

(8, 1) 96.5 96.3 97.4
(16, 2) 99.3 99.4 99.5
(24, 3) 99.2 99.5 99.4
(8, 1)+(16, 2) 99.4 99.4 99.6
(8, 1)+(24, 3) 99.3 99.5 99.5
(16, 2)+(24, 3) 99.6 99.7 99.8
(8, 1)+(16, 2)+(24, 3) 99.7 99.7 99.7

The bold numbers indicate the highest classification score achieved on each dataset.
Following [4], each training sample is split into 121 disjoint 16×16 sub-
samples, whose histograms are thenmerged into onemodel histogram.
We point out that the seven testing images in each texture class are
physically different from the one designated training image.

Outex_TC_00010: 24 Outex texture classes (shown in Fig. 9) with
each class having 20 samples. It was created by Ojala et al. [4], again
for rotation invariant texture classification. All textures in this test
suite have the same illuminant “inca”. The training and testing
scheme is the same as that for Contrib_TC_00001 but with nine differ-
ent rotation angles. All of the 480 (24×20) samples rotated by one
angle are adopted as the training data, and testing data consists of
all 480 samples rotated by the other 8 angles. Hence, there are 480
models for training, and 3840 (480×8) for validation.

Outex_TC_00012: Created byOjala et al. [4] for rotation and illumina-
tion invariant texture classification. The texture classes are the same as
Outex_TC_00010. The classifier was trained with the same training
samples as Outex_TC_00010, but tested with all samples captured at all
9 rotation angles under different illuminants “t184” or “horizon”. Due
2: training is done at just one rotation angle, and the average accuracy over 9 angles.

15° 30° 45° 60° 75° 90° Average

93.0 91.3 90.8 88.9 89.0 84.3 90.2
98.6 98.4 98.6 98.6 97.7 96.8 98.3
98.7 97.2 96.4 93.4 94.2 94.1 96.5
98.5 98.3 98.3 97.8 97.1 95.6 97.7
98.7 98.5 97.9 96.4 96.6 96.4 97.7
99.2 98.9 98.9 98.3 98.1 98.1 98.7
99.1 99.0 98.9 98.4 98.2 98.1 98.7

93.6 92.7 91.6 90.3 91.1 86.6 91.6
98.4 97.7 97.9 98.2 98.3 98.1 98.1
97.3 95.5 95.1 92.7 93.7 94.1 95.4
97.9 97.1 97.8 98.2 97.8 97.0 97.8
97.7 96.2 96.1 95.1 95.2 95.1 96.3
98.3 97.3 97.5 96.9 97.0 97.7 97.7
98.2 97.4 97.7 97.5 97.1 97.6 97.8

97.6 96.2 95.3 92.7 94.9 91.8 95.4
99.7 99.6 99.6 99.5 99.0 99.0 99.4
99.5 99.5 99.5 99.2 99.3 99.1 99.4
99.6 99.5 99.4 99.4 99.0 98.6 99.3
99.5 99.6 99.6 99.7 99.4 99.2 99.5
99.7 99.7 99.9 99.8 99.7 99.5 99.7
99.6 99.6 99.8 99.9 99.7 99.4 99.7

http://www.ee.oulu.fi/mvg/page/image_data
image of Fig.�10


Fig. 11. Comparing the best classification scores of our approach with various state-of-the-art methods on all the three test suites. All the results are as originally reported, except for
those of VZ-MR8 and VZ-Joint, which are obtained by us using the exact same experimental setup as Varma and Zisserman did [2, 3]. For VZ-MR8 and VZ-Joint, 40 textons per class
is used for building the universal texton dictionary.
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to the varying illuminants, some texture samples have a large tactile
dimension which induces significant local gray-scale distortions, there-
fore Outex_TC_00012 is more challenging than Outex_TC_00010.

3.2.2. Experimental results on Contrib_TC_00001
Ojala et al. [4] reported a near-perfect classification accuracy of

99.7% for the joint descriptor LBP VAR when using two spatial resolu-
tions (8,1)+(24,3) or three spatial resolutions (8,1)+(16,2)+24,3.
Table 4 presents the results for our proposed descriptors, comparing
with the state-of-the-art methods [4].

The individual descriptor NI-LBP and RD-LBP perform similarly,
with NI-LBP doing slightly better. NI−LBP16, 2

riu2 and NI−LBP24, 3
riu2
Fig. 12. One sample of each of the 6
significantly outperformed their simpler counterpart NI−LBP8, 1
riu2.

This is also the case with RD-LBP. Interestingly, the performance of
NI-LBP increases with the neighborhood size, while for RD-LBP, the
best performance is achieved by RD−LBP16, 2

riu2 . On average, between
the individual descriptors, LBP performs the best and VAR the worst.

The center pixel also provides useful discriminative information,
since it is apparent in Table 4 that combining the center pixel CI-LBP
with NI-LBP or RD-LBP can generally improve classification perfor-
mance. Neglecting the center pixel clearly results the loss in informa-
tion, similar to how [3] and [21] demonstrated the benefits of
explicitly including the information of the center pixel in the
classifier.
1 texture classes from CUReT.

image of Fig.�11


Fig. 13. The variations within each category of the new KTHTIPS2b database. Each row shows one example image from each of four samples of a category.
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The fusion of NI-LBP and RD-LBP produced perfect classification re-
sults at (16,2). The much improved classification accuracy by combin-
ing NI-LBP and RD-LBP, which were on their own no better than LBP,
implies that they capture truly complementary texture information.

It is evident, based on the results, that the performance of the pro-
posedNI-LBP/RD-LBP andNI-LBP/RD-LBP/CI-LBP descriptors are superior
to that of LBP/VAR. Note that here we only consider a single resolution
for our descriptors. It may be argued that this test suite is too easy for
texture classification; more challenges of test suites follow.
3.2.3. Experimental results on Outex_TC_00010 and Outex_TC_00012
Table 5 presents results for our proposed descriptors and those

proposed in [4] on test suites Outex_TC_00010 and Outex_TC_00012.
The conclusions from these results are similar to those from Table 4,
with the following additional observations.

First, our proposed descriptor NI−LBP16, 2
riu2 /RD−LBP16, 2

riu2 /CI−LBP
produces consistently the best classification scores across all three
test suites, a considerable improvement over the best reported re-
sults by Ojala et al. [4], especially for Outex_TC_00012 “tl84” and
“horizon”.

Second, among individual descriptors, although NI-LBP and RD-LBP
did not outperform LBP or VAR, their combination significantly outper-
formed LBP/VAR. We maintain that the NI-LBP/RD-LBP strength stems
from their complementarity, in that NI-LBP measures the variation of
the neighboring pixels on the same circumference, while RD-LBP cap-
tures the edge information between circumferences, analogous to the
combination of RIFT and SIFT used by Zhang et al. [8].
Table 8
Comparing classification accuracy (%) on CUReT: Ntr is the number of training samples per c
recent comparative study of Zhang et al. [8]. For VZ-MR8, we learn 10 textons per class.

(p, r) (8, 1) (16, 2)

Ntr 46 23 12 6 2 46 2
LBP/VAR 93.76 88.71 81.80 71.08 50.43 4.00 8
NI/RD/CI 95.15 92.00 86.19 77.97 57.96 9563 9

(p, r) (8, 1)+(16, 2) (8, 1)+(24, 3
Ntr 46 23 12 6 2 46 2
NI/RD 94.78 91.17 85.73 76.67 57.28 95.79 9
NI/RD/CI 96.88 93.55 89.29 80.18 61.28 96.66 9

Method Neighborhood size 46 23 12 6 2
VZ-MR8 19×19 96.37 92.34 86.96 77.17 54.88
VZ-Joint 7×7 96.19 92.00 86.56 76.87 54.69
Finally, we can see that NI−LBP16, 2
riu2 /RD−LBP16, 2

riu2 and NI−LBP16, 2
riu2 /

RD−LBP16, 2
riu2 /CI−LBP produce very robust classification performance

in all three cases. This is in contrast to the descriptor LBP/VAR, the per-
formance of which decreases considerably in gray scale and rotation
invariant texture classification. The excellent classification results
demonstrate that NI-LBP/RD-LBP/CI0-LBP is more stable for texture
classification irrespective of the different imaging geometries of the
illuminants affecting the appearance of local distortions caused by
the tactile dimension of textures.

Table 6 shows the number of misclassified samples for each texture
and rotation angle for the best descriptor NI−LBP16, 2

riu2 /LBP _R16, 2riu2 /
CI−LBP for all three cases, allowing a detailed analysis of discrimina-
tion of individual textures and the effect of rotation. Overall, NI−
LBP16, 2

riu2 /RD−LBP16, 2
riu2 /CI−LBP classified 18 out of the 24 classes com-

pletely correctly, having most difficulties with tile006, followed by
canvas033.

Incidentally, for all the three test suites nearly all of themisclassified
samples in tile006 and tile005were assigned to each other. Fig. 10 shows
some example textures from class tile005 and tile006,wherewe can ob-
serve the high degree of perceptual similarity.

Motivated by its excellent classification performance and in order
to fully examine the classification performance of descriptor NI-LBP/
RD-LBP/CI-LBP, Table 7 shows the results of extensive experiments
which we conducted on the three Outex test suites by varying the
training angle. We can see that the performance is very robust, espe-
cially true with NI−LBP16, 2

riu2 /RD−LBP16, 2
riu2 /CI−LBP. We can also ob-

serve the better results obtained by multiresolution analysis over
single resolution. We acknowledge that the multiresolution analysis
lass used. All results are obtained by us except for VZ-Joint, which are quoted from the

(24, 3)

3 12 6 2 46 23 12 6 2
9.76 81.53 71.09 52.77 91.90 85.34 77.12 66.04 48.64
2.7 87.12 79.57 60.89 92.59 87.85 80.92 70.33 52.21

) (8, 1)+(16, 2)+(24, 3)
3 12 6 2 46 23 12 6 2
1.17 86.26 77.25 55.68 95.75 91.88 85.41 75.71 57.80
3.57 88.41 79.90 60.52 96.78 93.45 88.94 79.69 62.14

image of Fig.�13


Table 9
Comparison of highest classification performance on CUReT with state-of-the-art re-
sults using NNC classifier. Number of training and testing samples per class is equal,
i.e. 46. Our score 97.29% is obtained with NI/RD/CI at multiresolutions (8, 1)+
(16, 2)+(24, 5). All the results from other methods are quoted directly from the orig-
inal papers except for those of LBP/VAR, which are obtained by us.

Method Ours LBP/
VAR

VZ-MR8
[2]

VZ-Joint
[3]

VZ-MRF
[3]

CLBP
[21]

Neighborhood
size

11×11 5×5 49×49 19×19 11×11 7×7

Bins 2200 416 2440 610 219,600 2200
Accuracy (%) 97.29 94.00 97.43 97.17 98.03 97.39 45
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Fig. 14. Comparing the proposed approach with various state-of-the-art methods on
KTHTIPS2b.
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will increase the dimensionality of the histogram feature, however
the largest dimensionality of 2200 for three resolutions is not a big
problem.

To conclude Experiment #1, Fig. 11 compares the best scores
achieved by our proposed method and those reported by six other
state-of-the-art methods. It is quite clear that our approach consis-
tently outperforms all state-of-the-art methods in gray scale and ro-
tation invariant texture classification.

It is important to emphasize that although our proposed descrip-
tors are motivated by LBP, in practice we are extracting very different
local texture information, whereas DLBP, LBPV and CLBP are all
LBP-based approaches. LBP, CLBP, and our proposed approach share
the advantage of being training-free and computationally simple,
since they are based upon a pre-defined dictionary rather than one
derived with reference to the dataset to be analyzed. In contrast,
VZ-MR8 and VZ-Joint require a time-consuming universal texton dic-
tionary learning stage by clustering local feature vectors extracted
from training samples. From Fig. 11 we see that our approach has
about a 5%–7% improvement over VZ-MR8 and VZ-Joint, most likely
in part due to the limited training samples for learning the universal
texton dictionary, leading to a drop in accuracy for VZ-MR8 and
VZ-Joint.

3.3. Experiment #2

Motivated by the excellent performance for the proposed approach
demonstrated in the previous section, here we test the performance of
the proposed approach for material classification and categorization,
using the CUReT and KTHTIPS2b databases.

3.3.1. Image data and experimental setup
CUReT [2, 3, 35]: The original CUReT database [35] consists of 61

texture classes, shown in Fig. 12, with each class containing 205 im-
ages of a physical texture sample photographed under a (calibrated)
range of viewing and lighting angles, but without significant variation
Table 10
Classification results (%) of the proposed descriptors and the LBP on KTHTIPS2b.
CLBP _S/M/C represents CLBP _Sp, rriu2/Mp, r

riu2/C.

(p,r) (8, 1) (16, 2) (24, 3)

Ntrain 1 2 3 1 2 3 1 2 3

LBP 48.1 54.2 56.8 50.5 55.8 59.1 49.9 54.6 57.8

NI 46.1 48.7 52.3 37.6 41.2 44.4 39.0 42.6 45.4
RD 48.1 54.2 56.9 44.0 49.4 52.1 38.5 42.7 45.2
RD/CI 52.6 57.8 61.2 49.9 56.2 59.8 48.0 53.5 56.3
NI/CI 47.1 53.1 56.4 46.5 50.5 53.0 44.8 48.8 51.6
NI/RD 53.5 60.0 63.1 54.0 59.0 61.6 49.5 55.2 59.1
NI/RD/CI 56.6 61.9 64.8 57.7 62.5 65.1 52.4 57.5 61.7

(p, r) (8, 1)+(16, 2) (16, 2)+(24, 3) (8, 1)+(16, 2)
+(24, 3)

Ntrain 1 2 3 1 2 3 1 2 3
NI/RD/CI 58.1 62.9 66.0 55.9 61.0 64.2 56.7 61.7 65.0
in scale or in-plane rotation. CUReT is a challenging test of texture de-
scriptors because of the large intra-class variation including the effects
of specularities, interreflections, shadowing, and other surface normal
variations due to lighting geometry. Consistent with other CUReT stud-
ies [2, 3], we consider only the 92 images per class which afford the ex-
traction of a 200×200 pixel foreground region of texture, the same
subset of images as in [2, 3].

KTHTIPS2b [36, 27]: It is generally agreed [2, 3, 27] that the major
drawback of the CUReT database is that materials are imaged at a con-
stant scale. The acquisition procedure for KTHTIPS2b has been de-
scribed in more detail in [36], with 3 viewing angles, 4 illuminants,
and 9 different scales, producing 432 images per class. Fig. 13 illus-
trates an example of the 11 materials. Notice in particular the striking
differences between samples of the same class. There is almost no
intra-class variation due to in-plane rotation for this database.

For the experiments on KTHTIPS2b, we follow the training and
testing scheme used in [27]. We perform experiments training on
one, two, or three samples; testing is always conducted only on un-
seen samples.

3.3.2. Experimental results
Table 8 presents the results on CUReT. Our method consistently

outperformed LBP/VAR, and the multiresolution analysis of the pro-
posed approach helps to improve classification performance, produc-
ing slightly higher classification scores than VZ-MR8 and VZ-Joint.
Moreover, it is clear that the degree of improvement of our descriptor
NI-LBP/RD-LBP/CI-LBP over that of LBP/VAR is increased given fewer
training samples, in accordance with the findings based on the three
Outex test suites.

In order to make the comparison fair, Table 9 compares the best
classification scores achieved by various state-of-the-art methods on
CUReT. We can see that our proposed approach is outperformed by
VZ-MR8, VZ-Joint, and VZ-MRF with large neighborhood size and
more textons. This is because VZ-MR8 and VZ-Joint are statistical ap-
proaches, and the very large number of training samples in this dataset
allows those methods to find representative textons; with reduced
training data the performance of the VZ methods would decrease. Nev-
ertheless, our method, despite a small spatial support, can compete
with VZ-MR8 and VZ-Joint having a much larger spatial support. The
lesser performance, in general, of the LBP methods is that there are
scale and affine variations in the CUReT database, while LBP-based ap-
proaches are proposed for rotation and gray level invariance and have
limited capability to address scale and affine invariance.

We have conducted experiments with larger neighborhood sizes on
CUReT, and our descriptorNI/RD/CI at multiresolutions (8,1)+(16,2)+
(24,5) gives classification scores of 97.29%, 94.48%, 88.96%, 80.70% for
46, 23, 12, and 6 training samples per texture class, respectively,
which are slightly better than the results achieved by the CLBP approach
(97.39%, 94.19%, 88.72%, and 79.88%, respectively).
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As shown in Table 10 and Fig. 14, we also compare our method
with state-of-the-art methods on the material categorization task of
the KTHTIPS2b textures, with all results from other methods quoted
directly from [27]. For this database, our proposed NI-LBP/RD-LBP/CI-
LBP descriptor outperforms all compared state-of-the-art methods
by a significant margin. We should bear in mind that the classification
results of all of the methods are obtained with a 1NN classifier, since
we mainly focus our attention on the effectiveness of the descriptors
rather than on the capabilities of the classifier. Using a more advanced
classifier (SVM or k>1) might improve performance significantly.
4. Conclusions and future work

This paper has proposed a novel local texture descriptor, generalizing
the well-known LBP approach. Four LBP-like descriptors, two local
intensity-based CI-LBP and NI-LBP, and two local difference-based de-
scriptors RD-LBP and AD-LBP, were presented to extract complementary
texture information of local spatial patterns. We showed that combining
complementary descriptors played an important role in texture discrim-
ination. In addition, we found that information contained in radial differ-
ences is more discriminative than those contained in angular difference.

The advantages of the proposed approach include its computational
simplicity, no training (in the feature extraction stage), and a data-
independent universal texton dictionary. Extensive experimental re-
sults show that the joint distribution of CI-LBP, NI-LBP and RD-LBP sig-
nificantly outperform the conventional LBP approach and its various
invariants on the Outex test suites. Furthermore, results on thematerial
database KTHTIPS2bdemonstrate the best performance of the proposed
approach in comparison with several state-of-the-art methods with a
nearest neighbor classifier.

In the future, we plan to explore how to reduce the feature dimen-
sion of the multiresolution CI-LBP/NI-LBP/RD-LBP. We also believe
that an in-depth investigation of the AD-LBP descriptor would be valu-
able for local region description, looking at the parallels between
AD-LBP and the CS-LBP of [22] developed for image matching.
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