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a b s t r a c t 

Multimodal learning has been an important and challenging problem for decades, which aims to bridge 

the modality gap between heterogeneous representations, such as vision and language. Unlike many cur- 

rent approaches which only focus on either multimodal matching or classification, we propose a unified 

network to jointly learn multimodal matching and classification (MMC-Net) between images and texts. 

The proposed MMC-Net model can seamlessly integrate the matching and classification components. It 

first learns visual and textual embedding features in the matching component, and then generates dis- 

criminative multimodal representations in the classification component. Combining the two components 

in a unified model can help in improving their performance. Moreover, we present a multi-stage training 

algorithm by minimizing both of the matching and classification loss functions. Experimental results on 

four well-known multimodal benchmarks demonstrate the effectiveness and efficiency of the proposed 

approach, which achieves competitive performance for multimodal matching and classification compared 

to state-of-the-art approaches. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

The problem of multimodal analytics has attracted increasing

ttention due to a drastic growth of multimedia data such as text,

mage, video, audio, and graphics. Consequently, it has aroused

ew challenges in unifying different modalities and bridging their

emantic gap. Prior work has been dedicated to developing compu-

ational models to simulate the human-brain mechanism regard-

ng unifying and processing the multimodal data. In this work, our

ocus is on jointly modeling the multimodal matching and clas-

ification between vision and language. The multimodal research

nderpins many critical applications in the computer vision field,

ncluding image captioning [1–3] , cross-modal retrieval [4–6] , and

ero-shot recognition [7–10] . 

Specifically, multimodal matching has been studied for decades,

ith the aim of searching for a latent space, where visual and tex-

ual features can be unified to be latent embeddings. The hypoth-

sis is that different modalities have semantically related proper-

ies that can be distilled into a common latent space. Early ap-

roaches that attempt to learn latent embeddings are mainly de-

eloped based on the Canonical Correlation Analysis (CCA) [11] ,
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hich is effective at maximizing the high correlation between vi-

ual and textual features in the latent space. Driven by the in-

reasing progress of deep learning, many works [12–15] have been

edicated to developing deep matching networks to learn discrim-

native latent embeddings and train the networks by using a bi-

irectional rank loss function. They have achieved state-of-the-art

erformance on many well-known multimodal benchmarks [6,16–

8] . 

However, learning latent embeddings is influenced by the no-

able variance in images or texts. For example in Fig. 1 , five sen-

ences annotated by humans are provided to describe the same

mage. The input image and five sentences are projected into a la-

ent space based on a two-branch network (see Fig. 3 ). One can

bserve that these sentences have significant variance on repre-

enting the visual content. Although they can consistently describe

he main objects in the scene such as ‘girl’ (or ‘child’) and ‘bicycle’

or ‘bike’), they still present great variance in terms of other ob-

ects, e.g . ‘bench’, ‘table’ and ‘leaves’. Likewise, the potential vari-

nce is also existing in visual embedding features. Consequently, it

ecomes more difficult to model image and text matching. 

To address this issue, we aim to introduce a classification com-

onent to learn more robust latent embeddings. Our motivation is

hat object labels can typically provide more consistent and less

iased information than sentences. As can be seen in Fig. 1 , object

https://doi.org/10.1016/j.patcog.2018.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Example of joint multimodal matching and classification. Given one image 

and its descriptive sentences, they are first co-embedded into a latent space for 

matching (in red and blue). Then, the visual and textual embedding features are in- 

tegrated to be a multimodal representation for classification. In the input sentences, 

the words related to the ground-truth object labels are highlighted in green. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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labels contain the most important concepts in the image, for exam-

ple ‘Person’ and ‘Bicycle’ which are commonly mentioned in all of

the five sentences. On the other hand, some visual concepts, which

are subjectively described in some of the sentences ( e.g . ‘leaves’

and ‘sweater’) will not appear in the ground-truth labels. Hence,

using the object labels as additional supervisory signals is benefi-

cial to correct the biased descriptions and improve the matching

between images and texts. 

In this work, we propose a unified network for joint multimodal

matching and classification (MMC-Net) as illustrated in Fig. 3 . First,

the matching component transforms the input visual and textual

features, respectively, via a couple of fully-connected layers and a

fusion module. The matching loss is imposed on the outputs of the

two fusion modules to maximize their correlation. Then, the classi-

fication component is built upon the visual and textual embedding

features. A compact bilinear pooling module is used to generate

a multimodal representation vector, based on which the classifica-

tion loss is computed to predict object labels. In this way, the pro-

posed MMC-Net can jointly learn the latent embeddings and the

multimodal representation in a unified model. On the one hand,

the classification component is beneficial to alleviate the biased in-

put, so that the model can learn better robust latent embeddings.

On the other hand, the matching component is able to bridge the

modality gap between vision and language, and therefore combin-

ing visual and textual embedding features can produce a discrimi-

native multimodal representation for classification. 

The contributions of this work are summarized as follows: 

• We propose a novel deep multimodal network ( i.e . MMC-

Net), where the matching and classification components can

be seamlessly integrated and help promote each other jointly.

MMC-Net is a general architecture that is potentially applicable

to diverse multimodal tasks related to matching and classifica-

tion. 
• We present a multi-stage training algorithm by incorporating

the matching and classification loss. It can make the match-

ing and classification components more compatible in a unified

model. 
• Results on four well-known multimodal benchmarks demon-

strate that MMC-Net outperforms the baseline models that are

built for either matching or classification ( i.e . MM-Net and MC-
Net). In addition, our approach achieves competitive perfor-

mance compared to current state-of-the-art approaches. 

The rest of this paper is organized as follows. Section 2 summa-

izes the related work about multimodal matching and classifica-

ion. We introduce the details of the proposed MMC-Net model in

ection 3 , and the training algorithm in Section 4 . Comprehensive

xperiments in Section 5 are used to evaluate the approach. Finally,

ection 6 concludes the paper and discusses the future work. 

. Related work 

In this section, we introduce the use of multimodal fusion, and

hen revisit recent works related to the research of image-text

ased multimodal matching and classification. 

.1. Multimodal fusion 

Human can see, hear and speak simultaneously. Motivated by

his, it is beneficial to integrate different modality-specific repre-

entations, which can help compensate the limitation of one single

odality. Based on various conditions ( e.g . detectors, sensors and

quipments), we can represent the same phenomenon with multi-

odal representations ( e.g . image, video, text and audio). In recent

ears, the growing availability of multiple modalities has triggered

 large amount of research effort s on multimodal fusion. Conse-

uently, a wide range of multimodal applications, including action

ecognition [19–21] , image captioning [1–3] , cross-modal retrieval

4–6] and zero-shot recognition [7–10] , have been of primary im-

ortance in the field of computer vision. For example, Simonyan

nd Zisserman [19] developed a two-stream ConvNet architecture

or action recognition in videos, which could integrate spatial and

emporal information based on multi-frame dense optical flow. The

ork of Hu et al. [20] presented a joint learning model to simulta-

eously learn heterogeneous features from different channels ( i.e .

GB, depth) for RGB-D activity recognition. In this work, our focus

s on the applications regrading both vision and language, which

ill be detailed as follows. 

.2. Multimodal matching 

Typically, multimodal matching is posed as a feature embed-

ing problem, which aims to project heterogeneous representa-

ions into a common space. As the multimodal generalization of

CA, CCA [11] learns a pair of linear transformations to maximize

he correlation matrix between different modalities. Many exten-

ions [22–24] were developed to augment the effectiveness of CCA.

or instance, Gong et al. [25] added a third view with the two-

iew CCA using high-level image semantics in order to gain a bet-

er separation for multimodal data. Ranjan et al. [26] proposed a

ulti-label CCA approach by introducing multi-label information

hile learning the cross-modal subspaces. In addition, it is benefi-

ial to build deep CCA models for learning better non-linear pro-

ections end-to-end [27,28] . To promote the linear transformations

n CCA, Andrew et al. [27] developed a deep CCA model to directly

earn a flexible nonlinear mapping. In recent literature, A number

f approaches [15,16,18,29] have been dedicated to designing di-

erse deep matching networks to search for a more discriminative

atent space. Ma et al. [15] used multimodal CNNs for encoding

oth images and sentences, to learn the matching relation between

he image and the word fragments. Karpathy and Li [14] proposed

 novel ranking model that aligned visual and language modali-

ies using a multimodal latent embedding. Wang et al. [6] built

 simple and efficient matching network that focused on preserv-

ng the structure relation of images and texts in the latent space.

am et al. [17] developed visual and textual attention models and
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Fig. 2. Illustration of three multimodal networks. (a) Multimodal matching network. (b) Multimodal classification network. (c) Multimodal matching and classification net- 

work. Note that, the parameters in the image and text branches are unshared, as drawn in blue and green. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 3. The overview architecture of our proposed MMC-Net for joint multimodal matching and classification. It comprises three key components. (1) The multimodal input 

aims to capture visual and textual representations from off-the-shelf encoders ( e.g . CNN and word2vec). (2) In the matching component, four fully-connected layers in both 

of the image and text branches are developed to learn the latent embeddings. (3) Based on the visual and textual embedding features, the classification component utilizes a 

compact bilinear pooling module which can generate a high-order multimodal representation to perform the prediction. The entire network can be trained with a matching 

loss and a classification loss. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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m  
ointly trained them to capture the shared semantics between im-

ges and sentences. In Fig. 2 (a), we show a general pipeline of mul-

imodal matching networks (MM-Net). It is composed of feature

ncoders, hidden layers, a latent embedding space, and a matching

oss function. 

.3. Multimodal classification 

Multimodal classification aims to combine visual and textual

eatures as a multimodal representation, and then uses it to predict

lass labels. Early studies attempted to use simple fusion modules

uch as element-wise sum or product. In the work by Ba et al. [7] ,

hey used a dot product to integrate two features in the last layer,

nd produced a set of classifier weights for fine-grained classifica-

ion. Ma et al. [30] developed an auto-encoder with the structured

egularization to enhance the interactions while integrating differ-

nt modality-specific features. Recently, Bai et al. [31] presented

n end-to-end trainable neural network for ne-grained image clas-

ification through capturing scene textual and visual cues from

mages. Besides, visual question answering [32–34] that is often

ast as a multimodal classification problem, relies on an element-

ise sum operation to incorporate visual and textual features. To

chieve better fused feature, Fukui et al. [35] exploited a multi-

odal compact bilinear pooling [36] for visual question answering

nd visual grounding. Compact bilinear pooling is able to capture

igh-order correlated information between visual and textual fea-

ures, while using much less parameters than the standard bilin-

ar pooling [37,38] . One recent work [39] merged the prediction

cores from the vision and language streams in a late-processing

anner. Fig. 2 (b) describes the pipeline of multimodal classifica-

ion networks based on the bilinear pooling. 
.4. Multimodal matching and classification 

Unlike the above work, our purpose is to model the multimodal

atching and classification tasks in one network. As illustrated in

ig. 2 (c), the proposed MMC-Net builds the classification compo-

ent upon the matching component. Consequently, the whole net-

ork can be used for both matching and classification. Zhang et al.

40] developed a deep matching framework that can jointly opti-

ize both classification and similarity constraints for fine-grained

mage classification. However, their work focused solely on the vi-

ual domain without introducing the textual domain. One recent

ork [41] for zero-exemplar event detection developed a three-

ranch network that aimed to classify event categories based on

he input video and its textual title, by learning to embed the

ideo feature and the event article feature in the matching com-

onent. However, their classification component was only based

n the textual embedding, but did not use the visual embedding.

heir manner limits the classification performance and discourages

he benefit of unifying the matching and classification components.

nstead, our classification component allows to combine visual and

extual embeddings and can produce more informative multimodal

epresentations. 

. Multimodal matching and classification network 

In this section, we introduce the proposed MMC-Net model and

ts three key components. 

.1. Overall architecture 

Fig. 3 illustrates the overview architecture of MMC-Net, which

ainly consists of three components: multimodal input, multi-
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Fig. 4. Illustration of the fusion module used in the matching component. A con- 

volutional layer is used to learn weights for different spatial elements in FC2, FC3 

and FC4. 
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modal matching and multimodal classification. Given an image and

its corresponding text, MMC-Net first utilizes off-the-shelf feature

encoders to extract the visual and textual features, respectively.

Next, in the multimodal component, two groups of four fully-

connected layers are used in both image and text branches to learn

a latent space, where its objective is to minimize the matching loss

between the related images and texts. Moreover, the multimodal

classification component is built upon the visual and textual em-

bedding features. We employ a compact bilinear pooling module

to generate a high-order and efficient multimodal representation.

The classification loss is computed with respect to the pre-defined

ground-truth labels. Next, we will detail each of the three compo-

nents. 

3.2. Multimodal input 

In a data collection with N matching image-text pairs, ( x i , y i )

represent the encoded visual and textual features, i = 1 , . . . , N. Tak-

ing these features as input instead of the raw data enables to train

the entire network effectively. Also, any common feature encoders

are potentially applicable for this network. 

Image encoder. we use the powerful CNN model, ResNet-152

[42] , which is pre-trained on the ImageNet dataset [43] . First,

the CNN model is recast to its fully convolutional network (FCN)

counterpart, to extract richer region representations. Then we set

the smaller side of the image to 512 and isotropically resize the

other side. The last max-pooling layer in ResNet-152 is averaged

to generate a 2048-dimensional feature vector. Compared with the

widely-used VGG feature [44] ( i.e . 4096-dim), ResNet-152 can pro-

vide more discriminative visual representation, while decreasing

the feature dimensions (2048 v.s. 4096). The extracted image fea-

ture is then fed into the image branch of the matching component.

Text encoder. we employ the simple yet efficient word2vec

[45] to represent sentence-level texts. It provides a 300-

dimensional feature vector, which is often called Mean vector.

Notably, more informative text encoders can be developed based

on word2vec, for example the Hybrid Gaussian-Laplacian mixture

model (HGLMM) [46] that computes a 180 0 0-dimensional feature

vector with 30 centers ( i.e . 300 ∗30 ∗2). However, we still use the

standard Mean vector due to its high efficiency and low dimen-

sionality. 

3.3. Multimodal matching 

The multimodal matching component contains three aspects:

latent embedding, fusion module and matching loss. 

Latent embedding. As shown in Fig. 3 , the matching compo-

nent develops two branches of four fully-connected layers to si-

multaneously project visual and textual features into a discrimi-

native latent space. Note that the parameters of the two branches

(drawn in blue and green) are unshared due to the modality spe-

cialization. The channels from FC1 to FC4 are set to {2048, 512,

512, 512} in both of the two branches. First, the input visual and

textual features are normalized with the batch normalization (BN)

[47] . Then FC1 is regularized by a dropout layer with 0.5 probabil-

ity, and instead other fully-connected layers are regularized with

the BN layer. ReLU is used after the fully-connected layers. 

Fusion module. Exploiting multi-layer features has been well-

studied in many deep neural networks [48–51] , as it allows to take

advantage of different levels of hidden representations in the net-

works. Driven by this, we introduce a fusion module to generate

a multi-layer embedding feature. Fig. 4 depicts the pipeline of the

fusion module. Since the FC2, FC3 and FC4 layers have the same

number of channels, it is feasible to stack their feature vectors to-

gether. Then we employ a convolutional operation to learn adap-

tive weights while fusing the three layers. 
We denote the stack layer in the two branches as S ( x i ) and S ( y i ),

espectively. The stack layer, a 512 × 3 matrix, is convolved by the

onvolutional filter, which has a size of 1 × 1 × 3. Note that, the

hree weights are shared over the spatial dimensions of the stack

ayer. We can compute the fused visual feature f ( x i ) and textual

eature g ( y i ) by 

f (x i ) = W 

f use 
I 

� S(x i ) + b f use 
I 

, (1)

(y i ) = W 

f use 
T 

� S(y i ) + b f use 
T 

, (2)

here W 

f use 
I 

and W 

f use 
T 

are the fusion weights to be learned ( i.e .

 elements) b 
f use 
I 

and b 
f use 
T 

are the bias vectors ( i.e . 512 elements).

he operator � represents the convolutional operation. 

Although the common element-wise operators such as sum-

ooling and inner product are simple to compute, they do not

dapt the importance of different layers. Another fusion approach

s concatenating the three 512-D vectors into one 3 ∗512-D vector.

owever, the concatenation output will increase the feature di-

ensionality and make it more expensive to compute the match-

ng loss. To summarize, the convolutional fusion module can pro-

ide marked performance improvements, while it has a minimal

ncrease to the total parameters used in the network. 

Matching loss. As a common practice, the matching distance

etween f ( x i ) and g ( y i ) is computed with the cosine distance

6,15,16] 

( f (x i ) , g(y i )) = 1 − f (x i ) · g(y i ) 

|| f (x i ) || · || g(y i ) || . (3)

Smaller distances indicate more similar image-text pairs. Both

 ( x i ) and g ( y i ) are L2-normalized before computing their cosine dis-

ance. To preserve the similarity constraints in the latent space, we

efine the matching loss based on an efficient bi-directional rank

oss function, similar to [6,13,52] . The loss function needs to han-

le the two triplets, ( x i , y i , y 
−
i,k 

) and ( y i , x i , x 
−
i,k 

), where x −
i,k 

∈ X −
i 

and

 

−
i,k 

∈ Y −
i 

are the negative images and texts, k = 1 , . . . , K. To exploit

ore representative non-matching pairs, we pick the top K most

issimilar candidates in each mini-batch. Intuitively, this loss func-

ion is designed to decrease the distances of matching pairs ( e.g.

 i and y i ) and increase the distances of non-matching pairs ( e.g.

 i and y −
i,k 

, y i and x −
i,k 

). Formally, the matching loss based on the

used features is formulated via 

 

f use 
mat = 

N ∑ 

i =1 

K ∑ 

k =1 

max 
[
0 , d( f (x i ) , g(y i )) − d( f (x i ) , g(y −

i,k 
)) + m 

]

+ α max 
[
0 , d( f (x i ) , g(y i )) − d( f (x −

i,k 
) , g(y i )) + m 

]
, (4)

here m is a margin parameter, and α is used to balance the

mportance of the two triplets. Minimizing this loss cost will

ead to a desirable latent space, where the matching distance
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Fig. 5. Visualization of the visual and textual embedding features learned in the matching component. Each image (in red) is related to several corresponding texts (in 

green). We present some images and texts corresponding to the points in the distribution map. The semantic words related to the visual content are shown in red. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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s  
 ( f ( x i ), g ( y i )) should be smaller than any of the non-matching ones

( f (x i ) , g(y −
i,k 

)) and d( f (x −
i,k 

) , g(y i )) , ∀ x −
i,k 

∈ X −
i 

, ∀ y −
i,k 

∈ Y −
i 

. 

In Fig. 5 , we make use of the t-SNE algorithm [53] to visualize

ur embedding features ( i.e. f ( x i ) and g ( y i )). We use the 10 0 0 im-

ges and 50 0 0 texts from the MSCOCO test set. It can be seen that

n the distribution map an image feature (in red) is properly sur-

ounded by several related text features (in green), as each image

s annotated by five ground-truth matching texts in the dataset.

herefore, this visualization shows that our embedding model can

lign the images and texts due to learning their semantic corre-

ation. In addition, some images and texts corresponding to the

oints are shown in the windows. We can see that the embeddings

an cluster similar images and texts together despite the significant

ariations and changes. 

.4. Multimodal classification 

The classification component aims to incorporate the visual and

extual embedding features and then generates a multimodal rep-

esentation for predicting object labels. In the following, we detail

he classification component including a bilinear pooling module

nd classification loss. 

Bilinear pooling. We take advantage of a bilinear pooling mod-

le to incorporate visual and textual embedding features learned in

he matching component. The bilinear pooling [37] aims to model

he pair-wise multiplicative intersection between all elements of

wo vectors. It can generate more expressive features than other

asic operators such as element-wise sum or product. The stan-

ard bilinear pooling is formulated with 

(x i , y i ) = f (x i ) 
T g(y i ) , (5)

ince f ( x i ) and g ( y i ) are 1 × M vectors ( i.e . M = 512 ), B(x i , y i ) be-

omes an M × M matrix that is then reshaped to be a 1 × M 

2 vector.

ue to the high dimensionality of the bilinear vector ( i.e. M 

2 ), we

nstead use the compact bilinear pooling (CBP) variant [36] , which

an decrease the dimensionality to D (where D � M 

2 ) while retain-

ng the strong discrimination. Different from [35,36] in which they

imply perform the CBP module with the input visual or textual
eatures, we build the CBP module based on the latent embeddings

o generate a multimodal feature vector ( Fig. 3 ). 

The computational procedure of the CBP module is detailed in

lgorithm 1 . At first, we initialize several hashing functions from

lgorithm 1 CBP with latent embedding features. 

1: Input: f (x i ) ∈ R 

M , g(y i ) ∈ R 

M 

2: Output: B(x i , y i ) ∈ R 

D 

3: Initialize hash functions: h 1 , s 1 , h 2 , s 2 
For j ← 1 . . . M 

sample h 1 [ j] , h 2 [ j] from { 1 , . . . , D } 
sample s 1 [ j] , s 2 [ j] from {−1 , 1 } 

End for 

4: Compute count sketches: 
ˆ f (x i ) = [0 , . . . , 0] , ˆ g (y i ) = [0 , . . . , 0] 

For j ← 1 . . . D 

ˆ f (x i )[ h 1 [ j]] = 

ˆ f (x i )[ h 1 [ j]] + s 1 [ j] · f (x i )[ j] 

ˆ g (y i )[ h 2 [ j]] = ˆ g (y i )[ h 2 [ j]] + s 2 [ j] · g(y i )[ j] 

End for 

5: Convolution of count sketches: 

B(x i , y i ) = FFT −1 ( FFT ( ̂  f (x i )) ◦ FFT ( ̂  g (y i ))) , 

where the ◦ denotes element-wise multiplication. 

he pre-defined sets. Then, it computes the count sketches [54] to

aintain linear projections of a vector with several random vec-

ors. Finally, we make use of the Fast Fourier Transformation (FFT)

o compute the convolution of the count sketches, and produce a

ilinear vector B(x i , y i ) by an inverse FFT. In particular, the count

ketches have the properties: 

[ 〈 ̂  f (x i ) , ̂  g (y i ) 〉 ] = 〈 f (x i ) , g(y i ) 〉 , (6)

 ar[ 〈 ̂  f (x i ) , ̂  g (y i ) 〉 ] ≤ 1 

D 

(〈 f (x i ) , g(y i ) 〉 2 + ‖ f (x i ) ‖ 

2 + ‖ g(y i ) ‖ 

2 ) . 

(7) 

Next, the bilinear vector B(x i , y i ) is processed by a signed

quare-root layer and an L2 normalization layer. Then, we employ a
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Fig. 6. (a) Examples of single-label images from CUB-Bird [55] . (b) Examples of multi-label images from MSCOCO [56] . 
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fully-connected layer to estimate the prediction. Assume that there

are C object labels pre-defined in the dataset, the j th class proba-

bility is predicted with 

a i, j = 

D ∑ 

k =1 

W j,k B(x i , y i ) k (8)

where j = 1 , . . . , C. W j, k is the parameter matrix with the size of

D × C . For simplicity, we do not show the signed square-root and

the L2 normalization in this formulation. 

Classification loss. The objective of the classification compo-

nent is to minimize the loss cost of the prediction with respect

to the given ground-truth labels. Fig. 6 shows some images that

are annotated by single label or multiple labels. It makes sense

to compute different loss functions for single-label and multi-label

classification, respectively. 

1) Single-label classification. For example the fine-grained classifi-

cation in Fig. 6 (a), each image is labeled with a fine bird cate-

gory. To train the classification component, we use the softmax

loss function that is represented by 

L cls = − 1 

N 

N ∑ 

i =1 

C ∑ 

j=1 

δ(g i = j) log p i, j , (9)

p i, j = 

exp (a i, j ) ∑ C 
k =1 exp (a i,k ) 

, (10)

where g i is the ground-truth label corresponding to x i . δ(g i = j)

is 1 when g i = j, otherwise is 0. 

2) Multi-label classification. As shown in Fig. 6 (b), images anno-

tated with multiple labels can provide richer information about

the visual content. Although many of these labels may appear

in the input text, they can still offer com plementary labels

which are ignored in the text due to less visual attention. We

employ the sigmoid cross-entropy loss function to supervise the

multi-label classification. The total cost sums up K of element-

wise loss terms 

L cls = − 1 

N 

N ∑ 

i =1 

C ∑ 

j=1 

g 
′ 
i, j log p 

′ 
i, j + (1 − g 

′ 
i, j ) log (1 − p 

′ 
i, j ) , (11)

p 
′ 
i, j = 

1 

1 + exp (−a i, j ) 
, (12)

where g 
′ 
i, j 

∈ { 0 , 1 } is the ground-truth label indicating the ab-

sence or presence of the j th class. 

4. Training and inference 

This section describes the training procedure of the MMC-Net

model. Also, we present the inference manner for multimodal

matching and classification. 
.1. Multi-stage training 

The optimization objective in the model is to minimize the to-

al training loss which merges the matching and classification loss

ogether 

in 

W 

L total = L mat + βL cls , (13)

here the parameter β is used to regulate the two loss terms. The

arameters W in the network mainly contains W I and W T in the

mage and text branches, and W CBP in the compact bilinear pooling

odule. 

We propose a multi-stage training algorithm to better model

he matching and classification components. As summarized in

lgorithm 2 , the training procedure consists of three stages. Dur-

lgorithm 2 Multi-stage training algorithm for MMC-Net. 

1: The first stage: train the matching component. 

initialize: learning rate λ1 , training iterations T 1 , t = 0 . 

while t < T 1 do 

t ← t + 1 

compute the matching loss L mat in Eq. (4); 

update the parameters in the image and text branches: 

W 

(t) 
I 

= W 

(t−1) 
I 

− λ(t) 
1 

∂L mat 

∂W 

(t−1) 
I 

; 

W 

(t) 
T 

= W 

(t−1) 
T 

− λ(t) 
1 

∂L mat 

∂W 

(t−1) 
T 

; 

end while 

2: The second stage: train the classification component. 

initialize: learning rate λ2 ( < λ1 ), training iterations T 2 , t = 0 . 

while t < T 2 do 

t ← t + 1 

compute the classification loss L cls in Eq. (9) or Eq. (11); 

update the parameters in the compact bilinear pooling

module: 

W 

(t) 
CBP 

= W 

(t−1) 
CBP 

− λ(t) 
2 

∂L cls 

∂W 

(t−1) 
CBP 

; 

end while 

3: The third stage: jointly fine-tune the whole network. 

initialize: learning rate λ3 ( < λ2 ), training iterations T 3 , t = 0 . 

while t < T 3 do 

t ← t + 1 

compute the total loss in Eq. (13); 

update all the parameters in the network: 

W 

(t) 
I 

= W 

(t−1) 
I 

− λ(t) 
1 

∂L total 

∂W 

(t−1) 
I 

; 

W 

(t) 
T 

= W 

(t−1) 
T 

− λ(t) 
1 

∂L total 

∂W 

(t−1) 
T 

; 

W 

(t) 
CBP 

= W 

(t−1) 
CBP 

− λ(t) 
2 

∂L total 

∂W 

(t−1) 
CBP 

; 

end while 



Y. Liu et al. / Pattern Recognition 84 (2018) 51–67 57 

i  

l  

i  

o  

d  

f  

t  

t  

t  

e

 

m  

A  

a

 

 

S  

a

4

 

c

 

a  

x  

a  

a  

t  

m  

y  

t

 

a  

c  

t  

t  

t  

o

5

 

M  

i  

d  

e  

t  

t  

t  

s

5

 

d  

C  

 

g  

d  

p  

a  

4  

i

 

v  

o  

f  

w

 

o  

s  

l  

t  

s  

t  

i

 

g  

i  

[  

5

5

 

t

 

m  

g  

c  

t

 

a  

i  

o

5

 

l  

t  

h  

d  

t  

m  

F  

b  

1  

s  

p  

u  

l  

t

5

 

m

 

t  

M

 

t  

h  

a  

l

ng the first stage we train the matching component with the

oss L mat . For the second stage, we need to learn the parameters

n the classification component using the loss L cls . In this stage,

nly the parameters in the classification component can be up-

ated whereas the parameters in the matching component are all

rozen. In the third stage, the model is initialized by the parame-

ers learned in the first and second stages. It aims to jointly fine-

une the whole network based on the total loss L total . Due to using

his multi-stage fashion, it is feasible to promote the training of the

ntire network and maintain the high performance. 

Note that, the training of the FFT and inverse FFT in the CBP

odule also follows the chain rule of the backward propagation.

s for B(x i , y i ) , the partial derivatives of L cls with respect to ˆ f (x i )

nd ˆ g (y i ) can be expressed with 

∂L cls 

∂ ˆ f (x i ) 
= FFT 

−1 
(

FFT 

(∂L cls 

∂B 

)
◦ FFT ( ̂  g (y i )) 

)
, (14)

∂L cls 

∂ ̂  g (y i ) 
= FFT 

−1 
(

FFT 

(∂L cls 

∂B 

)
◦ FFT ( ̂  f (x i )) 

)
, (15)

imilarly, it is straightforward to induce the partial derivatives for

ny variables in the model. 

.2. Inference 

We present the inference manner for multimodal matching and

lassification, respectively. 

Multimodal matching. For the image-to-text matching, given

 query image x q , its purpose is to search for relevant texts w.r.t

 q from a text database Y . Likewise, the text-to-image matching

ims to retrieve related images from an image database X , given

 query text y q . In the MMC-Net model, the fused visual and tex-

ual features learned in the fusion module are used to compare the

atching distance, denoted as d ( f ( x q ), g ( y i )) or d ( f ( x i ), g ( y q )), where

 i ∈ Y, x i ∈ X . The k -nearest neighbor ( k -NN) search is used to find

he top- k most similar candidates. 

Multimodal classification. Its inference is based on the prob-

bilities predicted by the last fully-connected layer in the classifi-

ation component. For the single-label case, the element that has

he maximum probability corresponds to the predicted class. As for

he multi-label case, the items whose probabilities in the predic-

ion are more than 0.5 are estimated to contain the corresponding

bject classes. 

. Experiments 

In this section, we evaluate the performance of the proposed

MC-Net on four well-known multimodal benchmarks. We first

ntroduce the configuration in the experiments, including the

atasets, evaluation metrics, parameter settings and baseline mod-

ls. Then we assess the performance of MMC-Net for tasks of mul-

imodal matching and classification and compare its results with

hose of the baseline models. Furthermore, we conduct the abla-

ion study to fully analyze MMC-Net. Lastly, we compare our re-

ults with other state-of-the-art approaches. 

.1. Dataset settings 

We performed the experiments on four well-known multimodal

atasets: Pascal Sentence [57] , MSCOCO [56] , Flowers [58] and

UB-Bird [55] . Some image and text examples are shown in Fig. 7 .

Pascal Sentence [57] . It contains 10 0 0 images from 20 cate-

ories (50 images per category), and one image is described by five

ifferent sentences. We pick 800 images for training (40 images

er category), 100 images for validation (5 images per category),
nd 100 images for test (5 images per category). In total, there are

0 × 20 × 5 = 40 0 0 image-text training pairs, 5 × 20 × 5 = 500 val-

dation pairs, and 5 × 20 × 5 = 500 test pairs. 

MSCOCO [56] . It includes 82,783 training images and 40,504

alidation images in total. We pick five descriptive sentences for

ne image and generate 82 , 783 × 5 = 413 , 915 training pairs. For a

air comparison, we use the same 10 0 0 test images used in recent

orks [6,15,16] . 

Flowers [58] . This dataset [58] contains 102 classes with a total

f 8189 images. 2040 images (train + val) are used in the training

tage and the rest 6149 images are for testing. Reed et al. [8] col-

ected fine-grained visual descriptions for these images by using

he Amazon Mechanical Turk (AMT) platform. One image is de-

cribed by ten sentence-level descriptions. Therefore, we can ob-

ain 2040 × 10 = 20400 training pairs and 6149 × 10 = 61490 test-

ng pairs. 

CUB-Bird [55] . It contains 11,788 bird images from 200 cate-

ories. 5994 images are for training, and 5794 images are for test-

ng. Similarly, ten sentences are provided to describe one image

8] . As a result, it has 5994 × 10 = 59 , 940 pairs for training, and

794 × 10 = 57 , 940 pairs for testing. 

.2. Evaluation metrics 

We evaluate the performance of multimodal matching and mul-

imodal classification, separately. 

Multimodal matching . We employ the widely-used retrieval

etric R@K, which is the recall rate of a correctly retrieved

round-truth at top K candidates (e.g. K = 1 , 5 , 10 ) [3,14] . It in-

ludes results of both image-to-text (I → T) and text-to-image re-

rieval (T → I). 

Multimodal classification . We compute the Top-1 classification

ccuracy for Pascal Sentence, Flowers and CUB-Bird. Since MSCOCO

s a multi-label classification dataset, we evaluate the performance

n it using the average precision (AP) across multiple classes. 

.3. Implementation details 

We implemented the proposed approach based on the pub-

icly available Caffe library [59] . It is important to shuffle the

raining samples randomly during the data preparation stage. The

yper-parameters were evaluated on the validation set of each

ataset. For instance, we set α = 2 and m = 0 . 1 while computing

he matching loss function on all the datasets. The number of non-

atching pairs in the negative sets was K = 20 for Pascal Sentence,

lowers and CUB-Bird, and K = 50 for MSCOCO. We used a mini-

atch size of 128 for Pascal Sentence, Flowers and CUB-Bird, and

500 for MSCOCO. Note that, we use a larger K and min-batch

ize for MSCOCO, because it has enormously more training sam-

les, compared to the other three datasets. We trained the model

sing SGD with a weight decay of 0.0 0 05, a momentum of 0.9. The

earning rate was initialized with 0.1 and was divided by 10 when

he loss stops decreasing. 

.4. Baseline models 

To verify the effectiveness of the proposed MMC-Net, we imple-

ented two baseline models: MM-Net and MC-Net. 

MM-Net : A baseline model for multimodal matching as illus-

rated in Fig. 2 (a). It only contains the matching component of the

MC-Net (see Fig. 3 ), which is trained with the matching loss. 

MC-Net : A baseline model for multimodal classification as illus-

rated in Fig. 2 (b). It has the similar architecture as the MMC-Net,

owever, it does not compute the matching loss between visual

nd textual features. MC-Net is only trained with the classification

oss. 
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Fig. 7. Example of four multimodal datasets. Three textual descriptions are listed for each image. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Table 1 

Image-to-text retrieval results compared between MMC-Net and MM-Net. The proposed MMC-Net can outperform 

the baseline MM-Net with considerable gains across all the four datasets. 

Method Pascal Sentence MSCOCO Flowers CUB-Bird 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

MM-Net 47.0 85.0 92.0 55.5 84.2 91.4 58.1 82.5 88.5 32.5 61.4 72.5 

MMC-Net 52.0 87.0 93.0 57.0 85.8 92.7 78.7 93.9 96.0 39.2 66.9 76.4 

Table 2 

Text-to-image retrieval results compared between MMC-Net and MM-Net. Compared to MM-Net, MMC-Net can 

achieve better retrieval results on the four datasets. 

Method Pascal Sentence MSCOCO Flowers CUB-Bird 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

MM-Net 38.4 80.6 88.6 44.7 79.5 89.5 32.7 46.4 52.9 18.3 25.6 28.8 

MMC-Net 41.0 81.2 92.5 46.2 80.8 90.5 43.6 54.8 58.6 25.8 31.4 34.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Comparison of the multimodal classification accuracy between MMC- 

Net and MC-Net. For the four datasets, MMC-Net can outperform MC- 

Net with consistent performance gains. 

Method Pascal Sentence MSCOCO Flowers CUB-Bird 

MC-Net 71.0 77.6 94.0 80.7 

MMC-Net 74.0 79.3 95.2 82.4 
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5.5. Results on multimodal matching 

We conducted the cross-modal retrieval experiments on the

four datasets. To verify the effectiveness of adding a classification

component in MMC-Net, we use the baseline MM-Net for compar-

ison. Tables 1 and 2 report the results of image-to-text and text-

to-image retrieval, respectively. Overall, MMC-Net can achieve con-

siderable improvements over MM-Net for both I → T and T → I re-

trieval. These results reveal that the classification component in

MMC-Net can help in improving the learning of embedding fea-

tures in the matching component. Moreover, we can observe more

insights from these results as follows: 

• By comparison with MM-Net, MMC-Net yields more perfor-

mance gains on Flowers and CUB-Bird than Pascal Sentence and

MSCOCO. For example, the performance gap between MMC-

Net and MM-Net is below 5% on Pascal Sentence and MSCOCO,

but above 5% on Flowers and CUB-Bird across all the measure-

ments. One reason is that both Flowers and CUB-Bird are fine-

grained datasets, and the textual descriptions cannot fully rep-

resent the discrimination among different samples. Hence, the

results of MM-Net are limited on these two datasets. Instead,

MMC-Net can make use of fine-grained class labels to enhance

the discriminative abilities when matching images and texts. 
• The results of T → I retrieval are lower than those of the I → T

retrieval on the four datasets. This is because each image can

retrieve several related textual descriptions, but one text cor-

responds to only one matched image. We believe that refining

the datasets is a favorable solution to narrow the performance

gap between the I → T and T → I retrieval. 
• For Flowers and CUB-Bird, their results are still not satisfactory,

especially for the T → I retrieval. Currently, the fine-grained
multimodal matching still remains challenging in the research

field, but it is a promising research direction in the future. 

In addition, we present the qualitative retrieval results as

hown in Fig. 8 . We can observe that MMC-Net obtains better re-

rieved candidates than MM-Net, for both I → T and T → I retrieval.

urthermore, we visualize the visual and textual embedding fea-

ures learned in the matching component of MMC-Net. As men-

ioned earlier in 5 , it has shown the embedding map with the

SCOCO test set. Similarly, we illustrate the embedding features

ith the Pascal Sentence test set that consists of 100 images and

00 texts. As shown in Fig. 9 (a), each point corresponds to one

ample (an image or a text) from the 20 Pascal categories. Also,

e detail the embedding features per category in Fig. 9 (b1)–(b20).

t is clear to observe the matching relation between images and

exts. 

.6. Results on multimodal classification 

Next, we conducted the multimodal classification experiments

n the datasets. To demonstrate the benefit of using a match-

ng component for classification, we compare the MMC-Net model

ith the baseline MC-Net model. Table 3 reports the classification

esults, where MMC-Net achieves consistent improvements over
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Fig. 8. Image-text retrieval examples on the datasets. For (a) image-to-text retrieval, the ground-truth matching texts are in green. For (b) text-to-image retrieval, the red 

number in the upper left corner of one image is the ranking order, and the green frame corresponds to the ground-truth matching image. For the I → T and T → I retrieval, 

MMC-Net can retrieve more accurate candidates than MM-Net. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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C-Net across all the four datasets. It shows that the matching

omponent is able to promote the classification component due to

ombining the embedding features to generate more discrimina-

ive multimodal representations. Also, MMC-Net has a generaliza-

ion ability for different types of classification datasets, including

ither natural images or fine-grained images. 

In addition, we show some classification examples in Fig. 10 .

t can be seen that MMC-Net can predict more accurate classes

han MC-Net. Note that MSCOCO has multiple ground-truth labels.

urthermore, we visualize the multimodal representation captured

rom the CBP module in MMC-Net. Fig. 11 (a) and (b) illustrate the

ultimodal features with the Flowers and CUB-Bird test images,

espectively. We can observe clear separations among different cat-

gories. 
t  
.7. Ablation study 

In the following, we perform an ablation study to provide more

nsights into MMC-Net. 

.7.1. Analysis of parameters 

First of all, we analyze the effects of three key parameters used

n MMC-Net. 

Effect of the mini-batch size. Since the loss function for mul-

imodal matching aims to search for hard negative samples, it is

ssential to define a large mini-batch to increase the search space.

or example, we selected a mini-batch size of 1500 for MSCOCO

ue to its large-scale data. To study the effect of varying different

atch sizes, we used different batch sizes to train MMC-Net and

ested their performance. Considering the number of negative pairs
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Fig. 9. Visualization of the embedding features of the Pascal Sentence test set. (a) 100 images and 500 texts are projected to the 2-D space based on the t-SNE algorithm. 

They are labeled with the corresponding categories. (b1)–(b20) The embedding map for each category. The images and texts are described by ‘O’ and ‘X’, respectively. For 

some categories ( e.g . ‘bicycle’, ‘bird’, ‘boat’), we can see that MMC-Net can learn the desirable matching between images and texts, but it is still difficult for other categories 

( e.g . ‘bus’, ‘cat’, ‘motorbike’). 

Fig. 10. Multimodal classification examples on the datasets. Given an input image-text pair, the Top-5 predictions are estimated based on MC-Net and MMC-Net. The ground- 

truth classes are in green. By comparison, MMC-Net obtains more accurate predictions than MC-Net. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 11. Visualizing the multimodal features learned in the classification component of MMC-Net. (a) 6149 images from the Flowers test set. (2) 5794 images from the 

CUB-Bird test set. Images are properly grouped into different clusters as shown in color. 

Table 4 

Effect of the mini-batch size on the performance of MMC-Net. We train 

the model with different mini-batch sizes and compare their retrieval re- 

sults on MSCOCO. 

Method Image-to-Text Text-to-Image 

R@1 R@5 R@10 R@1 R@5 R@10 

batch size = 100 42.5 74.6 87.4 36.6 73.8 86.8 

batch size = 250 52.6 83.3 91.7 43.0 79.5 89.4 

batch size = 500 56.6 85.3 92.7 46.0 80.5 90.1 

batch size = 10 0 0 56.2 85.8 93.0 46.5 80.5 90.1 

batch size = 1500 57.0 85.8 92.7 46.2 80.8 90.5 

batch size = 20 0 0 56.7 85.5 92.8 46.7 80.6 90.4 
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Table 5 

Analysis of the fusion module used in MM-Net and MMC-Net. The R@K results on 

Pascal Sentence are reported. By comparison, the convolutional fusion module can 

achieve better results than others. 

Method Fusion module Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

MM-Net No 45.0 82.0 91.0 35.6 75.8 87.0 

MM-Net summation 46.0 83.0 91.0 36.8 77.6 87.6 

MM-Net Multiplication 46.0 84.0 91.0 37.2 78.4 87.6 

MM-Net Convolution 47.0 85.0 92.0 38.4 80.6 88.6 

MMC-Net No 51.0 85.0 92.0 37.6 80.6 92.0 

MMC-Net summation 51.0 86.0 92.0 38.4 81.0 92.0 

MMC-Net Multiplication 51.0 86.0 92.0 39.0 81.0 92.0 

MMC-Net Convolution 52.0 87.0 93.0 41.0 81.2 92.5 
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n each mini-batch is K = 50 for MSCOCO, we varied the batch size

ith 100, 250, 500, 1000, 1500 and 2000. Table 4 compares the

etrieval results on MSCOCO with different batch sizes. We can ob-

erve that the performance is low when the batch size is 100. By

ncreasing the size to 500, it can achieve significant gains across

ll the measurements. We further raise the size to 20 0 0, however

here is no important influence on the results. Finally, we select

atch size = 1500 due to its slightly superior results. 

Effect of the parameter β . Recall that MMC-Net is trained by

ntegrating the matching and classification loss, we use the param-

ter β to balance the weights of the two loss functions as de-

ned in Eq. 13 . This experiment aims to analyze the effect of β on

he performance. Fig. 12 shows the cross-modal retrieval results on

ascal Sentence. The R@1, R@5 and R@10 results are shown sepa-

ately, when β varies from 0.1 to 1. We pick β = 0 . 5 by fully com-

aring these results. 

Effect of the parameter D . In the classification component, a

BP module can integrate visual and textual embedding features

nto a D -dimension multimodal vector. In this experiment, we an-

lyze D with {512, 1024, 2048, 4096, 8192, 20 0 0 0}, which are all

ignificantly lower than the original bilinear pooling vector ( i.e .

12 × 512 = 262 , 144 ). In Fig. 13 , we present the compared results

n Pascal Sentence. When D = 2048 , MMC-Net can achieve better

esults compared to others. 

Since MSCOCO is also composed of scene images like Pascal

entence, it is straightforward and general to employ the same

arameters β and D . In contrast, Flowers and CUB-Bird are com-
only used for fine-grained recognition. It is needed to evaluate

heir parameters different from Pascal Sentence and MSCOCO. To

his end, we estimated the effects of the parameters on the classi-

cation accuracy of Flowers, and then applied the same parameters

o CUB-Bird for generalization. Fig. 14 presents the analysis of pa-

ameters on Flowers. As for the parameter β shown in Fig. 14 (a),

he best precision accuracy, 95.1%, is reached by β = 1 . 2 . As shown

n Fig. 14 (b), the accuracy is maximized ( i.e . 95.2%) when D = 4096 .

n the experiments, we set β = 1 . 2 and D = 4096 for Flowers and

UB-Bird. Additionally, we show the confusion matrix of 102 Flow-

rs categories in Fig. 14 (c). 

.7.2. Analysis of the fusion module 

This test aims to verify the effectiveness of using the fusion

odule in the matching component. We build a convolutional fu-

ion module in MMC-Net which can also be applied on the base-

ine MM-Net. In Table 5 , we report the results for both MMC-Net

nd MM-Net on the Pascal Sentence test set. We can see that using

 fusion module can improve all R@K performance measurements

y a considerable margin, compared to the counterparts without

sing any fusion module. For an additional comparison, we fur-

her implement two simple fusion modules: element-wise summa-

ion and multiplication. Their results are inferior to those of the

onvolutional fusion, because they do not consider the weights of

ifferent layers. Instead, the convolutional fusion can learn adap-

ive weights to produce a superior fused feature while spending
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Fig. 12. Effect of the parameter β on the performance of MMC-Net. The retrieval results on Pascal Sentence are reported. We select β = 0 . 5 by comparing these results. 

Fig. 13. Effect of the parameter D on the performance of MMC-Net. We present the retrieval results on Pascal Sentence by using different sizes of D . We select D = 2048 

that can bring better results. 
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only three parameters. All the weights can be learned dynamically

and adaptively with other network parameters, without introduc-

ing any manual tuning. 

Moreover, we delve into analyzing the adaptive weights of dif-

ferent layers learned in the convolutional fusion module. Fig. 15

demonstrates their distributions during the training procedure.

Since there are three layers ( i.e . FC2, FC3, FC4) in the fusion mod-

ule, we initialize their weights with 0.33. It can be seen that the

weights in both of image and text branches tend to be stable af-

ter a number of training epochs. In particular, the weight of the

FC2 layer is smallest, which demonstrates that its feature repre-

u  
entation is less powerful than those of the FC3 and FC4 layers. In

ddition, the FC4 layer is less important than the FC3 layer. This

mplies that increasing the depth may not improve the represen-

ation learning any more. Hence, we do not develop more layers

ehind the FC4. Lastly, all the three layers play essential roles in

he fusion module, even though they learns individual and differ-

nt weights. 

.7.3. Analysis of the CBP module 

We conduct this experiment to test the use of the CBP mod-

le in MMC-Net. For comparison, we present two other methods
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Fig. 14. Effect of the parameters on the performance of MMC-Net. We report the Top-1 classification results on Flowers. (a) Analysis of the parameter β . (b) Analysis of the 

parameter D . (c) Confusion matrix of 102 Flowers classes. The diagonal line demonstrates the high accuracy per flower class. 

Fig. 15. Analysis of adaptive weights learned in the fusion module of the image branch and text branch. This test is performed on Pascal Sentence. 

Table 6 

Analysis of the CBP module in MMC-Net. The R@K results on Pascal Sentence are re- 

ported, which demonstrate the effectiveness and efficiency of using the CBP module. 

Method Dimension Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

MMC-Net with FC 1024 50.0 86.0 92.0 39.6 80.4 90.0 

MMC-Net with BP 262144 53.0 88.0 93.0 41.5 81.5 92.5 

MMC-Net with CBP 2048 52.0 87.0 93.0 41.0 81.2 92.5 
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Table 7 

Analysis of combining vision and language. We report the Top-1 classification rates 

on Flowers and CUB-Bird. The model with both vision and language outperforms 

the model with only vision. 

Method Flowers CUB-Bird 

Only vision 92.2 78.8 

Vision and language 95.2 82.4 
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t  
o integrate the visual and textual features. For the first method,

e concatenate the two features to construct a multimodal rep-

esentation and then feed it into a fully-connected (FC) layer to

erform the classification. The second one is using the traditional

ilinear pooling (BP) to produce a high-order multimodal repre-

entation. Table 6 reports the compared results of different classi-

cation modules. The model with CBP can obtain considerable im-

rovements over the one with FC. The MMC-Net with BP achieves

etter results than other methods, while its multimodal represen-

ation has higher dimensionality. On the contrary, CBP can main-

ain the high accuracy and efficiency. 

.7.4. Analysis of combining vision and language 

This experiment is used to verify the advantage of incorporat-

ng visual and textual representations. As reported in Table 7 , we

ompare the results between combining visual and textual features

 i.e . MMC-Net) and using only visual features. We can observe that

ombining vision and language can achieve significantly superior

ccuracies on Flowers and CUB-Bird. Although visual features can

nable the models to achieve promising performance, the informa-

ive textual features can further help improve the classification ac-

uries. This shows the effectiveness of capturing multimodal repre-

entations from both vision and language. Furthermore, Fig. 16 an-
lyzes the test rates during the training iterations. It can be seen

hat the vision and language model can consistently outperform

he vision model in the entire training stage. 

.7.5. Analysis of image encoders 

As aforementioned in Section 3.2 , we employ the ResNet-152

odel to encode the input image. In this experiment, we aim to

tudy the effect of different image encoders. For a fair comparison

ith DSPE [6] , we provide the results of MMC-Net with VGG-19.

lso, we implement the DSPE with ResNet-152. Table 8 reports the

ompared results on MSCOCO. For both VGG-19 and ResNet-152,

ur MMC-Net can outperform DSPE across all the measurements.

e should realize that the improvements of MMC-Net come from

wo aspects. First, the matching component in MMC-Net has more
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Fig. 16. Illustration of the test classification rates during the training iterations. Incorporating language and vision is significant to improve the performance, compared to 

only using visual information. 

Table 8 

Analysis of image encoders. The image feature dimensions are also presented. MMC-Net has better 

matching results on MSCOCO than DSPE [6] . 

Method Image encoder Dimension Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

DSPE VGG-19 4096 40.7 74.2 85.3 33.5 68.7 83.2 

MMC-Net VGG-19 4096 46.0 79.7 89.2 38.9 73.5 87.5 

DSPE ResNet-152 2048 53.1 82.7 90.2 43.5 78.2 88.9 

MMC-Net ResNet-152 2048 57.0 85.8 92.7 46.2 80.8 90.5 

Table 9 

Comparison with other state-of-the-art approaches on Pascal Sentence for image-text retrieval. Best 

results are in bold face. The CNN and RCNN models for [60] and [13] are based on AlexNet [63] . 

Method Image encoder Text encoder Image to Text Text to Image 

R@1 R@5 R@1 R@5 

SDT-RNN [60] CNN DT-RNN 23.0 45.0 16.4 46.6 

kCCA [60] CNN Word vector 21.0 47.0 16.4 41.4 

DeViSE [52] AlexNet skip-gram 17.0 57.0 21.6 54.6 

SDT-RNN [60] RCNN DT-RNN 25.0 56.0 25.4 65.2 

DFE [13] RCNN Word vector 39.0 68.0 23.6 65.2 

MDL-CW [61] feature from [62] feature from [62] 34.0 70.0 35.2 72.6 

Mean Vector [46] VGG-16 Mean vector 52.5 83.2 44.9 84.9 

GMM + HGLMM [46] VGG-16 HGLMM 55.9 86.2 44.0 85.6 

Proposed MMC-Net ResNet-152 Mean vector 52.0 87.0 41.0 81.2 
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layers than that of DSPE, i.e . four layers v.s. two layers. Second,

MMC-Net utilizes a classification component to help improve the

matching performance. This is the main motivation in this work.

Note that, both MMC-Net and DSPE in Table 8 use the Mean vec-

tor to encode the input text. In [6] , they also present another ex-

pensive textual representation using the Hybrid Gaussian-Laplacian

mixture model (HGLMM) [46] , i.e . a 180 0 0-dimension vector. Cur-

rently, we do not introduce HGLMM to MMC-Net, even though it

can help increase the performance. 

5.8. Comparison with other approaches 

For Pascal Sentence and MSCOCO, we compare our match-

ing results with other state-of-the-art approaches. As reported in

Tables 9 and 10 , MMC-Net can achieve competitive performance

with the state-of-the-art. To be more specific, the method in

[46] is effective on small-scale datasets, so it can obtain state-of-

the-art results on Pascal Sentence. However, it does not have a

strong generalization on large-scale datasets, for example their re-

sults on MSCOCO are not quite competitive. In contrast, the pro-

posed MMC-Net maintains the high performance on both of small-

scale and large-scale datasets. Moreover, we show the image and
ext encoders used in different approaches. Both of DSPE [6] and

WayNet [16] extracted the visual features based on the VGG-19

odel, while they rely on a more complicated HGLMM textual rep-

esentation [46] than the Mean vector used in MMC-Net. As early

iscussed ( Section 3.2 ), we did not use the HGLMM representation

n order to maintain the training efficiency. For a fair comparison,

MC-Net with VGG-19 and Mean vector (in Table 8 ) can outper-

orm DSPE with significant improvements, and can compete with

WayNet while it uses the HGLMM representation. Lastly, we clar-

fy that any common feature encoders for images and texts can be

otentially adopted to MMC-Net. Exploring more efficient feature

ncoders is a fundamental and promising work. 

For Flowers and CUB-Bird, we compare the fine-grained classi-

cation results with the state-of-the-art. Table 11 reports the com-

arison details. Since the compared methods do not utilize textual

epresentations, we instead show the CNN model used in the im-

ge encoder and the network depth. Note that, these approaches

re divided into two groups based on whether the CNN model is

netuned on the target dataset. First, it can be seen that, MMC-Net

chieves better results than other approaches without performing

he fine-tuning step. Second, MMC-Net can even compete with the
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Table 10 

Comparison with other state-of-the-art approaches on MSCOCO for image-text retrieval. Best results are in bold 

face. 

Method Image encoder Text encoder Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

DVSA [14] RCNN RNN 38.4 69.9 80.5 27.4 60.2 74.8 

Mean vector [46] VGG-16 Mean vector 33.2 61.8 75.1 24.2 56.4 72.4 

GMM + HGLMM [46] VGG-16 HGLMM 39.4 67.9 80.9 25.1 59.8 76.6 

m-RNN [3] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0 

RNN-FV [64] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4 

mCNN(ensemble) [15] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8 

DSPE [6] VGG-19 Mean vector 40.7 74.2 85.3 33.5 68.7 83.2 

DSPE [6] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9 

2WayNet [16] VGG-16 HGLMM 55.8 75.2 – 39.7 63.3 –

Proposed MMC-Net ResNet-152 Mean vector 57.0 85.8 92.7 46.2 80.8 90.5 

Table 11 

Comparison with other approaches on Flowers and CUB-Bird. Best results are in bold face. The 

methods in the upper part fine-tune the original CNN models, however, the ones in the lower 

part do not perform the fine-tuning process. We do not use the bounding box annotations in the 

datasets. Note that, we use the numbers to describe the depth of the image encoders. The dimen- 

sion of MMC-Net indicates the multimodal representation extracted from CBP. 

Method Image encoder Finetune Dimension Flowers CUB-Bird 

Deep Optimized [65] CNN-16 Yes 4096 91.3 67.1 

Part R-CNN [66] DeCAF-8 Yes 4096 – 76.5 

Two-level attention [67] AlexNet-8 Yes 4096 – 77.9 

Deep LAC [68] AlexNet-8 Yes 12,288 – 80.3 

NAC-const [69] AlexNet-8 Yes 4096 91.7 68.5 

NAC-const [69] VGG-19 Yes 4096 95.3 81.0 

Bilinear CNN [38] VGG-16 Yes 250k – 84.0 

PD + FC + SWFV-CNN [70] VGG-16 Yes 70k – 84.5 

MsML + [71] DeCAF-8 No 134,016 89.5 67.9 

BoSP [72] VGG-16 No 5120 94.0 –

RI-Deep [73] VGG-19 No 4096 94.0 72.6 

ProCRC [74] VGG-19 No 5120 94.8 78.3 

MG-CNN [75] VGG-19 No 12,288 – 81.7 

Proposed MMC-Net ResNet-152 No 4096 95.2 82.4 

Table 12 

Summary of the parameters used in the MMC-Net for matching and classification, 

and the time for running the multi-stage training algorithm. 

Dataset #Params for matching #Params for classification Time (hours) 

Pascal Sentence ∼ 8 millions ∼ 41,0 0 0 ∼ 0.3 

MSCOCO ∼ 8 millions ∼ 164,0 0 0 ∼ 7.0 

Flowers ∼ 8 millions ∼ 418,0 0 0 ∼ 0.5 

CUB-Bird ∼ 8 millions ∼ 820,0 0 0 ∼ 1.3 
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pproaches with the finetuning step. For example, our results on

lowers is competitive with NAC-const [69] . Also, our approach is

uperior over most approaches on CUB-Bird, except Bilinear CNN

38] and PD + FC + SWFV-CNN [70] . However, we can see that both

in et al. [38] and Zhang et al. [70] produce a significantly more

xpensive feature vector than MMC-Net. We should realize that

dditional fine-tuning techniques have potential to improve perfor-

ance, but are not the focus of this work. Our competitive results

re partly due to the use of the ResNet-152 model, while we be-

ieve this should not decrease the effectiveness of our approach. 

.9. Computational cost 

We conducted the experiments on a NVIDIA TITAN X card with

2 GB memory. In practice, we first extracted visual and textual

eatures for all training samples using the off-the-shelf feature en-

oders. Then, we take as input these input features for the match-

ng and classification components. Since the network parameters

n MMC-Net are not expensive, it is feasible and rewarding to use

 large mini-batch size to improve the training (in Section 5.3 ). In

able 12 , we show the training parameters in the matching and
lassification component, and the multi-stage training time cost

n the four datasets. The MSCOCO dataset consumes more train-

ng time due to its large-scale data. In summary, MMC-Net is an

fficient network with a decent model complexity. 

. Conclusion and future work 

In this work, we proposed a unified network for joint multi-

odal matching and classification. The proposed MMC-Net can si-

ultaneously learn latent embeddings in the matching component,

nd generate a multimodal representation vector in the classifica-

ion component. Consequently, the two components can help pro-

ote each other by combining their loss functions together. We

valuated our approach on four well-known multimodal datasets.

he experimental results demonstrated the robustness and effec-

iveness of the MMC-Net model, compared to the baseline mod-

ls. In addition, our approach achieved competitive results with

he state-of-the-art approaches. The results showed its promising

eneralization for diverse multimodal tasks related to matching or

lassification. 

In the future, it is feasible to advance the three components

n the MMC-Net. For example, fine-tuning the feature encoders on

he target datasets, adding intermediate supervisory signals in the

atching component, and improving the compact bilinear pooling

odule in the classification component. In addition, it is straight-

orward to adapt MMC-Net to a wider variety of multimodal tasks,

ncluding image captioning, visual question answering, and video

ummarization. Moreover, the attention mechanism is potential to

e introduced in the MMC-Net. 
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