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Multimodal learning has been an important and challenging problem for decades, which aims to bridge
the modality gap between heterogeneous representations, such as vision and language. Unlike many cur-
rent approaches which only focus on either multimodal matching or classification, we propose a unified
network to jointly learn multimodal matching and classification (MMC-Net) between images and texts.
The proposed MMC-Net model can seamlessly integrate the matching and classification components. It
first learns visual and textual embedding features in the matching component, and then generates dis-
criminative multimodal representations in the classification component. Combining the two components
in a unified model can help in improving their performance. Moreover, we present a multi-stage training
algorithm by minimizing both of the matching and classification loss functions. Experimental results on
four well-known multimodal benchmarks demonstrate the effectiveness and efficiency of the proposed
approach, which achieves competitive performance for multimodal matching and classification compared
to state-of-the-art approaches.
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1. Introduction

The problem of multimodal analytics has attracted increasing
attention due to a drastic growth of multimedia data such as text,
image, video, audio, and graphics. Consequently, it has aroused
new challenges in unifying different modalities and bridging their
semantic gap. Prior work has been dedicated to developing compu-
tational models to simulate the human-brain mechanism regard-
ing unifying and processing the multimodal data. In this work, our
focus is on jointly modeling the multimodal matching and clas-
sification between vision and language. The multimodal research
underpins many critical applications in the computer vision field,
including image captioning [1-3], cross-modal retrieval [4-6], and
zero-shot recognition [7-10].

Specifically, multimodal matching has been studied for decades,
with the aim of searching for a latent space, where visual and tex-
tual features can be unified to be latent embeddings. The hypoth-
esis is that different modalities have semantically related proper-
ties that can be distilled into a common latent space. Early ap-
proaches that attempt to learn latent embeddings are mainly de-
veloped based on the Canonical Correlation Analysis (CCA) [11],
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which is effective at maximizing the high correlation between vi-
sual and textual features in the latent space. Driven by the in-
creasing progress of deep learning, many works [12-15] have been
dedicated to developing deep matching networks to learn discrim-
inative latent embeddings and train the networks by using a bi-
directional rank loss function. They have achieved state-of-the-art
performance on many well-known multimodal benchmarks [6,16-
18].

However, learning latent embeddings is influenced by the no-
table variance in images or texts. For example in Fig. 1, five sen-
tences annotated by humans are provided to describe the same
image. The input image and five sentences are projected into a la-
tent space based on a two-branch network (see Fig. 3). One can
observe that these sentences have significant variance on repre-
senting the visual content. Although they can consistently describe
the main objects in the scene such as ‘girl’ (or ‘child’) and ‘bicycle’
(or ‘bike’), they still present great variance in terms of other ob-
jects, e.g. ‘bench’, ‘table’ and ‘leaves’. Likewise, the potential vari-
ance is also existing in visual embedding features. Consequently, it
becomes more difficult to model image and text matching.

To address this issue, we aim to introduce a classification com-
ponent to learn more robust latent embeddings. Our motivation is
that object labels can typically provide more consistent and less
biased information than sentences. As can be seen in Fig. 1, object
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Fig. 1. Example of joint multimodal matching and classification. Given one image
and its descriptive sentences, they are first co-embedded into a latent space for
matching (in red and blue). Then, the visual and textual embedding features are in-
tegrated to be a multimodal representation for classification. In the input sentences,
the words related to the ground-truth object labels are highlighted in green. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

labels contain the most important concepts in the image, for exam-
ple ‘Person’ and ‘Bicycle’ which are commonly mentioned in all of
the five sentences. On the other hand, some visual concepts, which
are subjectively described in some of the sentences (e.g. ‘leaves’
and ‘sweater’) will not appear in the ground-truth labels. Hence,
using the object labels as additional supervisory signals is benefi-
cial to correct the biased descriptions and improve the matching
between images and texts.

In this work, we propose a unified network for joint multimodal
matching and classification (MMC-Net) as illustrated in Fig. 3. First,
the matching component transforms the input visual and textual
features, respectively, via a couple of fully-connected layers and a
fusion module. The matching loss is imposed on the outputs of the
two fusion modules to maximize their correlation. Then, the classi-
fication component is built upon the visual and textual embedding
features. A compact bilinear pooling module is used to generate
a multimodal representation vector, based on which the classifica-
tion loss is computed to predict object labels. In this way, the pro-
posed MMC-Net can jointly learn the latent embeddings and the
multimodal representation in a unified model. On the one hand,
the classification component is beneficial to alleviate the biased in-
put, so that the model can learn better robust latent embeddings.
On the other hand, the matching component is able to bridge the
modality gap between vision and language, and therefore combin-
ing visual and textual embedding features can produce a discrimi-
native multimodal representation for classification.

The contributions of this work are summarized as follows:

* We propose a novel deep multimodal network (ie. MMC-
Net), where the matching and classification components can
be seamlessly integrated and help promote each other jointly.
MMC-Net is a general architecture that is potentially applicable
to diverse multimodal tasks related to matching and classifica-
tion.

e We present a multi-stage training algorithm by incorporating

the matching and classification loss. It can make the match-

ing and classification components more compatible in a unified
model.

Results on four well-known multimodal benchmarks demon-

strate that MMC-Net outperforms the baseline models that are

built for either matching or classification (i.e. MM-Net and MC-

Net). In addition, our approach achieves competitive perfor-
mance compared to current state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related work about multimodal matching and classifica-
tion. We introduce the details of the proposed MMC-Net model in
Section 3, and the training algorithm in Section 4. Comprehensive
experiments in Section 5 are used to evaluate the approach. Finally,
Section 6 concludes the paper and discusses the future work.

2. Related work

In this section, we introduce the use of multimodal fusion, and
then revisit recent works related to the research of image-text
based multimodal matching and classification.

2.1. Multimodal fusion

Human can see, hear and speak simultaneously. Motivated by
this, it is beneficial to integrate different modality-specific repre-
sentations, which can help compensate the limitation of one single
modality. Based on various conditions (e.g. detectors, sensors and
equipments), we can represent the same phenomenon with multi-
modal representations (e.g. image, video, text and audio). In recent
years, the growing availability of multiple modalities has triggered
a large amount of research efforts on multimodal fusion. Conse-
quently, a wide range of multimodal applications, including action
recognition [19-21], image captioning [1-3], cross-modal retrieval
[4-6] and zero-shot recognition [7-10], have been of primary im-
portance in the field of computer vision. For example, Simonyan
and Zisserman [19] developed a two-stream ConvNet architecture
for action recognition in videos, which could integrate spatial and
temporal information based on multi-frame dense optical flow. The
work of Hu et al. [20] presented a joint learning model to simulta-
neously learn heterogeneous features from different channels (i.e.
RGB, depth) for RGB-D activity recognition. In this work, our focus
is on the applications regrading both vision and language, which
will be detailed as follows.

2.2. Multimodal matching

Typically, multimodal matching is posed as a feature embed-
ding problem, which aims to project heterogeneous representa-
tions into a common space. As the multimodal generalization of
PCA, CCA [11] learns a pair of linear transformations to maximize
the correlation matrix between different modalities. Many exten-
sions [22-24] were developed to augment the effectiveness of CCA.
For instance, Gong et al. [25] added a third view with the two-
view CCA using high-level image semantics in order to gain a bet-
ter separation for multimodal data. Ranjan et al. [26] proposed a
multi-label CCA approach by introducing multi-label information
while learning the cross-modal subspaces. In addition, it is benefi-
cial to build deep CCA models for learning better non-linear pro-
jections end-to-end [27,28]. To promote the linear transformations
in CCA, Andrew et al. [27] developed a deep CCA model to directly
learn a flexible nonlinear mapping. In recent literature, A number
of approaches [15,16,18,29] have been dedicated to designing di-
verse deep matching networks to search for a more discriminative
latent space. Ma et al. [15] used multimodal CNNs for encoding
both images and sentences, to learn the matching relation between
the image and the word fragments. Karpathy and Li [14] proposed
a novel ranking model that aligned visual and language modali-
ties using a multimodal latent embedding. Wang et al. [6] built
a simple and efficient matching network that focused on preserv-
ing the structure relation of images and texts in the latent space.
Nam et al. [17] developed visual and textual attention models and
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Fig. 2. Illustration of three multimodal networks. (a) Multimodal matching network. (b) Multimodal classification network. (¢) Multimodal matching and classification net-
work. Note that, the parameters in the image and text branches are unshared, as drawn in blue and green. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 3. The overview architecture of our proposed MMC-Net for joint multimodal matching and classification. It comprises three key components. (1) The multimodal input
aims to capture visual and textual representations from off-the-shelf encoders (e.g. CNN and word2vec). (2) In the matching component, four fully-connected layers in both
of the image and text branches are developed to learn the latent embeddings. (3) Based on the visual and textual embedding features, the classification component utilizes a
compact bilinear pooling module which can generate a high-order multimodal representation to perform the prediction. The entire network can be trained with a matching
loss and a classification loss. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

jointly trained them to capture the shared semantics between im-
ages and sentences. In Fig. 2(a), we show a general pipeline of mul-
timodal matching networks (MM-Net). It is composed of feature
encoders, hidden layers, a latent embedding space, and a matching
loss function.

2.3. Multimodal classification

Multimodal classification aims to combine visual and textual
features as a multimodal representation, and then uses it to predict
class labels. Early studies attempted to use simple fusion modules
such as element-wise sum or product. In the work by Ba et al. [7],
they used a dot product to integrate two features in the last layer,
and produced a set of classifier weights for fine-grained classifica-
tion. Ma et al. [30] developed an auto-encoder with the structured
regularization to enhance the interactions while integrating differ-
ent modality-specific features. Recently, Bai et al. [31] presented
an end-to-end trainable neural network for ne-grained image clas-
sification through capturing scene textual and visual cues from
images. Besides, visual question answering [32-34] that is often
cast as a multimodal classification problem, relies on an element-
wise sum operation to incorporate visual and textual features. To
achieve better fused feature, Fukui et al. [35] exploited a multi-
modal compact bilinear pooling [36] for visual question answering
and visual grounding. Compact bilinear pooling is able to capture
high-order correlated information between visual and textual fea-
tures, while using much less parameters than the standard bilin-
ear pooling [37,38]. One recent work [39] merged the prediction
scores from the vision and language streams in a late-processing
manner. Fig. 2(b) describes the pipeline of multimodal classifica-
tion networks based on the bilinear pooling.

2.4. Multimodal matching and classification

Unlike the above work, our purpose is to model the multimodal
matching and classification tasks in one network. As illustrated in
Fig. 2(c), the proposed MMC-Net builds the classification compo-
nent upon the matching component. Consequently, the whole net-
work can be used for both matching and classification. Zhang et al.
[40] developed a deep matching framework that can jointly opti-
mize both classification and similarity constraints for fine-grained
image classification. However, their work focused solely on the vi-
sual domain without introducing the textual domain. One recent
work [41] for zero-exemplar event detection developed a three-
branch network that aimed to classify event categories based on
the input video and its textual title, by learning to embed the
video feature and the event article feature in the matching com-
ponent. However, their classification component was only based
on the textual embedding, but did not use the visual embedding.
Their manner limits the classification performance and discourages
the benefit of unifying the matching and classification components.
Instead, our classification component allows to combine visual and
textual embeddings and can produce more informative multimodal
representations.

3. Multimodal matching and classification network

In this section, we introduce the proposed MMC-Net model and
its three key components.

3.1. Overall architecture

Fig. 3 illustrates the overview architecture of MMC-Net, which
mainly consists of three components: multimodal input, multi-
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modal matching and multimodal classification. Given an image and
its corresponding text, MMC-Net first utilizes off-the-shelf feature
encoders to extract the visual and textual features, respectively.
Next, in the multimodal component, two groups of four fully-
connected layers are used in both image and text branches to learn
a latent space, where its objective is to minimize the matching loss
between the related images and texts. Moreover, the multimodal
classification component is built upon the visual and textual em-
bedding features. We employ a compact bilinear pooling module
to generate a high-order and efficient multimodal representation.
The classification loss is computed with respect to the pre-defined
ground-truth labels. Next, we will detail each of the three compo-
nents.

3.2. Multimodal input

In a data collection with N matching image-text pairs, (x; ¥;)
represent the encoded visual and textual features, i =1, ..., N. Tak-
ing these features as input instead of the raw data enables to train
the entire network effectively. Also, any common feature encoders
are potentially applicable for this network.

Image encoder. we use the powerful CNN model, ResNet-152
[42], which is pre-trained on the ImageNet dataset [43]. First,
the CNN model is recast to its fully convolutional network (FCN)
counterpart, to extract richer region representations. Then we set
the smaller side of the image to 512 and isotropically resize the
other side. The last max-pooling layer in ResNet-152 is averaged
to generate a 2048-dimensional feature vector. Compared with the
widely-used VGG feature [44] (i.e. 4096-dim), ResNet-152 can pro-
vide more discriminative visual representation, while decreasing
the feature dimensions (2048 v.s. 4096). The extracted image fea-
ture is then fed into the image branch of the matching component.

Text encoder. we employ the simple yet efficient word2vec
[45] to represent sentence-level texts. It provides a 300-
dimensional feature vector, which is often called Mean vector.
Notably, more informative text encoders can be developed based
on word2vec, for example the Hybrid Gaussian-Laplacian mixture
model (HGLMM) [46] that computes a 18000-dimensional feature
vector with 30 centers (i.e. 300*30*2). However, we still use the
standard Mean vector due to its high efficiency and low dimen-
sionality.

3.3. Multimodal matching

The multimodal matching component contains three aspects:
latent embedding, fusion module and matching loss.

Latent embedding. As shown in Fig. 3, the matching compo-
nent develops two branches of four fully-connected layers to si-
multaneously project visual and textual features into a discrimi-
native latent space. Note that the parameters of the two branches
(drawn in blue and green) are unshared due to the modality spe-
cialization. The channels from FC1 to FC4 are set to {2048, 512,
512, 512} in both of the two branches. First, the input visual and
textual features are normalized with the batch normalization (BN)
[47]. Then FC1 is regularized by a dropout layer with 0.5 probabil-
ity, and instead other fully-connected layers are regularized with
the BN layer. ReLU is used after the fully-connected layers.

Fusion module. Exploiting multi-layer features has been well-
studied in many deep neural networks [48-51], as it allows to take
advantage of different levels of hidden representations in the net-
works. Driven by this, we introduce a fusion module to generate
a multi-layer embedding feature. Fig. 4 depicts the pipeline of the
fusion module. Since the FC2, FC3 and FC4 layers have the same
number of channels, it is feasible to stack their feature vectors to-
gether. Then we employ a convolutional operation to learn adap-
tive weights while fusing the three layers.

6mbedding feature

FC2

Fused featuh

Stack layer

FC3

512-Dim

FC4

\S

Fig. 4. Illustration of the fusion module used in the matching component. A con-
volutional layer is used to learn weights for different spatial elements in FC2, FC3
and FC4.

We denote the stack layer in the two branches as S(x;) and S(y;),
respectively. The stack layer, a 512 x 3 matrix, is convolved by the
convolutional filter, which has a size of 1x 1 x3. Note that, the
three weights are shared over the spatial dimensions of the stack
layer. We can compute the fused visual feature f{x;) and textual
feature g(y;) by

fx) = W™ o S(x;) + bI™°, (1)

gi) = W™ o S(y;) + bi*, ()

where Wlf “¢ and WTf "¢ are the fusion weights to be learned (i.e.

3 elements) blf”“ and b{“se are the bias vectors (i.e. 512 elements).
The operator ® represents the convolutional operation.

Although the common element-wise operators such as sum-
pooling and inner product are simple to compute, they do not
adapt the importance of different layers. Another fusion approach
is concatenating the three 512-D vectors into one 3*512-D vector.
However, the concatenation output will increase the feature di-
mensionality and make it more expensive to compute the match-
ing loss. To summarize, the convolutional fusion module can pro-
vide marked performance improvements, while it has a minimal
increase to the total parameters used in the network.

Matching loss. As a common practice, the matching distance
between f(x;) and g(y;) is computed with the cosine distance
[6,15,16]

oIl - [lgwoll

Smaller distances indicate more similar image-text pairs. Both
f(x;) and g(y;) are L2-normalized before computing their cosine dis-
tance. To preserve the similarity constraints in the latent space, we
define the matching loss based on an efficient bi-directional rank
loss function, similar to [6,13,52]. The loss function needs to han-
dle the two triplets, (x;, y;, y;k) and (y;, x;, X{Ic)' where X € X and
Y €Y, are the negative images and texts, k= 1,..., K. To exploit
more representative non-matching pairs, we pick the top K most
dissimilar candidates in each mini-batch. Intuitively, this loss func-
tion is designed to decrease the distances of matching pairs (e.g.
x; and y;) and increase the distances of non-matching pairs (e.g.
x; and Yip Vi and x;k). Formally, the matching loss based on the
fused features is formulated via

N K
chee =33 " max [0.d(f(x). g0) — d(f (x)). g¥;,)) +m]

i=1 k=1
+ amax[0,d(f(x;).g¥)) — d(f(x;). W) + m].  (4)
where m is a margin parameter, and « is used to balance the

importance of the two triplets. Minimizing this loss cost will
lead to a desirable latent space, where the matching distance

d(f(x).g8)) =1-
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Fig. 5. Visualization of the visual and textual embedding features learned in the matching component. Each image (in red) is related to several corresponding texts (in
green). We present some images and texts corresponding to the points in the distribution map. The semantic words related to the visual content are shown in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

d(fix;), g(y;)) should be smaller than any of the non-matching ones
d(f(x).8(v;;) and d(f(x;,).8)). Vx, € X ¥yi €Y/ .

In Fig. 5, we make use of the t-SNE algorithm [53] to visualize
our embedding features (i.e. flx;) and g(y;)). We use the 1000 im-
ages and 5000 texts from the MSCOCO test set. It can be seen that
in the distribution map an image feature (in red) is properly sur-
rounded by several related text features (in green), as each image
is annotated by five ground-truth matching texts in the dataset.
Therefore, this visualization shows that our embedding model can
align the images and texts due to learning their semantic corre-
lation. In addition, some images and texts corresponding to the
points are shown in the windows. We can see that the embeddings
can cluster similar images and texts together despite the significant
variations and changes.

3.4. Multimodal classification

The classification component aims to incorporate the visual and
textual embedding features and then generates a multimodal rep-
resentation for predicting object labels. In the following, we detail
the classification component including a bilinear pooling module
and classification loss.

Bilinear pooling. We take advantage of a bilinear pooling mod-
ule to incorporate visual and textual embedding features learned in
the matching component. The bilinear pooling [37] aims to model
the pair-wise multiplicative intersection between all elements of
two vectors. It can generate more expressive features than other
basic operators such as element-wise sum or product. The stan-
dard bilinear pooling is formulated with
B(x.yi) = f(x) gy, (5)
Since f(x;) and g(y;) are 1 x M vectors (i.e. M = 512), B(x;,y;) be-
comes an M x M matrix that is then reshaped to be a 1 x M? vector.
Due to the high dimensionality of the bilinear vector (i.e. M?), we
instead use the compact bilinear pooling (CBP) variant [36], which
can decrease the dimensionality to D (where D « M?) while retain-
ing the strong discrimination. Different from [35,36] in which they
simply perform the CBP module with the input visual or textual

features, we build the CBP module based on the latent embeddings
to generate a multimodal feature vector (Fig. 3).

The computational procedure of the CBP module is detailed in
Algorithm 1. At first, we initialize several hashing functions from

Algorithm 1 CBP with latent embedding features.
1: Input: f(x;) € RM, g(y;) e RM
2: Output: B(x;,y;) € RP
3: Initialize hash functions: hq, s, hy, s
For j <~ 1...M
sample hy[j], hy[j] from {1, ..., D}
sample s{[j], so[j] from {-1, 1}
End for
4: Compute count sketches:
fep =10.....01, g =[0.....0]
For j<1..D
Fa)l il = &)l i1+ 1051 fF(x)L]
Elhalill = 8w lh2lill + 5241 - gl
End for
5: Convolution of count sketches:
B(x;,y;) = FFT~1(FFT(f (x;)) o FFT(§(y))),
where the o denotes element-wise multiplication.

the pre-defined sets. Then, it computes the count sketches [54] to
maintain linear projections of a vector with several random vec-
tors. Finally, we make use of the Fast Fourier Transformation (FFT)
to compute the convolution of the count sketches, and produce a
bilinear vector B(x;,y;) by an inverse FFT. In particular, the count
sketches have the properties:

~

E[(f(x).&y))] = (f(x:). &), (6)

Varl(F). 800)] = 5 ((F6). 200 + 76 I + 10 112).
(7)

Next, the bilinear vector B(x;,y;) is processed by a signed
square-root layer and an L2 normalization layer. Then, we employ a



56

Indigo Bunting

(a)

Y. Liu et al./Pattern Recognition 84 (2018) 51-67

Handbag  Chair Tie

(b)

Fig. 6. (a) Examples of single-label images from CUB-Bird [55]. (b) Examples of multi-label images from MSCOCO [56].

fully-connected layer to estimate the prediction. Assume that there
are C object labels pre-defined in the dataset, the jth class proba-
bility is predicted with

a,j_z

where j=1,...,C. W is the parameter matrix with the size of
D x C. For simplicity, we do not show the signed square-root and
the L2 normalization in this formulation.

Classification loss. The objective of the classification compo-
nent is to minimize the loss cost of the prediction with respect
to the given ground-truth labels. Fig. 6 shows some images that
are annotated by single label or multiple labels. It makes sense
to compute different loss functions for single-label and multi-label
classification, respectively.

kB(xlsyl)k (8)

(1) Single-label classification. For example the fine-grained classifi-
cation in Fig. 6(a), each image is labeled with a fine bird cate-
gory. To train the classification component, we use the softmax
loss function that is represented by

1< .
Las=—5 2D _0(g = J)logpij. 9)
i=1 j=1
exp(a; ;
= p(a; ;) (10)

Y exp(aip)
where g; is the ground-truth label corresponding to x;. 3(g; = j)
is 1 when g; = j, otherwise is 0.

(2) Multi-label classification. As shown in Fig. 6(b), images anno-
tated with multiple labels can provide richer information about
the visual content. Although many of these labels may appear
in the input text, they can still offer complementary labels
which are ignored in the text due to less visual attention. We
employ the sigmoid cross-entropy loss function to supervise the
multi-label classification. The total cost sums up K of element-
wise loss terms

1o & : , ,
Las = N Zzgi_j logp; ; + (1 -g;;)log(1 - p; ;). (11)
i=1 j=1
, 1
pij= T+exp(=a;))’ (12)
where g € {0, 1} is the ground-truth label indicating the ab-

sence or presence of the jth class.

4. Training and inference

This section describes the training procedure of the MMC-Net
model. Also, we present the inference manner for multimodal
matching and classification.

4.1. Multi-stage training

The optimization objective in the model is to minimize the to-
tal training loss which merges the matching and classification loss
together

IT‘l}/n Leotal = Lmat + ﬁ[:cl& (13)
where the parameter 8 is used to regulate the two loss terms. The
parameters W in the network mainly contains W; and Wy in the
image and text branches, and W¢pp in the compact bilinear pooling
module.

We propose a multi-stage training algorithm to better model
the matching and classification components. As summarized in
Algorithm 2, the training procedure consists of three stages. Dur-

Algorithm 2 Multi-stage training algorithm for MMC-Net.
1: The first stage: train the matching component.
initialize: learning rate A4, training iterations Ty, t = 0.
while t < T; do
t<t+1
compute the matching loss Lmgq: in Eq. (4);
update the parameters in the image and text branches:

©) _ yt-1) (t) _0Lmar .

Wi =W = awt- s

) _ p(t=1) ) oL .

Wr’=Wrp - A 3W<Taﬁ>'
end while

2: The second stage: train the classification component.
initialize: learning rate A, (< A1), training iterations T, t = 0.
while t < T, do
t<t+1
compute the classification loss £, in Eq. (9) or Eq. (11);
update the parameters in the compact bilinear pooling

module: o
(t) (t-1) (t)
Wegp =Wegp =2, oWl f’f DR
end while

3: The third stage: jointly fine-tune the whole network.
initialize: learning rate A5 (< A;), training iterations T3, t = 0.
while t < T; do
t<—t+1
compute the total loss in Eq. (13);
update all the parameters in the network:

©) _ yt-1) (t) 9L .

VVI _VVI }" 3W2?m11)'

&) _ -1 ) aﬂaa .

Wit =gl - e

(t) (t-1) (t) 9L .

Wegp =Wegp =25 awczggb-
end while
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ing the first stage we train the matching component with the
loss Lmg:. For the second stage, we need to learn the parameters
in the classification component using the loss L. In this stage,
only the parameters in the classification component can be up-
dated whereas the parameters in the matching component are all
frozen. In the third stage, the model is initialized by the parame-
ters learned in the first and second stages. It aims to jointly fine-
tune the whole network based on the total loss L;y. Due to using
this multi-stage fashion, it is feasible to promote the training of the
entire network and maintain the high performance.

Note that, the training of the FFT and inverse FFT in the CBP
module also follows the chain rule of the backward propagation.
As for B(x;,y;), the partial derivatives of £, with respect to f (x;)
and g(y;) can be expressed with

ILes _1 0Lys N

—ds — FFT-!(FFT o FFT(E()) ), 14
o (FFT(%5) o FFTE0) ) (14)
aﬁds _ — 8['6‘15 Flv.
380 = FFT 1<FFT(W) oFFl'(f(xl))), (15)

Similarly, it is straightforward to induce the partial derivatives for
any variables in the model.

4.2. Inference

We present the inference manner for multimodal matching and
classification, respectively.

Multimodal matching. For the image-to-text matching, given
a query image Xq, its purpose is to search for relevant texts w.r.t
Xq from a text database Y. Likewise, the text-to-image matching
aims to retrieve related images from an image database X, given
a query text yq. In the MMC-Net model, the fused visual and tex-
tual features learned in the fusion module are used to compare the
matching distance, denoted as d(f{xq), &(y;)) or d(f(x;), &(yq)), where
yieY, x;eX. The k-nearest neighbor (k-NN) search is used to find
the top-k most similar candidates.

Multimodal classification. Its inference is based on the prob-
abilities predicted by the last fully-connected layer in the classifi-
cation component. For the single-label case, the element that has
the maximum probability corresponds to the predicted class. As for
the multi-label case, the items whose probabilities in the predic-
tion are more than 0.5 are estimated to contain the corresponding
object classes.

5. Experiments

In this section, we evaluate the performance of the proposed
MMC-Net on four well-known multimodal benchmarks. We first
introduce the configuration in the experiments, including the
datasets, evaluation metrics, parameter settings and baseline mod-
els. Then we assess the performance of MMC-Net for tasks of mul-
timodal matching and classification and compare its results with
those of the baseline models. Furthermore, we conduct the abla-
tion study to fully analyze MMC-Net. Lastly, we compare our re-
sults with other state-of-the-art approaches.

5.1. Dataset settings

We performed the experiments on four well-known multimodal
datasets: Pascal Sentence [57], MSCOCO [56], Flowers [58] and
CUB-Bird [55]. Some image and text examples are shown in Fig. 7.

Pascal Sentence [57]. It contains 1000 images from 20 cate-
gories (50 images per category), and one image is described by five
different sentences. We pick 800 images for training (40 images
per category), 100 images for validation (5 images per category),

and 100 images for test (5 images per category). In total, there are
40 x 20 x 5 = 4000 image-text training pairs, 5 x 20 x 5 = 500 val-
idation pairs, and 5 x 20 x 5 = 500 test pairs.

MSCOCO [56]. It includes 82,783 training images and 40,504
validation images in total. We pick five descriptive sentences for
one image and generate 82,783 x 5 = 413, 915 training pairs. For a
fair comparison, we use the same 1000 test images used in recent
works [6,15,16].

Flowers [58]. This dataset [58] contains 102 classes with a total
of 8189 images. 2040 images (train+val) are used in the training
stage and the rest 6149 images are for testing. Reed et al. [8] col-
lected fine-grained visual descriptions for these images by using
the Amazon Mechanical Turk (AMT) platform. One image is de-
scribed by ten sentence-level descriptions. Therefore, we can ob-
tain 2040 x 10 = 20400 training pairs and 6149 x 10 = 61490 test-
ing pairs.

CUB-Bird [55]. It contains 11,788 bird images from 200 cate-
gories. 5994 images are for training, and 5794 images are for test-
ing. Similarly, ten sentences are provided to describe one image
[8]. As a result, it has 5994 x 10 = 59, 940 pairs for training, and
5794 x 10 = 57, 940 pairs for testing.

5.2. Evaluation metrics

We evaluate the performance of multimodal matching and mul-
timodal classification, separately.

Multimodal matching. We employ the widely-used retrieval
metric R@K, which is the recall rate of a correctly retrieved
ground-truth at top K candidates (e.g. K=1,5,10) [3,14]. It in-
cludes results of both image-to-text (I— T) and text-to-image re-
trieval (T—I).

Multimodal classification. We compute the Top-1 classification
accuracy for Pascal Sentence, Flowers and CUB-Bird. Since MSCOCO
is a multi-label classification dataset, we evaluate the performance
on it using the average precision (AP) across multiple classes.

5.3. Implementation details

We implemented the proposed approach based on the pub-
licly available Caffe library [59]. It is important to shuffle the
training samples randomly during the data preparation stage. The
hyper-parameters were evaluated on the validation set of each
dataset. For instance, we set « =2 and m = 0.1 while computing
the matching loss function on all the datasets. The number of non-
matching pairs in the negative sets was K = 20 for Pascal Sentence,
Flowers and CUB-Bird, and K = 50 for MSCOCO. We used a mini-
batch size of 128 for Pascal Sentence, Flowers and CUB-Bird, and
1500 for MSCOCO. Note that, we use a larger K and min-batch
size for MSCOCO, because it has enormously more training sam-
ples, compared to the other three datasets. We trained the model
using SGD with a weight decay of 0.0005, a momentum of 0.9. The
learning rate was initialized with 0.1 and was divided by 10 when
the loss stops decreasing.

5.4. Baseline models

To verify the effectiveness of the proposed MMC-Net, we imple-
mented two baseline models: MM-Net and MC-Net.

MM-Net: A baseline model for multimodal matching as illus-
trated in Fig. 2(a). It only contains the matching component of the
MMC-Net (see Fig. 3), which is trained with the matching loss.

MC-Net: A baseline model for multimodal classification as illus-
trated in Fig. 2(b). It has the similar architecture as the MMC-Net,
however, it does not compute the matching loss between visual
and textual features. MC-Net is only trained with the classification
loss.
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Fig. 7. Example of four multimodal datasets. Three textual descriptions are listed for each image.

Pascal Sentence

1. Two men on a yellow
tandem bicycle rest at the
curb. 2. Two people riding a
tandem bicycle while
wearing lira racing outfits.

3. Two prop-leg ride a
yellow tandem bike while
someone helps. ....

1. A double decker red
United bus on a city street.2.
A doubly decker red bus
driving down the road. 3. A
red, double-decker. 4. Front
and left side of a red double
decker bus.

reader is referred to the web version of this article.)

Table 1
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MSCOCO

1. a woman standing on a
field of grass holding a
tennis racquet. 2. two
children play badminton
with a windmill in the
background. 3. it is always
more fun to play badminton
in front of a windmill. ...

1. a young boy playing
soccer on a grassy field. 2. a
group of kids playing soccer
ona field. 3. small child in
soccer uniform kicking at
yellow ball. 4. a young man
kicking a soccer ball around
afield. ..

Flowers

1. this flower has long white
petals and a white pistil. 2. this
flower is purple and yellow in
color, with petals that are oval
shaped. 3. the petals of the
flower are purple with a yellow
center and have thin filaments
coming from the petals.

1. this is a flower with triangle
shaped dark blue petals. 2. this
flower has a tiny white center
blossom surrounded by veined
and leaf like blue petals with
pointed tips. 3. the petals on this
flower are a bright blue with
blue pistil in the center. ...

CUB-Bird

1. the bird has a blue
wingbar and a long billl that
is black.

2. the bird has a brown head
and chest and wings that are
blue in color. 3. this bird has
avery large pointed bill,
with a blue back

1. a black bird with orange
and yellow wingbars and
black eyes. 2. this bird is all-
black except for a blaze of
red on the coverts with a
short, pointy black beak and
black eyes. 3. bird has black
body feathers, black breast
feather,and pointed beak. ...

(For interpretation of the references to color in this

Image-to-text retrieval results compared between MMC-Net and MM-Net. The proposed MMC-Net can outperform
the baseline MM-Net with considerable gains across all the four datasets.

Method Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 RO@5 R@10
MM-Net 47.0 850 92,0 555 842 914 58.1 825 885 325 614 72.5
MMC-Net 520 870 93.0 57.0 858 927 787 939  96.0 392 669 764

Table 2

Text-to-image retrieval results compared between MMC-Net and MM-Net. Compared to MM-Net, MMC-Net can
achieve better retrieval results on the four datasets.

figure legend, the

5.5. Results on multimodal matching

We conducted the cross-modal retrieval experiments on the
four datasets. To verify the effectiveness of adding a classification
component in MMC-Net, we use the baseline MM-Net for compar-
ison. Tables 1 and 2 report the results of image-to-text and text-
to-image retrieval, respectively. Overall, MMC-Net can achieve con-
siderable improvements over MM-Net for both | - T and T— I re-
trieval. These results reveal that the classification component in
MMC-Net can help in improving the learning of embedding fea-
tures in the matching component. Moreover, we can observe more
insights from these results as follows:

e By comparison with MM-Net, MMC-Net yields more perfor-
mance gains on Flowers and CUB-Bird than Pascal Sentence and
MSCOCO. For example, the performance gap between MMC-
Net and MM-Net is below 5% on Pascal Sentence and MSCOCO,
but above 5% on Flowers and CUB-Bird across all the measure-
ments. One reason is that both Flowers and CUB-Bird are fine-
grained datasets, and the textual descriptions cannot fully rep-
resent the discrimination among different samples. Hence, the
results of MM-Net are limited on these two datasets. Instead,
MMC-Net can make use of fine-grained class labels to enhance
the discriminative abilities when matching images and texts.

o The results of T— I retrieval are lower than those of the - T
retrieval on the four datasets. This is because each image can
retrieve several related textual descriptions, but one text cor-
responds to only one matched image. We believe that refining
the datasets is a favorable solution to narrow the performance
gap between the |- T and T — I retrieval.

o For Flowers and CUB-Bird, their results are still not satisfactory,
especially for the T—1 retrieval. Currently, the fine-grained

Method Pascal Sentence MSCOCO Flowers CUB-Bird
R@1 R@5 R@10 R@1 R@ R@10 R@1 R@® R@10 R@1 R@®5 R@10
MM-Net 384 806 886 4477 795 895 327 464 529 183 256 288
MMC-Net  41.0 812 925 46.2 80.8 90.5 436 548 58.6 258 314 345
Table 3

Comparison of the multimodal classification accuracy between MMC-
Net and MC-Net. For the four datasets, MMC-Net can outperform MC-
Net with consistent performance gains.

Method Pascal Sentence  MSCOCO  Flowers CUB-Bird
MC-Net 71.0 77.6 94.0 80.7
MMC-Net  74.0 79.3 95.2 82.4

multimodal matching still remains challenging in the research
field, but it is a promising research direction in the future.

In addition, we present the qualitative retrieval results as
shown in Fig. 8. We can observe that MMC-Net obtains better re-
trieved candidates than MM-Net, for both I - T and T — I retrieval.
Furthermore, we visualize the visual and textual embedding fea-
tures learned in the matching component of MMC-Net. As men-
tioned earlier in 5, it has shown the embedding map with the
MSCOCO test set. Similarly, we illustrate the embedding features
with the Pascal Sentence test set that consists of 100 images and
500 texts. As shown in Fig. 9(a), each point corresponds to one
sample (an image or a text) from the 20 Pascal categories. Also,
we detail the embedding features per category in Fig. 9(b1)-(b20).
It is clear to observe the matching relation between images and
texts.

5.6. Results on multimodal classification

Next, we conducted the multimodal classification experiments
on the datasets. To demonstrate the benefit of using a match-
ing component for classification, we compare the MMC-Net model
with the baseline MC-Net model. Table 3 reports the classification
results, where MMC-Net achieves consistent improvements over
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Query Image MM-Net: Retrieved texts MMC-Net: Retrieved texts
1. People riding tandem bicycle. 1. Two prop-leg ride a yellow tandem bike while someone helps.
Pascal 2. Two prop-leg ride a yellow tandem bike while someone helps. | 2. People riding tandem bicycle.
3. Young man wearing jeans and helmet rides his motorcycle 3. Two people riding a tandem bicycle while wearing lira racing
Sentence in front of a small crowd. outfits.
4. A man wearing a helmet does a wheelie on a motorcycle as 4. Young man wearing jeans and helmet rides his motorcycle in front
a crowd watches. of a small crowd.
1. a man putting together a kite on the floor of a room. 1. aman putting together a kite on the floor of a room.
MSCOCO 2. man folding banner while holding stick in unfinished carpet. 2. man folding banner while holding stick in unfinished carpet.
P 3. aman folding a giant paper airplane on the floor. 3. aman folding a giant paper airplane on the floor.
4. atiny toddler carries a giant bookbag and bag. 4. aman inside a room putting together a white kite.
1.this flower is pink and white in color, with petals that have 1.this flower is pink and white in color, with petals that have pink
pink veins. veins.
Flowers 2. this pink flower has several filaments sticking out of the 2. this flower has pale pink petals with veins and a white center.
receptacle. 3. this flower has very light pink petals that have darker pink veins, a
3. this flower has pale pink petals with veins and a white center. yellow ovary, and white stamen.
4. this flower has petals that are pink with long stamen. 4. this pink flower has several filaments sticking out of the receptacle.
1. a dark brown beak with a long beak and large wingspan. 1. a dark brown beak with a long beak and large wingspan.
2. this bird has a dark grey color, with a large bill and long 2. large bird that is complete brown, with white stripes littering it's
. wingspan. wings and a long blunted bill.
CUB-Bird 3. this dull colored bird is brown all over, has large wings and a 3. a bird with a large, hooked bill, white superciliary and cheek patch,
long large bill. brown crown, and brown body.
4. a bird with a large, hooked bill, white superciliary and cheek 4. this dull colored bird is brown all over, has large wings and a long
patch, brown crown, and brown body. large bill.
(a) Image-to-text retrieval
Query Text MM-Net: Retrieved images MMC-Net: Retrieved images
Pascal An Swiss-Air flight
Sentence  1as just taken off
from a runway.
a woman in white
MSCOCO  hirt holding
bananas next to door.
the bright orange petals
are highlighted by brown
Flowers  spots and the prominent
stamen are topped with
dark brown anthers.
this bird is light = 4
CUB-Bird brown, has a long - S i
hooked bill, and 5 E :
looks dumb. \- o [ |

(b) Text-to-image retrieval

Fig. 8. Image-text retrieval examples on the datasets. For (a) image-to-text retrieval, the ground-truth matching texts are in green. For (b) text-to-image retrieval, the red
number in the upper left corner of one image is the ranking order, and the green frame corresponds to the ground-truth matching image. For the |- T and T — I retrieval,
MMC-Net can retrieve more accurate candidates than MM-Net. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

MC-Net across all the four datasets. It shows that the matching
component is able to promote the classification component due to
combining the embedding features to generate more discrimina-
tive multimodal representations. Also, MMC-Net has a generaliza-
tion ability for different types of classification datasets, including
either natural images or fine-grained images.

In addition, we show some classification examples in Fig. 10.
It can be seen that MMC-Net can predict more accurate classes
than MC-Net. Note that MSCOCO has multiple ground-truth labels.
Furthermore, we visualize the multimodal representation captured
from the CBP module in MMC-Net. Fig. 11(a) and (b) illustrate the
multimodal features with the Flowers and CUB-Bird test images,
respectively. We can observe clear separations among different cat-
egories.

5.7. Ablation study

In the following, we perform an ablation study to provide more
insights into MMC-Net.

5.7.1. Analysis of parameters

First of all, we analyze the effects of three key parameters used
in MMC-Net.

Effect of the mini-batch size. Since the loss function for mul-
timodal matching aims to search for hard negative samples, it is
essential to define a large mini-batch to increase the search space.
For example, we selected a mini-batch size of 1500 for MSCOCO
due to its large-scale data. To study the effect of varying different
batch sizes, we used different batch sizes to train MMC-Net and
tested their performance. Considering the number of negative pairs
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Fig. 9. Visualization of the embedding features of the Pascal Sentence test set. (a) 100 images and 500 texts are projected to the 2-D space based on the t-SNE algorithm.
They are labeled with the corresponding categories. (b1)-(b20) The embedding map for each category. The images and texts are described by ‘O’ and ‘X', respectively. For
some categories (e.g. ‘bicycle’, ‘bird’, ‘boat’), we can see that MMC-Net can learn the desirable matching between images and texts, but it is still difficult for other categories
(e.g. ‘bus’, ‘cat’, ‘motorbike’).

Pascal Sentence MSCOCO Flowers CUB-Bird
A striped 5 the petals of a bird with a
sofa and altenms the flower medium
office payer are purple in yellow bill,
N wiping .
chairs are his face color and white body
near a ping off with have green webbed feet
pong a towel stems with and gray
table. wek green sepals. wings.
1. chair 1. person 1. bolero deep blue 1. Glaucous winged Gull
2. tv/monitor 2. chair 2. garden phlox 2. Ring billed Gull
MC-Net 3. sofa 3. sports ball 3. canterbury bells 3. California Gull
4. diningtable 4. tennis racket 4. bougainvillea 4. Herring Gull
5. bottle 5. dining table 5. snapdragon 5. Heermann Gull
1. sofa 1. person 1. canterbury bells 1. Herring_Gull
2. chair 2. tennis racket 2. bolero deep blue 2. California_Gull
MMC-Net | 3. Diningtable 3. chair 3. foxglove 3. Western_Gull
4. tv/monitor 4. bench 4. stemless gentian 4. Ring_billed Gull
5. potted plant 5. sports ball 5. garden phlox 5. Slaty_backed_Gull

Fig. 10. Multimodal classification examples on the datasets. Given an input image-text pair, the Top-5 predictions are estimated based on MC-Net and MMC-Net. The ground-
truth classes are in green. By comparison, MMC-Net obtains more accurate predictions than MC-Net. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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(b) 200 bird categories

Fig. 11. Visualizing the multimodal features learned in the classification component of MMC-Net. (a) 6149 images from the Flowers test set. (2) 5794 images from the

CUB-Bird test set. Images are properly grouped into different clusters as shown in color.

Table 4

Effect of the mini-batch size on the performance of MMC-Net. We train
the model with different mini-batch sizes and compare their retrieval re-
sults on MSCOCO.

Method Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

Text-to-Image

batch size = 100 425 746 874 366 738 868
batch size = 250 526 833 917 430 795 894
batch size = 500 566 853 927 46.0 805 901
batch size = 1000 562 858  93.0 46,5 805 901
batch size = 1500  57.0 858 927 462 808 905
batch size = 2000 56.7 855 928 46.7 80.6 904

in each mini-batch is K = 50 for MSCOCO, we varied the batch size
with 100, 250, 500, 1000, 1500 and 2000. Table 4 compares the
retrieval results on MSCOCO with different batch sizes. We can ob-
serve that the performance is low when the batch size is 100. By
increasing the size to 500, it can achieve significant gains across
all the measurements. We further raise the size to 2000, however
there is no important influence on the results. Finally, we select
batch size=1500 due to its slightly superior results.

Effect of the parameter 3. Recall that MMC-Net is trained by
integrating the matching and classification loss, we use the param-
eter B to balance the weights of the two loss functions as de-
fined in Eq. 13. This experiment aims to analyze the effect of 8 on
the performance. Fig. 12 shows the cross-modal retrieval results on
Pascal Sentence. The R@1, R@5 and R@10 results are shown sepa-
rately, when B varies from 0.1 to 1. We pick 8 = 0.5 by fully com-
paring these results.

Effect of the parameter D. In the classification component, a
CBP module can integrate visual and textual embedding features
into a D-dimension multimodal vector. In this experiment, we an-
alyze D with {512, 1024, 2048, 4096, 8192, 20000}, which are all
significantly lower than the original bilinear pooling vector (i.e.
512 x 512 = 262, 144). In Fig. 13, we present the compared results
on Pascal Sentence. When D = 2048, MMC-Net can achieve better
results compared to others.

Since MSCOCO is also composed of scene images like Pascal
Sentence, it is straightforward and general to employ the same
parameters B8 and D. In contrast, Flowers and CUB-Bird are com-

Table 5

Analysis of the fusion module used in MM-Net and MMC-Net. The R@K results on
Pascal Sentence are reported. By comparison, the convolutional fusion module can
achieve better results than others.

Method Fusion module  Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10

MM-Net No 45.0 82.0 91.0 35.6 75.8 87.0
MM-Net summation 46.0 83.0 91.0 36.8 776 87.6
MM-Net Multiplication 46.0 84.0 91.0 372 78.4 87.6
MM-Net Convolution 47.0 85.0 92.0 384 80.6 88.6
MMC-Net No 51.0 85.0 92.0 376 80.6 92.0
MMC-Net summation 51.0 86.0 92.0 384 81.0 92.0
MMC-Net Multiplication 51.0 86.0 92.0 39.0 81.0 92.0
MMC-Net Convolution 52.0 87.0 93.0 41.0 812 92.5

monly used for fine-grained recognition. It is needed to evaluate
their parameters different from Pascal Sentence and MSCOCO. To
this end, we estimated the effects of the parameters on the classi-
fication accuracy of Flowers, and then applied the same parameters
to CUB-Bird for generalization. Fig. 14 presents the analysis of pa-
rameters on Flowers. As for the parameter S shown in Fig. 14(a),
the best precision accuracy, 95.1%, is reached by = 1.2. As shown
in Fig. 14(b), the accuracy is maximized (i.e. 95.2%) when D = 4096.
In the experiments, we set § = 1.2 and D = 4096 for Flowers and
CUB-Bird. Additionally, we show the confusion matrix of 102 Flow-
ers categories in Fig. 14(c).

5.7.2. Analysis of the fusion module

This test aims to verify the effectiveness of using the fusion
module in the matching component. We build a convolutional fu-
sion module in MMC-Net which can also be applied on the base-
line MM-Net. In Table 5, we report the results for both MMC-Net
and MM-Net on the Pascal Sentence test set. We can see that using
a fusion module can improve all R@K performance measurements
by a considerable margin, compared to the counterparts without
using any fusion module. For an additional comparison, we fur-
ther implement two simple fusion modules: element-wise summa-
tion and multiplication. Their results are inferior to those of the
convolutional fusion, because they do not consider the weights of
different layers. Instead, the convolutional fusion can learn adap-
tive weights to produce a superior fused feature while spending
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Fig. 13. Effect of the parameter D on the performance of MMC-Net. We present the retrieval results on Pascal Sentence by using different sizes of D. We select D = 2048

that can bring better results.

only three parameters. All the weights can be learned dynamically
and adaptively with other network parameters, without introduc-
ing any manual tuning.

Moreover, we delve into analyzing the adaptive weights of dif-
ferent layers learned in the convolutional fusion module. Fig. 15
demonstrates their distributions during the training procedure.
Since there are three layers (i.e. FC2, FC3, FC4) in the fusion mod-
ule, we initialize their weights with 0.33. It can be seen that the
weights in both of image and text branches tend to be stable af-
ter a number of training epochs. In particular, the weight of the
FC2 layer is smallest, which demonstrates that its feature repre-

sentation is less powerful than those of the FC3 and FC4 layers. In
addition, the FC4 layer is less important than the FC3 layer. This
implies that increasing the depth may not improve the represen-
tation learning any more. Hence, we do not develop more layers
behind the FC4. Lastly, all the three layers play essential roles in
the fusion module, even though they learns individual and differ-
ent weights.

5.7.3. Analysis of the CBP module
We conduct this experiment to test the use of the CBP mod-
ule in MMC-Net. For comparison, we present two other methods
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Table 6

Analysis of the CBP module in MMC-Net. The R@K results on Pascal Sentence are re-
ported, which demonstrate the effectiveness and efficiency of using the CBP module.

Method Dimension  Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10
MMC-Net with FC 1024 500 86.0 920 396 804 90.0
MMC-Net with BP 262144 530 83.0 93.0 41.5 815 925
MMC-Net with CBP 2048 520 870 93.0 41.0 812 925
Table 7

to integrate the visual and textual features. For the first method,
we concatenate the two features to construct a multimodal rep-
resentation and then feed it into a fully-connected (FC) layer to
perform the classification. The second one is using the traditional
bilinear pooling (BP) to produce a high-order multimodal repre-
sentation. Table 6 reports the compared results of different classi-
fication modules. The model with CBP can obtain considerable im-
provements over the one with FC. The MMC-Net with BP achieves
better results than other methods, while its multimodal represen-
tation has higher dimensionality. On the contrary, CBP can main-
tain the high accuracy and efficiency.

5.7.4. Analysis of combining vision and language

This experiment is used to verify the advantage of incorporat-
ing visual and textual representations. As reported in Table 7, we
compare the results between combining visual and textual features
(i.e. MMC-Net) and using only visual features. We can observe that
combining vision and language can achieve significantly superior
accuracies on Flowers and CUB-Bird. Although visual features can
enable the models to achieve promising performance, the informa-
tive textual features can further help improve the classification ac-
curies. This shows the effectiveness of capturing multimodal repre-
sentations from both vision and language. Furthermore, Fig. 16 an-

Analysis of combining vision and language. We report the Top-1 classification rates
on Flowers and CUB-Bird. The model with both vision and language outperforms
the model with only vision.

Method Flowers CUB-Bird
Only vision 92.2 78.8
Vision and language 95.2 824

alyzes the test rates during the training iterations. It can be seen
that the vision and language model can consistently outperform
the vision model in the entire training stage.

5.7.5. Analysis of image encoders

As aforementioned in Section 3.2, we employ the ResNet-152
model to encode the input image. In this experiment, we aim to
study the effect of different image encoders. For a fair comparison
with DSPE [6], we provide the results of MMC-Net with VGG-19.
Also, we implement the DSPE with ResNet-152. Table 8 reports the
compared results on MSCOCO. For both VGG-19 and ResNet-152,
our MMC-Net can outperform DSPE across all the measurements.
We should realize that the improvements of MMC-Net come from
two aspects. First, the matching component in MMC-Net has more
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Analysis of image encoders. The image feature dimensions are also presented. MMC-Net has better

matching results on MSCOCO than DSPE [6].

Method Image encoder  Dimension Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10
DSPE VGG-19 4096 40.7 742 853 335 687 832
MMC-Net  VGG-19 4096 46.0 797 892 389 735 875
DSPE ResNet-152 2048 53.1 82.7 902 435 782 889
MMC-Net  ResNet-152 2048 57.0 858 927 46.2 80.8 90.5
Table 9

Comparison with other state-of-the-art approaches on Pascal Sentence for image-text retrieval. Best
results are in bold face. The CNN and RCNN models for [60] and [13] are based on AlexNet [63].

Method Image encoder Text encoder Image to Text  Text to Image
R@1  R@5 R@1 R@5
SDT-RNN [60] CNN DT-RNN 23.0 450 164  46.6
kCCA [60] CNN Word vector 21.0 470 164 414
DeViSE [52] AlexNet skip-gram 17.0 57.0 21.6 54.6
SDT-RNN [60] RCNN DT-RNN 250 56.0 254 652
DFE [13] RCNN Word vector 39.0 68.0 236 652
MDL-CW [61] feature from [62]  feature from [62] 34.0  70.0 35.2 72.6
Mean Vector [46] VGG-16 Mean vector 525 832 449 849
GMM-+HGLMM [46]  VGG-16 HGLMM 559 862 440 85.6
Proposed MMC-Net ResNet-152 Mean vector 52.0 87.0 41.0 81.2

layers than that of DSPE, ie. four layers v.s. two layers. Second,
MMC-Net utilizes a classification component to help improve the
matching performance. This is the main motivation in this work.
Note that, both MMC-Net and DSPE in Table 8 use the Mean vec-
tor to encode the input text. In [6], they also present another ex-
pensive textual representation using the Hybrid Gaussian-Laplacian
mixture model (HGLMM) [46], i.e. a 18000-dimension vector. Cur-
rently, we do not introduce HGLMM to MMC-Net, even though it
can help increase the performance.

5.8. Comparison with other approaches

For Pascal Sentence and MSCOCO, we compare our match-
ing results with other state-of-the-art approaches. As reported in
Tables 9 and 10, MMC-Net can achieve competitive performance
with the state-of-the-art. To be more specific, the method in
[46] is effective on small-scale datasets, so it can obtain state-of-
the-art results on Pascal Sentence. However, it does not have a
strong generalization on large-scale datasets, for example their re-
sults on MSCOCO are not quite competitive. In contrast, the pro-
posed MMC-Net maintains the high performance on both of small-
scale and large-scale datasets. Moreover, we show the image and

text encoders used in different approaches. Both of DSPE [6] and
2WayNet [16] extracted the visual features based on the VGG-19
model, while they rely on a more complicated HGLMM textual rep-
resentation [46] than the Mean vector used in MMC-Net. As early
discussed (Section 3.2), we did not use the HGLMM representation
in order to maintain the training efficiency. For a fair comparison,
MMC-Net with VGG-19 and Mean vector (in Table 8) can outper-
form DSPE with significant improvements, and can compete with
2WayNet while it uses the HGLMM representation. Lastly, we clar-
ify that any common feature encoders for images and texts can be
potentially adopted to MMC-Net. Exploring more efficient feature
encoders is a fundamental and promising work.

For Flowers and CUB-Bird, we compare the fine-grained classi-
fication results with the state-of-the-art. Table 11 reports the com-
parison details. Since the compared methods do not utilize textual
representations, we instead show the CNN model used in the im-
age encoder and the network depth. Note that, these approaches
are divided into two groups based on whether the CNN model is
finetuned on the target dataset. First, it can be seen that, MMC-Net
achieves better results than other approaches without performing
the fine-tuning step. Second, MMC-Net can even compete with the
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Table 10
Comparison with other state-of-the-art approaches on MSCOCO for image-text retrieval. Best results are in bold
face.
Method Image encoder  Text encoder  Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10
DVSA [14] RCNN RNN 384 699 805 274 602 748
Mean vector [46] VGG-16 Mean vector 33.2 61.8 75.1 24.2 56.4 724
GMM-+HGLMM [46] VGG-16 HGLMM 394 679 809 251 59.8 76.6
m-RNN [3] VGG-16 RNN 41.0 73.0 835 290 422 770
RNN-FV [64] VGG-19 RNN 41.5 720 829 292 647 804
mCNN(ensemble) [15]  VGG-19 CNN 428 731 841 326 686 828
DSPE [6] VGG-19 Mean vector  40.7 742 853 335 687 832
DSPE [6] VGG-19 HGLMM 50.1 79.7 892 396 752 869
2WayNet [16] VGG-16 HGLMM 558 752 - 397 633 -
Proposed MMC-Net ResNet-152 Mean vector 57.0 858 92.7 462 808 905

Table 11

Comparison with other approaches on Flowers and CUB-Bird. Best results are in bold face. The
methods in the upper part fine-tune the original CNN models, however, the ones in the lower
part do not perform the fine-tuning process. We do not use the bounding box annotations in the
datasets. Note that, we use the numbers to describe the depth of the image encoders. The dimen-
sion of MMC-Net indicates the multimodal representation extracted from CBP.

Method Image encoder  Finetune  Dimension  Flowers  CUB-Bird
Deep Optimized [65] CNN-16 Yes 4096 91.3 67.1
Part R-CNN [66] DeCAF-8 Yes 4096 - 76.5
Two-level attention [67] AlexNet-8 Yes 4096 - 779
Deep LAC [68] AlexNet-8 Yes 12,288 - 80.3
NAC-const [69] AlexNet-8 Yes 4096 91.7 68.5
NAC-const [69] VGG-19 Yes 4096 95.3 81.0
Bilinear CNN [38] VGG-16 Yes 250k - 84.0
PD+FC+SWFV-CNN [70] VGG-16 Yes 70k - 845
MsML+ [71] DeCAF-8 No 134,016 89.5 67.9
BoSP [72] VGG-16 No 5120 94.0 -
RI-Deep [73] VGG-19 No 4096 94.0 72.6
ProCRC [74] VGG-19 No 5120 94.8 783
MG-CNN [75] VGG-19 No 12,288 - 81.7
Proposed MMC-Net ResNet-152 No 4096 95.2 824

Table 12
Summary of the parameters used in the MMC-Net for matching and classification,
and the time for running the multi-stage training algorithm.

Dataset #Params for matching #Params for classification Time (hours)
Pascal Sentence ~ 8 millions ~41,000 ~0.3
MSCOCO ~ 8 millions ~ 164,000 ~70
Flowers ~ 8 millions ~418,000 ~0.5
CUB-Bird ~ 8 millions ~ 820,000 ~13

approaches with the finetuning step. For example, our results on
Flowers is competitive with NAC-const [69]. Also, our approach is
superior over most approaches on CUB-Bird, except Bilinear CNN
[38] and PD+FC+SWFV-CNN [70]. However, we can see that both
Lin et al. [38] and Zhang et al. [70] produce a significantly more
expensive feature vector than MMC-Net. We should realize that
additional fine-tuning techniques have potential to improve perfor-
mance, but are not the focus of this work. Our competitive results
are partly due to the use of the ResNet-152 model, while we be-
lieve this should not decrease the effectiveness of our approach.

5.9. Computational cost

We conducted the experiments on a NVIDIA TITAN X card with
12 GB memory. In practice, we first extracted visual and textual
features for all training samples using the off-the-shelf feature en-
coders. Then, we take as input these input features for the match-
ing and classification components. Since the network parameters
in MMC-Net are not expensive, it is feasible and rewarding to use
a large mini-batch size to improve the training (in Section 5.3). In
Table 12, we show the training parameters in the matching and

classification component, and the multi-stage training time cost
on the four datasets. The MSCOCO dataset consumes more train-
ing time due to its large-scale data. In summary, MMC-Net is an
efficient network with a decent model complexity.

6. Conclusion and future work

In this work, we proposed a unified network for joint multi-
modal matching and classification. The proposed MMC-Net can si-
multaneously learn latent embeddings in the matching component,
and generate a multimodal representation vector in the classifica-
tion component. Consequently, the two components can help pro-
mote each other by combining their loss functions together. We
evaluated our approach on four well-known multimodal datasets.
The experimental results demonstrated the robustness and effec-
tiveness of the MMC-Net model, compared to the baseline mod-
els. In addition, our approach achieved competitive results with
the state-of-the-art approaches. The results showed its promising
generalization for diverse multimodal tasks related to matching or
classification.

In the future, it is feasible to advance the three components
in the MMC-Net. For example, fine-tuning the feature encoders on
the target datasets, adding intermediate supervisory signals in the
matching component, and improving the compact bilinear pooling
module in the classification component. In addition, it is straight-
forward to adapt MMC-Net to a wider variety of multimodal tasks,
including image captioning, visual question answering, and video
summarization. Moreover, the attention mechanism is potential to
be introduced in the MMC-Net.
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