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ABSTRACT

This paper presents a simple, novel, yet highly effective approach
for robust face recognition. Given LBP-like descriptors based on
local accumulated pixel differences, Angular Differences (AD) and
Radial Differences (RD), the local differences are decomposed into
complementary components of signs and magnitudes. The proposed
descriptors have desirable features: (1) robustness to lighting, pose,
and expression; (2) computation efficiency; (3) encoding of both mi-
crostructures and macrostructures; (4) consistent in form with tradi-
tional LBP, thus inheriting the merits of LBP; and (5) no required
training, improving generalizability.

From a given face image, we obtain six histogram features, each
of which is obtained by concatenating spatial histograms extracted
from nonoverlapping subregions. The Whitened PCA technique is
used for dimensionality reduction, followed by Nearest Neighbor
classification.

We have evaluated the effectiveness of the proposed method on
the Extended Yale B and CAS-PEAL-R1 databases. The proposed
method impressively outperforms other well known systems, includ-
ing what we believe to be the best reported performance for the the
CAS-PEAL-R1 lighting probe set with a recognition rate of 72.3%.

Index Terms— Face recognition, Feature extraction, Local bi-
nary pattern, Local descriptors

1. INTRODUCTION

Face recognition, as one of the most successful applications of im-
age analysis and understanding, has received considerable attention
in the past decades due to its challenging nature and to its vast range
of applications, with excellent surveys given in [1]. Nevertheless
it remains a great challenge to design good face descriptors which
achieve the three competing goals of computational efficiency, dis-
criminability, and robustness to intraperson variations (including
changes in illumination, pose, expression, age, blur and occlusion).

Recently, local feature descriptors for face recognition have
attracted increasing attention and have achieved excellent perfor-
mance. Among the local feature based approaches, Local Binary
Patterns (LBP) have emerged as one of the most prominent face
analysis method since the pioneering work by Ahonen et al. [2].
A number of LBP variants have been presented for face recogni-
tion, noticeable examples including the Local Gabor Binary Pattern
Histogram Sequence (LGBPHS) method [3] and the Histogram of
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Fig. 1. Central pixel xc and its p circularly and evenly spaced neigh-
bors on a circle of radius r.

Gabor Phase Patterns (HGPP) [4]. There have been three very re-
cent LBP-related approaches: the POEM by Vu et al. published in
2012 [5], which computes LBP-like features from SIFT histograms;
the LQP by Hussain et al. published in 2012 [6], which first learns
significant LQP patterns globally with KMeans clustering and then
uses them to encode the face images; and the Discriminant Face
Descriptor (DFD) by Lei et al. published in 2013 [7], which works
quite well in face identification and verification, however it is quite
complex, involves a number of parameters, has high dimensional-
ity, and requires a time consuming training process with sufficient
training data for stability.

LBP encodes only the relative intensity relationships between a
pixel and its neighbors. Our focus is on LBP-like feature extrac-
tion, exploiting the complementary information contained by pair-
wise pixel comparisons between neighboring pixels. In particular,
we are motivated by our recent work on texture classification [8],
where four LBP like descriptors — Center Intensity based LBP (CI-
LBP), Neighborhood Intensity based LBP (NI-LBP), Radial Dif-
ference based LBP (RD-LBP) and Angular Difference based LBP
(AD-LBP) — were proposed, as were the multiscale joint histogram
features of CI-LBP, NI-LBP and RD-LBP, which were found to be
highly effective for rotation invariant texture classification.

In this paper we intend to extend the idea behind the work in [8]
to the face recognition problem by proposing a more generalized for-
mulation, the Extended Local Binary Pattern (ELBP). The remainder
of this paper is organized as follows: Section 2 presents the details of
our proposed extended LBP like descriptors and the face recognition
pipeline, and experimental results are presented in Section 3.

2. EXTENDED SET OF LBP DESCRIPTORS

2.1. A Brief Review of LBP

LBP characterizes the spatial structure of a local image texture by
thresholding a 3× 3 square neighborhood with the value of the cen-
ter pixel and considering only the sign information to form a local
binary pattern. A more general formulation defined on a circular



symmetric neighborhood was proposed in [9] that allowed for multi-
resolution analysis and rotation invariance.

Formally, given a pixel xc in the image, the LBP pattern is com-
puted by comparing its value with those of its p neighboring pixels

xr,p = [xr,p,0, . . . , xr,p,p−1]
T

that are evenly distributed in angle on a circle of radius r centered
on xc, as in Fig. 1, such that the LBP response is calculated as

LBPr,p =

p−1∑
n=0

s(xr,p,n − xc)2
n, s(x) =

{
1 x ≥ 0
0 x < 0

(1)

where s() is the sign function. Relative to the origin of the
center pixel xc, the coordinates of the neighbors are given by
−r sin(2πn/p), r cos(2πn/p). The gray values of neighbors which
do not lie exactly at a pixel location are estimated by interpolation.

In order to reduce the dimensionality of the original descrip-
tor LBPr,p, Ojala et al. [9] introduced the so called uniform LBP
operator, denoted as LBPu2

r,p, which is a preferable choice for the
face recognition problem [2]. However, changes in p may cause
big differences in the length of the feature vector. As recommended
by Ahonen [2], the LBPu2

r,8 operator is selected for face recognition
since it is a good trade-off between recognition performance and fea-
ture vector length. In our ELBP approach, presented in this paper,
the traditional LBPr,p descriptor is adopted as one member and is
renamed as LBP Sr,p, representing the sign component of the local
differences.

More recently, Guo et al. [10] proposed a complete LBP for tex-
ture classification, which includes both the sign and the magnitude
components between a given central pixel and its neighbors in order
to improve the discriminative power of the original LBP operator.
The operator derived from the sign component is the same as the
original LBP operator defined in (1). The operator computed from
the magnitude component, denoted as LBP M, performs a binary
comparison between the absolute value of the difference between
the central pixel and its neighbors and a global threshold to generate
an LBP-like code:

LBP Mr,p =

p−1∑
n=0

s(|xr,p,n − x0,0| − µr,p)2
n (2)

where µr,p = 1
p

∑p−1
n=0 |xr,p,n − x0,0|. Here µr,p is different from

the the global threshold used in [10]. The LBP Mr,p descriptor de-
fined in equation (2) is also adopted as one member in our ELBP.

2.2. Angular Differences-Based Descriptors

LBP encodes only the relationship between a central point and its
neighbors. Although it has been extended to facilitate analysis of
image textures at multiple scales [9] by varying the sampling ra-
dius r and the number of sampling points p, important information
regarding the relationship between neighboring points on the same
radius (intra-radius) and the relationship between neighboring points
across different radii (inter-radius) is lost.

As a parallel development to the intensity descriptors just de-
veloped, we also propose pixel differences in radial and angular di-
rections on a circular grid, different from the traditional pixel dif-
ferences which are computed in horizontal and vertical directions.
More specifically, we propose two families of related descriptors, the
Angular Difference-based Local Binary Pattern (ADLBP) and the
Radial Difference-based Local Binary Pattern (RDLBP), designed
to encode additional types of local texture information. Similar to
LBP S and LBP M, both the sign and magnitude components of an-
gular and radial differences will be considered, leading to a total
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Fig. 2. The proposed extended set of LBPs are built up of three classes: (a) Intensity
based LBPs, (b) Angular difference based LBPs, and (c) Radial difference based LBPs.

of four different descriptors ADLBP S, ADLBP M, RDLBP S and
RDLBP M, as illustrated in Fig. 2. The proposed new descriptors are
not so much competitive with traditional LBP, rather complemen-
tary. We first introduce the derivation of the angular-difference de-
scriptors ADLBP S and ADLBP M, and then introduce RDLBP S
and RDLBP M in Section 2.3.

For each pixel in the image, we consider the accumulated angu-
lar differences computed from its neighbors distributed uniformly in
the ring of radius r. Similar to the sampling scheme in the original
LBP approach, we sample pixels around a central pixel, however on
any circle of radius r we restrict the number of points sampled to be
a multiple of eight, thus p = 8q for some positive integer q, control-
ling the number of sampling points on radius r. Thus the neighbors
of x0,0 sampled on radius r are xr,8q = [xr,8q,0, · · · , xr,8q,8q−1]

T .
Motivated by the success of the radial difference descriptor in

[8], we consider averaging angular differences over more than one
radius. Empirical tests suggest that averaging over two adjacent radii
produces the best results, so the ADLBP S descriptor is computed by
accumulating the angular differences of radii r and r − 1:

ψ
r,δ,q

= ∆Ang
r,δ,q +∆Ang

r−1,δ,q (3)

where

∆Ang
r,δ,q = [∆Ang

r,δ,q,0, · · · ,∆
Ang
r,δ,q,8q−1]

T (4)

∆Ang
r,δ,q,n = xr,p,n − xr,p,mod(n+δ,p) (5)

where the latter term ∆Ang
r,δ,q,n is the angular difference computed

with given angular displacement δ(2π/p), where δ is an integer such
that 1 ≤ δ ≤ p/2. xr,p,n and xr,p,mod(n+δ,p) correspond to the val-
ues of pixels at radius r spaced δ elements apart. Function mod(x, y)
is the modulus x of y.

Considering the rapid increase in the number of binary patterns
as a function of the number of sampling points p, we don’t want to
derive local binary patterns directly from ψAng

r,δ,q
, instead we trans-

form the accumulated angular difference vector ψAng
r,δ,q

into a new

vector ϕAngSign
r,δ,q

by local averaging along an arc,

ϕAngSign
r,δ,q,n =

1

q

q−1∑
k=0

ψAng
r,δ,q,(qn+k), n = 0, . . . , 7, (6)

as illustrated in Fig. 2, such that the number of neighbors in ϕAngSign
r,δ,q

is always eight.



Given the sign component vector

ϕAngSign
r,δ,q

= [ϕAngSign
r,δ,q,0 , · · · , ϕ

AngSign
r,δ,q,7 ]

T , (7)

we can trivially compute a binary pattern as in LBP S:

ADLBP Sr,δ,q =

7∑
n=0

s(ϕAngSign
r,δ,q,n)2

n (8)

where function s(x) is defined in (1). One can easily see that for any
parameter pair (r, q) there are 28 = 256 patterns in total. Further-
more, the transformation from ψAng

r,δ,q
to ϕAngSign

r,δ,q
makes the pattern

more robust to noise.
Similar to the LBP M descriptor, we also propose ADLBP M

descriptor based on the magnitude of the angular differences |ψAng
r,δ,q

|.
As before, we transform the absolute angular difference vector
|ψAng

r,δ,q
| into a new vector ϕAngMag

r,δ,q
by locally averaging along an arc:

ϕAngMag
r,δ,q,n =

1

q

q−1∑
k=0

|ψAng
r,δ,q,(qn+k)|, n = 0, . . . , 7. (9)

Given ϕAngMag
r,δ,q

we derive the ADLBP M descriptor, as in LBP M,
via

ADLBP Mr,δ,q =

7∑
n=0

s(ϕAngMag
r,δ,q,n − µAngMag

r,δ,q )2n, (10)

where µAngMag
r,δ,q is the average of {ϕAngMag

r,δ,q,n}
7
n=0.

2.3. Radial Differences-Based Descriptors

As a parallel development to the angular feature, we similarly define
the radial differences-based descriptors RDLBP S and RDLBP M.
We begin by computing the radial difference vector

∆Rad
r,δ,q = [∆Rad

r,δ,q,0, · · · ,∆Rad
r,δ,q,8q−1]

T , (11)

where
∆Rad

r,δ,q,n = xr,p,n − xr−δ,p,n (12)

is the radial difference computed with given integer radial displace-
ment δ, xr,p,n and xr−δ,p,n correspond to the gray values of δ
equally spaced pixels of the same radial direction, as shown in the
example of Fig. 2.

We can then compute the new transformed sign and magnitude
components ϕRadSign

r,δ,q
and ϕRadMag

r,δ,q
vectors by the following:

ϕRadSign
r,δ,q,n =

1

q

q−1∑
k=0

∆Rad
r,δ,q,(qn+k), n = 0, . . . , 7 (13)

ϕRadMag
r,δ,q,n =

1

q

q−1∑
k=0

|∆Rad
r,δ,q,(qn+k)|, n = 0, . . . , 7. (14)

Finally, similar to equations (8) and (10), the RDLBP S and
RDLBP M descriptors are defined as

RDLBP Sr,δ,q =
7∑

n=0

s(ϕRadSign
r,δ,q,n)2

n (15)

RDLBP Mr,δ,q =

7∑
n=0

s(ϕRadMag
r,δ,q,n − µRadMag

r,δ,q )2n, (16)

where µRadMag
r,δ,q is the average of {ϕRadMag

r,δ,q,n}
7
n=0.

2.4. Face Recognition Pipeline

In standard face recognition tasks using LBP, only the uniform pat-
terns are used [2, 5, 11]. The nonuniform patterns are considered in
only a single bin of the histogram that is used to extract features in
the classification stage. However, representing texture information
using only the uniform patterns may be problematic, an issue which
has also been raised by other researchers [12, 13], because the uni-
form patterns are not necessarily the dominant patterns, especially
when the radius of LBP operator increases.

Indeed, in the case of our proposed six descriptors, we find that
the property of the original uniform patterns [9] no longer hold true:
We observe that the uniform patterns do not occupy the major pat-
tern proportions, specifically in the case of the LBP M, ADLBP S,
ADLBP M and RDLBP M descriptors. Consequently, textural in-
formation cannot be effectively represented by solely considering
the histogram of the uniform patterns, and in this paper we pro-
pose to use the full descriptors, denoted as LBP Sfull, LBP Mfull etc.,
meaning that there are 256 binary patterns for each descriptor at each
scale.

The collection of the six LBP-like descriptors presented in Sec-
tions 2.1, 2.2 and 2.3 and illustrated in Fig. 2 we term as the Extended
Local Binary Pattern (ELBP). Our face recognition pipeline is based
on fusing all six ELBP descriptors (denoted as “ELBP Fused”):

(1) An input face image is photometrically normalized by the
preprocessing approach proposed by Tan and Triggs [14].

(2) The normalized face image is converted to six ELBP maps by
applying the proposed ELBP feature extraction operators.

(3) Each ELBP map is further divided intow×w nonoverlapping
regions and a subhistogram is computed for each region. The
subhistograms are concatenated to form a single histogram
feature. In this case, each face image is represented by six
ELBP histogram features.

(4) In order to obtain a more discriminant and low-dimensional
feature, we follow the recent work in [5, 7, 15] and apply the
Whitened PCA (WPCA) dimensionality reduction technique
to each ELBP histogram feature, leading to six lower dimen-
sionality features denoted as h1, · · · , h6.

(5) Classify a probe face with the identity of the nearest neighbor
in the gallery. The Euclidean distance is used to measure
two WPCA projected features and is denoted as d(hki, hkj),
where hki and hkj are features computed from face im-
age Ii and Ij respectively. For fusing the six ELBP fea-
tures, we propose to use the sum of the similarity mea-
sures to measure the similarity of different face images
d(Ii, Ij) =

∑6
k=1 d(hki, hkj).

3. EXPERIMENTAL EVALUATION

3.1. Image Data and Experimental Setup

To evaluate the effectiveness of the proposed method, extensive
experiments were carried out on two commonly used standard
databases: Extended Yale B [16] and CAS-PEAL-R1 [17]. For each
database we have used its standard evaluation protocol in order to
facilitate comparisons with previous work.

The Extended Yale B database [16] consists of 2414 frontal face
images of 38 subjects with each subject having about 64 samples,
which were captured under laboratory controlled lighting conditions
and were cropped and normalized to a standard size of 192×168 pix-
els. Instead of randomly selecting half of the images per subject for



training and the rest for testing, we use a more difficult setup [18,19]
in which the database was divided into five subsets according to the
light direction with respect to the camera axis: subset 1 (S1) con-
sisting of 263 images (7 images per subject) under nominal light-
ing conditions was used as the gallery, while all other subsets were
used for probe. Subsets 2 and 3 consist of 456 and 525 images re-
spectively, characterizing slight-to-moderate illumination variations,
while subset 4 and subset 5 consist of 456 and 714 images respec-
tively, depicting severe illumination changes.

The CAS-PEAL-R1 database [17] is a large-scale Chinese face
database for face recognition algorithm training and evaluation, con-
taining 30,863 images of 1040 individuals. The gallery contains one
image taken under standard conditions for each of the 1040 subjects.
Here for probe sets, we use the expression, lighting, and accessory
subsets, following the recent work of Lei et al. [7]. All of the images
are cropped to a size of 150×130. CAS-PEAL-R1 is more difficult,
both because it contains 27 times more subjects than Extended Yale
B, and because it has a greater degree of intrinsic variability owing
to its natural image capture conditions.

Implementation Parameters: For the LBP S and LBP M de-
scriptors, we use a constant number of 8 sampling points for any
radius r, consistent with other LBP face recognition work [2]. In
terms of parameter q for the other four descriptors, we can set q = r,
following the suggestion by Ojala et al. [9]. This arrangement may,
however, cause over-smoothing at larger radii, so we apply a reason-
able sampling scheme: q = r for r ≤ 4 and q = 4 for r > 4.

In terms of parameter δ, we have set δ = 1 in all of our exper-
iments. For the radius parameter r, we have tested 2 ≤ r ≤ 8 and
found r = 4 to be a good choice. The number of nonoverlapping
subregions, w×w, that a face image is partitioned into, we have set
to w = 9, unless explicitly stated otherwise. The PCA dimension
is selected as the number of images in the gallery set (1040 for the
CAS-PEAL-R1); consistent with [5–7], WPCA is conducted on the
gallery set only.

3.2. Results

Table 1 shows the recognition rates of the proposed single ELBP
descriptors on the Extended Yale B database. Our results on this
database are obtained with the elementary histogram features (with-
out dimensionality reduction by WPCA), compared against recent
state-of-the-art results in [18] and [19]. Based on Table 1 we can
make the following observations. Firstly, for each proposed de-
scriptor, the histogram representation generated by the full pattern
method performs the best, significantly outperforming the uniform
pattern method. The results clearly demonstrate the insufficiency
of the uniform patterns for representing face images. Secondly, the
magnitude-based descriptor outperforms the corresponding sign-
based descriptor under very severe lighting changes (S4 and S5),
indicating that using gradient magnitudes instead of the pixel in-
tensity values for the construction of LBP-type descriptor can with-
stand severe luminance alterations. The good performance of the
proposed elementary features clearly proves their strength for face
recognition. Finally, the proposed LBP S, LBP M, ADLBP M and
RDLBP M significantly outperform the state-of-the-art results ob-
tained with a Linear Regression Classification (LRC) method under
severe lighting variations.

Table 2 reports the results of the single ELBP descriptor and
the ELBP Fused approach, in comparison with state-of-the-art re-
sults on the CAS-PEAL-R1 database. Clearly, the ELBP Fused ap-
proach consistently achieves much better recognition scores than any
single ELBP descriptor, with an especially significant performance

Table 1. Recognition rates (%) of different methods on the Extended Yale B database.
For our results, the NNC classifier with χ2 distance measure is used.

Method S2 S3 S4 S5 Mean
LBP Su2 99.8 99.6 93.2 77.7 92.6
LBP Mu2 99.8 99.2 95.8 91.7 96.6

ADLBP Su2 99.8 89.5 28.5 12.5 57.6
ADLBP Mu2 99.8 99.6 94.5 88.7 95.7
RDLBP Su2 99.8 99.4 91.9 68.5 89.9
RDLBP Mu2 99.8 99.6 98.2 91.5 97.3

LBP Sfull 99.8 99.8 99.6 96.2 98.9
LBP Mfull 99.8 99.6 99.6 97.6 99.2

ADLBP Sfull 99.8 99.6 91.4 67.1 89.5
ADLBP Mfull 99.8 99.6 99.4 97.8 99.2
RDLBP Sfull 99.8 99.6 98.7 86.6 96.2
RDLBP Mfull 99.8 99.6 98.9 95.7 98.5

PCA [18] 98.5 80.0 15.8 24.4 54.7
LRC [18] 100 100 83.27 33.61 79.2

LRC Fused [19] 100 100 88.97 84.73 93.4

Table 2. Recognition rates (%) of the proposed methods with state-of-the-art methods
on the CAS-PEAL-R1 Database.

Method Expression Accessary Lighting

LBP Sfull+WPCA 97.5 92.4 42.9
LBP Mfull+WPCA 94.1 85.1 36.5

ADLBP Sfull+WPCA 98.1 93.6 47.0
ADLBP Mfull+WPCA 95.1 87.0 42.1
RDLBP Sfull+WPCA 96.1 90.5 33.1
RDLBP Mfull+WPCA 91.3 78.1 34.8

ELBP Fused 98.5 93.8 66.2
ELBP Fused (∗) 98.5 94.0 72.3

HGPP [4] 96.8 92.5 62.9
DT-LBP [20] 98.0 92.0 41.0
DLBP [21] 99.0 92.0 41.0

DFD+WPCA [7] 99.0 96.9 63.9

gain achieved for the CAS-PEAL-R1 Lighting probe set. The per-
formance of the fused approach clearly indicates that the proposed
descriptors do indeed capture different and complementary informa-
tion. The performance of ELBP Fused can be further improved by
learning an optimal number of w × w subregions from the training
set, given by ELBP Fused (∗).

In comparison with state-of-the-art methods, the proposed
ELBP Fused method can achieve comparable results on the expres-
sion probe set. Regarding the accessory probe set, our ELBP Fused
method outperforms HGPP [4], which is known to be very computa-
tionally expensive, and the two learning based methods DT-LBP [20]
and DLBP [21]. For the lighting probe set, our approach gives the
highest recognition rate of 72.3%: This is 8% higher than the pre-
vious best result and is, to the best of our knowledge, the best score
ever achieved on this data set, indicating the strength of our approach
in relation to previous learning based methods.

4. CONCLUSIONS

In this paper we have proposed a novel extended set of LBP-like
descriptors and have developed a very simple framework to fuse
the proposed descriptors for the problem of face identification. Our
main findings are as follows: (i) The proposed ELBP descriptors ex-
ploit most of the information available locally and do contain com-
plementary information with each other, which is evidenced by the
improved performance obtained by fused descriptors; (ii) The tra-
ditional uniform patterns approach does not apply to the proposed
descriptors, instead we find that full patterns give good recognition
performance; (iii) The WPCA technique can further improve the
recognition performance of the fused proposed features.

Extensive experiments on Extended Yale B and CAS-PEAL-R1
databases have shown that the proposed approach can give compara-
ble or much improved results compared to state-of-the-art methods.
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