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A Class Imbalance Loss for Imbalanced
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Linbin Zhang, Caiguang Zhang , Sinong Quan , Huaxin Xiao , Gangyao Kuang, Senior Member, IEEE,
and Li Liu , Senior Member, IEEE

Abstract—The class imbalance problem exists widely in vision
data. In these imbalanced datasets, the majority classes dominate
the loss and influence the gradient. Hence, these datasets have a
significantly negative impact on the performance of many state-
of-the-art methods. In this article, we propose a class imbalance
loss (CI loss) to handle this problem. To distinguish imbalanced
datasets in accordance with the extent of imbalance, we also define
an imbalance degree that works as a decision index factor in the
CI loss. Because the minority classes with fewer samples probably
lose chances in descending the gradient in the training process, CI
loss is introduced to make these minority classes descend further
than the majority classes. In view of the imbalanced distribution of
data in few-shot learning, a method for generating an imbalanced
few-shot learning dataset is presented in this article. We conducted
a large number of experiments in the MiniImageNet dataset, which
showed the effectiveness of an algorithm for model-agnostic met-
alearning for rapid adaptation with CI loss. In the problem of
detecting 15 ship categories, our loss function is transplanted to
a rotational region convolutional neural network detection method
and a cascade network architecture and achieves higher mean
average precision than focal loss and cross-entropy loss. In addition,
the Mixed National Institute of Standards and Technology dataset
and the Moving and Stationary Target Acquisition and Recognition
dataset are sampled to imbalance datasets to verify the effectiveness
of CI loss.

Index Terms—Convolutional neural networks (CNNs), few-shot
learning, image classification, imbalanced learning, loss functions,
object detection.

I. INTRODUCTION

IN MANY domains, data, including visual data, naturally
exhibit imbalance in their category distribution. These data
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are referred to as “class imbalanced data,” where most of the
data belong to a few majority categories, while many minor-
ity categories only contain several or a few samples [1]. A
practical recognition system has to operate in an open world,
continuously and simultaneously dealing with a very large set
of domains, including recognizing thousands of different object
categories whose frequency distribution is long tailed (e.g., the
well-known ImageNet dataset [2]). A practical recognition sys-
tem must handle class imbalanced data. However, the problem of
learning from the class imbalanced dataset, i.e., the imbalanced
learning problem, has been a challenging and longstanding
problem [3]–[6]. Despite significant progress brought by deep
learning [7]–[9], most of the existing deep learning methods
consider class balanced datasets (such as the ImageNet1000
for image classification competition [10]) or moderately imbal-
anced datasets. Class imbalance, especially severe class imbal-
ance, has a significantly negative impact on the performance of
many state-of-the-art object detection and classification meth-
ods [11]–[13]. Recently, there have been some emerging at-
tempts to address the challenge of learning from significantly
skewed datasets [11]–[13]. Nevertheless, deep-learning-based
class imbalance learning for visual recognition tasks is largely
underexplored. In this article, our main focus is to investigate
deep representation learning on class imbalanced data for object
classification and detection problems.

Class imbalanced learning approaches intend to reduce the
model learning bias toward majority categories by raising the
importance of minority categories [12], [14], [15]. Existing
methods for class imbalance handling in object recognition
can be grouped into the following categories [1]: data-level,
algorithm-level, and hybrid. However, most of them are ordinary
imbalanced methods, and they are unable to deal with the highly
imbalanced dataset [16]. In a general way, the imbalance ratio
(IR) of the number of samples in maximum class and minimum
class in a dataset is over 10:1 and can be regarded as the highly
imbalanced learning, and the way to calculate the IR is shown
in (1).

In class highly imbalanced learning, majority classes have the
dominant effect during the learning process. In other words, the
classification costs of the majority classes and minority classes
are not equal, which will lead to the classifier preferring the
majority class. During the deep neural network training process,
when summed over a large number of training samples from the
majority classes, these small loss values can overwhelm the rare
class [13], [15]. That is to say, the majority classes comprise
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the majority of the loss and dominate the gradient. In order to
mitigate the dominant effect of majority classes, we introduce a
novel class imbalance loss (CI loss) that can be deployed readily
in deep neural network architectures. We propose a novel loss
that can downweight the gradient contribution of the samples
in the majority classes and thus focus training on samples of
minority classes.

To address this, in this article, a new loss function is proposed
to alleviate the imbalance degree (ID) in the process of gradient
descent, which can be used among arbitrary imbalanced datasets
in applications such as classification and object detection. The
loss function is modified on the basis of cross-entropy loss
(CE loss). The inspiration for the new loss is from the concept
of gradient descent. When training samples are equal among
all classes, the number of samples from each class is mainly
approximate to each other in a batch. The model and parameters
will be trained to adapt to every class, until, eventually, the
recognition rate achieves a high rate of accuracy. If the dataset
is imbalanced, the situation will change, and the gradient will
descend in the direction of recognizing the majority classes
and lose the chance to identify the minority classes due to the
imbalance. To make up for the absence of the minority, a factor
λ is introduced in the CE loss, which will adjust the scale of
gradient descent. The minority classes are able to decline further
owing to the new loss. In addition, a dynamically scaled factor
related to sin and cos is utilized in the loss, which demonstrates
better performance in classification tasks. To control this factor
λ, we define ID as a way of estimating the extent of imbalance
of a specific dataset, which takes all classes into consideration.
Using ID, we can constrain the factor λ of the imbalanced
dataset.

To verify the effectiveness of our proposed CI loss, we de-
fine three tasks: imbalanced image classification, imbalanced
few-shot image classification, and imbalanced optical ship de-
tection and recognition. In imbalanced image classification, we
sample some categories of datasets and conduct the contrasting
experiments in both the optical image dataset and the synthetic
aperture radar (SAR) image dataset. Furthermore, we analyze
the change in the recognition rate with related ID, when the class
number and the total amount of data are fixed in experiments
involving MiniImageNet [17]. In addition, our proposed loss
function is also used in the detection and recognition of 15
categories of optical ships. Experimental results on MiniIma-
geNet, Mixed National Institute of Standards and Technology
(MNIST) dataset, Moving and Stationary Target Acquisition and
Recognition (MSTAR) dataset, and the optical ship location and
identification dataset have shown that the proposed loss function
performs better than other state-of-the-art methods.

Our contributions include the following.
1) We propose the CI loss for arbitrary imbalance datasets.

This loss can be used in classification and object detection
tasks, without adding more compute resources to our
experiments. To limit the size of the factor in CI loss,
we propose a scientific index to define the ID of arbitrary
imbalance datasets, which takes the distribution of data in
all classes into consideration, not just the maximum and
minimum categories.

Fig. 1. Ships with skew bounding box annotations. In (a), there are two aircraft
carriers, which can be labeled in both skew and vertical rectangle boxes. In (b),
ships should be labeled in skew boxes; otherwise, there will be areas containing
useless or confusing information.

2) We embed our loss function into the total loss function in
rotational region convolutional neural network (R2CNN)
detection method [18] and the cascade network architec-
ture [19], which means our loss function not only increases
the recognition rate in classification tasks, but also per-
forms well in object detection tasks based on locating and
identifying ships in optical remote sensing images.

3) Experiments demonstrate that our proposed method can be
easily adapted to classification and object detection tasks
and that it outperforms other state-of-the-art approaches.

The rest of this article is composed of four sections. In Sec-
tion II, we introduce the related work about object recognition,
class imbalanced learning, and few-shot learning. In Section III-
A, we describe the problem setup of imbalance datasets and
ID, respectively. CI loss is presented in Section III-B, and the
relationship between loss and gradient descent is theoretically
proved in Section III-C. Subsequently, different applications
of imbalance loss in the classification and object detection are
introduced in Section IV. Experimental results and implementa-
tion details are summarized and presented in Section V. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Object Classification and Detection

Object recognition is one of the most fundamental and chal-
lenging problems in computer vision. Object detection problems
involve locating object instances from a large number of pre-
defined categories in natural images. Deep learning techniques
have emerged as strategies for learning feature representations
directly from data and have led to breakthroughs in the field of
generic object detection [8]. As deep learning evolves, methods
based on convolutional neural networks (CNNs) have been
presented, such as SSD [20], YOLO [21], R-CNN [22], Fast R-
CNN [23], and Faster R-CNN [24]. Vertical rectangle bounding
boxes, as shown in Fig. 1(a), have made tremendous progress in
natural image datasets. However, when it comes to the problem
of ship detection, rectangle bounding boxes will cover part of
the sea or shoreside in targets. If a series of ships are compact
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and parallel to each other in an inclination angle, the vertical
rectangle bounding boxes will often include part of the adjacent
ships, because ships are not always vertical or horizontal to
the entire remote sensing image. As shown in Fig. 1(b), the
amphibious assault ship (U.S., yellow rectangle) is slanted at a
30◦ angle compared to the horizontal lines, and if it is labeled
with a vertical rectangle, then sea, shore, and even the entire
cruiser (New Tikang, red rectangle) will be included in the
bounding box. For this situation, deep learning methods for ship
detection in arbitrary orientation have been proposed [25]–[27].
However, our dataset contains 15 ship categories of different
sizes and functions, which is more intractable than common
detection tasks. We chose R2CNN [18] and Cascade [19] as
detection methods, which are initially used in orientation robust
scene test detection, as the base detectors but with different parts
in loss of classification.

Many researchers have worked hard on designing algorithms
to solve classification problems. ImageNet [7] surpasses nearly
all the traditional machine learning methods, and deep learning
methods are used in fields related to computer vision, such as
face recognition [28], handwriting recognition [29], and SAR
image recognition [30]. The image classification datasets used
in this article are MNIST and MSTAR. Because many meth-
ods have achieved over 99% recognition rate on the MNIST
dataset [31]–[33], it is useful to contrast our loss function
with other methods. In fact, SAR target recognition has been
increasingly used in both civilian and military fields. In re-
cent years, a number of methods have been proposed to face
this challenge [30], [34]–[38]. Among these, a deep CNN has
achieved 99.13% [30] in the MSTAR public dataset. However,
researchers seldom pay attention to the imbalanced dataset of
MSTAR. When it comes to data about noncooperative targets,
the imbalanced SAR target dataset is frequently used. Some
categories are selected to be minority classes, and CI loss is
preferable than other losses, according to our experiments.

B. Imbalanced Learning

The aim of imbalanced learning is to reduce the bias of the
model by increasing the significance of minority classes. To cope
with the side effects of imbalance in datasets, many researchers
investigate improvements and algorithms through trial and error.
These methods include in data-level, algorithm-level, and hybrid
methods. Some data-level methods are traditional methods in
upsampling and downsampling, as described in SMOTE [39]–
[41], or use generative neural networks [42] and other image
processing improvements [43]–[45] as augmentation to minority
classes. Algorithm-level methods mainly increase the impor-
tance of the minority classes by taking a class penalty into
consideration instead of altering the distribution of training data.
Among these methods, cost-sensitive learning [46] involves a
cost matrix to increase the importance in minority class or de-
crease the importance in majority class. Hybrid approaches [3],
[47], [48] combine data-level methods with algorithm-level
methods to better performance. Although these methods can
alter the data distribution or modify the penalty matrix, the per-
formance of recognition rate is still limited. Data augmentation

of minority classes is similar to the raw data and limits the
data diversity. Data augmentation also increases the amount of
compute resources and is easily affected by noise. In terms of
the penalty matrix, a suitable sensitive cost to the dataset and
algorithms requires expert knowledge and is almost impossible
to be transferred from one task to another. In contrast, our model
is designed for deep learning of end-to-end imbalanced data,
and it is suited for imbalanced detection as well as classification
tasks.

C. Few-Shot Recognition

In recent years, few-shot learning has shown promise for
resolving few-shot problems in regression, classification, and
reinforcement learning [49]. Few-shot learning methods are
capable of learning and adapting from a few samples and
avoid overfitting to the test dataset with novel categories. There
are essentially two aspects, model and algorithm, in few-shot
learning. Few-shot learning models learn the embedding space
from task-specific prior knowledge contained in the training set,
such as matching networks [50] and prototypical networks [51].
Gradients decent algorithms, such as Meta-LSTM [17] and
model-agnostic metalearning (MAML) [49] have shown impres-
sive results on the few-shot learning datasets MiniImageNet [17]
and Ominiglot [52]. The main body of learning is based on
CNNs [53] or fully connected neural networks, which have
performed well in tasks related to compute vision. A flow of
few-shot learning methods shows a continual growing recog-
nition rate in the few-shot dataset [54]. However, the afore-
mentioned work has only been conducted under N -way K-shot
classification conditions, which means that examples of few-shot
training and few-shot testing are equal. Actually, this setting is
not a realistic one, since real-world applications will never be as
K-shot as the experiments in these articles. Few-shot learning
algorithms that can quickly learn a new task from only a few
examples are urgently needed.

III. PROPOSED CI LOSS

In this section, the concept of an ID to measure the degree
of imbalance of a dataset is introduced, and then, the proposed
novel CI loss is presented.

A. Imbalance Degree

Suppose that we have a datasetD that has C different classes
with class i having Ni samples (i = 1, . . ., C). In order to
measure the degree of imbalance of a dataset, we follow [1]
and introduce parameter ρ, which is defined as follows:

ρ =
maxi {Ni}
mini {Ni} . (1)

We can see that ρ is the ratio of the number of samples in the
majority class, which has the maximum number of samples,
to the number of samples in the minority class, which has the
minimum number of samples. However, the ratio ρ denotes
the ratio of two extreme cases, whereas it ignores the overall
class distribution of the dataset. For instance, three different
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distributions [1, 5, 5, 5, 5], [1, 2, 3, 4, 5], and [1, 1, 1, 1, 5] have
the same ratio ρ, but different entropy.

To address this issue, we use entropy to measure the degree
of imbalance of a dataset

λ = − 1

C

C∑

i=1

log
Ni

maxi {Ni} . (2)

As we will discuss later, the parameter λ works in the proposed
CI loss as a constraint to avoid the problem of gradient vanishing
because of the huge difference between majority and minority
classes. In this article, log means log10.

B. Proposed CI Loss

For a classification task of C categories, according to the
commonly used CE loss, the loss function is defined as follows:

LCE = −
C∑

i=1

yi log ŷi (3)

where yi ∈ {0, 1} specifies the ground truth class and ŷi ∈ [0, 1]
is the model’s estimated probability for the class with ground
truth i.

As discussed in [15], the CE loss respects two conditions
during model learning. First, the samples in the same category
should have category distributions with the identical peak po-
sition corresponding to the ground truth label. Second, each
class corresponds to a different peak position in the category
distribution. For instance, at the initial steps during the training
procedure, ŷi is nearly uniform, i.e., 1

C . As the training process
progresses, the total loss becomes smaller and smaller, and
ŷi will approach 1 for the ground truth class. The CE loss
minimizes the training error by assuming that individual samples
and classes are equally important. To achieve model general-
ization with discriminative interclass boundary separation, it is
necessary to have a training dataset with sufficiently balanced
class frequencies. However, for the dataset with high ID, model
training with the conventional CE loss may be suboptimal. The
model suffers from generalizing inductive decision boundaries
biased toward majority classes while suppressing the contribu-
tion of minority classes.

To address this problem, we present CI loss, which is defined
as follows:

LCI =−
C∑

i=1

yi

(
1− sin

(π
2
ŷi

))
cos

(π
2
ŷi

)
f(λ, Ni, Nmax) log ŷi

(4)
where f(λ, Ni, Nmax) is defined as follows:

f(λ, Ni, Nmax) =

{
(Nmax/Ni)

0.5, if λ ≤ 1

(Nmax/Ni)
1
8 , otherwise

(5)

where Ni is the number of samples in class i and Nmax =
maxi {Ni}. λ is the ID defined in (2). We also list the focal
loss (FL) [13] as follows for comparison:

LFL = −
C∑

i=1

yi(1− ŷi)
γ log ŷi. (6)

In the left chart in Fig. 2, the CI loss in yellow and blue
indicates the situation for the maximum number class and small
number class, respectively. The maximum number class, in the
yellow line, is beneath the CE loss and above the FL (γ = 5).
Intuitively, the modulating factor with sin and cos (the yellow
line) is moderating to γ from 0.5 to 5 of the power function in FL,
and the loss is depressed if the ID of the dataset is substantial.
When it comes to the blue line, if there is a binary-class recog-
nition task, it can be inferred that the ratio of the two classes is
256:1. The smaller class must descend further to make up for
its disadvantage of less quantity. To this end, the value of loss
in the blue line is always twice that of the loss in the yellow
line.

C. Discussion of CI Loss

We have already stated that deep learning methods with CE
loss cannot handle the imbalanced datasets due to the frequency
of training samples from majority and minority classes in a
batch. Our CI loss has taken frequency into consideration and
introduced f(λ, Ni, Nmax) to demonstrate the difference in the
amount of category data in the loss. Through this design in loss,
the gradient descent will operate in the way of our motivation
to alleviate the influence to the parameter modification from
imbalance. The following proof illustrates that the derivative of
loss, with respect to ŷi, is directly proportional to the gradients.
Fig. 3 depicts a simple network withm neurons in the input layer,
k neurons in the hidden layer, and n neurons in the output layer
(1 < i < m, 1 < r < k, 1 < j < n). The given training set is
D = {(x1, y1), (x2, y2), . . ., (xn, yn)}. To a training sample
(xs, ys), the probability sequence is ŷs = (ŷs1, . . ., ŷ

s
i , . . .., ŷ

s
n),

and to the jth neuron in the output layer whose bias is θj , we
can obtain that

ŷsj = f

(
k∑

r=1

wrjhr − θj

)
. (7)

If we use the CI loss [formulas (7) and (8)] as the loss function,
then the loss to the sample (xs, ys) can be presented as follows:

Ls
CI=−

C∑

j=1

ys
j

(
1− sin

(π
2
ŷs
j

))
cos

(π
2
ŷs
j

)
f(λ, Nj , Nmax) log ŷ

s
j .

(8)
The weight parameters wrj from hidden layer to output layer
will be updated

wrj ← wrj +Δwrj . (9)

According to the chain rule, we have

∂Ls
CI

∂wrj
=

∂Ls
CI

∂ŷsj

∂ŷsj
∂wrj

. (10)

Then, there is
∂ŷs

j

∂wrj
= f ′(

∑k
r=1 wrjhr − θj)hr; from (7), we

have

∂Ls
CI

∂wrj
=

∂Ls
CI

∂ŷsj
f ′
(

k∑

r=1

wrjhr − θj

)
hr. (11)
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Fig. 2. (Left) Different loss functions in binary classification. (Right) Different gradients of loss. Different colors are related to different loss functions and the
gradients. Probability of ground truth class is ŷi. The green line and the red line illustrate the FL in two different parameters (0.5 and 5) of γ. In addition, the black
line indicates the CE loss, while the yellow line and the blue line describe the CI loss in different IDs.

Fig. 3. Multilayer networks.

Generally speaking, the function f is rectified linear unit
(ReLU) [55], so the result of f ′ can only be 0 or 1. Meanwhile,
hr = (

∑k
i=1 virxi − θr), so it is uncorrelated with ŷsj . Finally,

the second half in (12) can be replaced by constant K:

∂Ls
CI

∂wrj
=

∂Ls
CI

∂ŷsj
K. (12)

From (12), it can be seen that the relationship between the
derivative of loss and gradient can be regarded as directly
proportional. Therefore, if we are interested in ∂Ls

CI
∂wrj

, it is easier

for us to pay attention to ∂Ls
CI

∂ŷs
j

and overlook the K.

Gradient, affecting the modification of parameters, is influ-
enced by the loss function. It is our wish that gradient descent is
able to find the globally optimal solution and avoid the locally
optimal solution as much as possible. The derivative of ŷi from
the loss allows us to observe the change of gradient, since the
partial derivative is in direct proportion to the gradient. To this

end, we differentiate formulas (3), (4), and (7) with respect to ŷi

∂LCE

∂ŷi
= − 1

ln 10

yi
ŷi

(13)

∂LFL

∂ŷi
= −yi(1− ŷi)

γ−1

ln 10

(
1

ŷi
− γ ln ŷi − 1

)
(14)

∂LCI

∂ŷi
= −yif(λ)

ln 10

(
cos(π2 ŷi)(1− sin(π2 ŷi))

ŷi

)

+
π

2
ln ŷi

(
cos(πŷi) + sin

(π
2
ŷi

))
. (15)

Because the value of yi can only be 1 or 0, yi acts as a switch
to let the loss function work merely in the label of such training
samples. In the graph on the right in Fig. 2, the gradient of the
blue line is much higher than the others when the probability is
close to 0, and the step of gradient is two times more than the
yellow one. As γ becomes smaller, both the loss and gradient
are more approximate to the CE loss. In classification of N
categories, f(λ, Ni, Nmax) will contribute to a factor that classes
with different number of samples descend the gradient with
various speeds, which is determined according to the amount
of data. Because the respective factors limit the amount of gra-
dient, the recognition rate of the imbalanced dataset is improved
significantly. In summary, categories with a large number of
samples, close to the maximum class, are in the normal scale of
gradient descent, but the minority classes descend the gradient
more according to our function factor f(λ, Ni, Nmax).

However, the factor function f(λ, Ni, Nmax) is not as large as
possible. The enormous gradient will bring the algorithm to a
situation of gradient vanishing, and loss will not be declined. If
parameters are modified thorough enormous gradient, the output
will be unstable. Therefore, the best way to train a model is to
add the appropriate function factor, rather than a huge function
factor, to the loss function, which is the essence of CI loss.

IV. APPLICATION PROBLEMS

In this section, we apply our proposed CI loss to three
object recognition problems: imbalanced image classification,
few-shot classification, and object detection.
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A. Imbalanced Image Classification

Assume that there are M classes in imbalance training data
distribution, which need to be classified by our methods. Then,
the notations of training and testing set in two datasets are defined
as follows:

Dtrain =
{
X1

train, X
2
train, . . .X

M
train

}

Dtest =
{
X1

test, X
2
test, . . .X

M
test

}
. (16)

Each Xj
∗ = {(xi

∗,j , y
i
∗,j)}card(Xj

∗ )
i=1 , where ∗ is the substitute

for the subscript in (16) to distinguish train and test datasets.
xi
∗,j candidates the ith sample in the jth category in the set ∗.

yi∗,j is the label of xi
∗,j . card(Xj

∗ ) describes the total number of

samples in the set Xj
∗ . Usually, when there are a large number

of training samples, people can train a sophisticated classifier
f(x; θ) that inputs unlabeled examples and outputs the correct
labels in most cases. They often grasp a classifier perfectly in
a nearly uniform dataset, but it is a loss for them to face the
imbalance dataset. In deep learning methods, to let the gradient
descend more when samples in minority classes occur, we use
CI loss to take place of CE loss. This was mentioned in formulas
(4)–(8) in Section III-B.

B. Imbalanced Few-Shot Learning

Few-shot classification is a well-established problem in the
domain of supervised recognition tasks, where the goal is to
learn a classifier to recognize unseen classes when only limited
labeled examples are used for training. In the following, we
describe the standard formulation of a metalearning-based few-
shot classification problem. Specifically, we consider a recent
initialization-based method called MAML [49] for few-shot
classification.

There is a metalearning dataset D, which contains many
classes C. Classes in C are divided into a metatrain set Cmeta-train

and a metatest setCmeta-test(Cmeta-train ∩ Cmeta-test = ∅). The num-
ber of classes in the metatrain set is much higher than that in the
metatest set. If we are conducting N -way K-shot classification,
during the process of few-shot training, we sample N classes
(Ci

1, C
i
2, . . . , C

i
N ) from the Cmeta-train metatrain set (i indicates

the ith task). Subsequently, K examples are selected from
Ci

1, C
i
2, . . . , C

i
N , and they act as a support set. Meanwhile, other

M samples, regarded as a support set, are chosen from the rest
of the samples in Ci

1, C
i
2, . . . , C

i
N . M , which can be set to any

number, is set to 15 in MAML [49]. These M ×N samples are
classified from N -way K-shot, and the gradient of total loss is
for updating, according to Algorithm 2 (MAML for Few-Shot
Supervised Learning) in [49].

In the metatest process, N classes will be chosen from
Cmeta-test. Then, K-shot is selected from each class as the data to
update the model saved from the metatrain process. To evaluate
the performance of the model, other K samples are chosen from
the rest as in the metatrain process. Results are recorded for
every ten or more updates. After repeating the aforementioned
process with different sampling hundreds of times, the average

recognition rate of the results in each update is indicated as the
final behavior of the algorithm.

Nevertheless, in practical applications, it is impossible to find
categories with the same number of samples to train or test. In
most cases, the examples of classes in a specific task differ, and
this can be regarded as an imbalanced dataset. According to the
set of metatraining and metatesting, Ci

1, C
i
2, . . . , C

i
N consist of

imbalanced data in both the query set and the support set in
metatrain. As shown in Fig. 4, one of the tasks is to learn how to
classify the five imbalanced classes of bird, dog, lipstick, fish,
and orange. Each update will generate a new modified model,
and it will become the input model of the next update. The
metatest training update set is composed of imbalanced data,
while the rest are equal to evaluate the model’s performance. For
example, if the task is urged to let the algorithm quickly adapt
to the five-way imbalanced dataset with numbers of [1, 2, 3, 4,
5] in each class, the metatest will also be [1, 2, 3, 4, 5] certainly.
To satisfy the needs of the test, the data in metatrain should be
shaped into the same distribution as the data in metatest. Samples
in both the support set and the query set are the distribution of [1,
2, 3, 4, 5], while the query set in metatrain is [p, 2p, 3p, 4p, 5p] (p
is an alternative multiple factor and stands for positive integer).
However, during the evaluation of the metatest, categories to
update and assess are crab, solar panel, stage curtain, towel,
and corn, which are totally different from the categories in
metatrain, and the number of samples in each class in the query
set will be equal ensuring an unbiased recognition rate. Each
update also generates an evaluation, from which we will find
the performance of the algorithm in imbalanced data. Ordinary
metalearning methods for few-shot learning are not fit in the
imbalanced datasets, because gradient descent causes a bias
from imbalanced data and leads to poor results. However, CI
loss plays an important role in adjusting gradient descent, in
order to descend gradient more in minority classes. Because
of the novel design in CI loss, it can improve the performance
of metalearning methods, such as MAML, in an imbalanced
few-shot learning dataset.

C. Detection

Object detection has another problem: the large imbalance
between the number of labeled object instances and the number
of background examples. Although most background examples
are easy negatives, this imbalance can make training very ineffi-
cient, and the large number of easy negatives tends to overwhelm
the training. This problem widely exists in ship detection tasks in
optical images. Owing to the special skewing bounding boxes
in ships in optical remote sensing images, we have to choose
detection networks that can handle skewing labels. We choose
R2CNN [18], which is modified from Faster R-CNN [24] and
was originally utilized in scene text. What is more, to show the
universality of our loss function in ship detection tasks, we have
modified the Cascade network [19] from normal bounding boxes
to skew bounding boxes.

The training loss of R2CNN is actually a multitask loss, one
that includes the loss of axis-aligned boxes, the loss of inclined
minimum area boxes, and the loss of classification. The loss
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Fig. 4. Process of metatrain and metatest in imbalanced data condition.

function of R2CNN is defined as

L(p, t, v, v∗, u, u∗) = Lcls(p, t) + λ1t
∑

i

Lreg(vi, v
∗
i )

+ λ2t
∑

i

Lreg(ui, u
∗
i ). (17)

λ1 and λ2 are the factors that control the ratio among the
three different types of loss. t presents the class label of
background and the other different categories of ship. v =
(vx, vy, vw, vh, vL) is the predicted tuple for the ship label, and
v = (v∗x, v

∗
y, v

∗
w, v

∗
h, v

∗
L) presents the ground truth. The infor-

mation pertaining to vector includes the coordinates of center
point, width, height, and label. u = (ux1, ux2, uy1, uy2, uh) is a
tuple that indicates the first two center points of the inclined box
and its height, and u = (u∗x1, u

∗
x2, u

∗
y1, u

∗
y2, u

∗
h) is the predicted

tuple for the ship label. The regression loss is then calculated
by smooth L1 loss [23]. Using k as a substitute for v and u,
Lreg(ki, k

∗
i ) is defined as follows:

Lreg(k, k
∗) = smoothL1

(k − k∗) (18)

smoothL1
(x) =

{
1
2x

2, if |x| ≤ 1

|x| − 0.5, otherwise
. (19)

The classification loss is replaced by our CI loss. p is the
prediction output and t is the ground truth label.Nj indicates the
total number of the jth category. We record the number of times
that samples in the jth category occur in all the training images
as Nj . λ is the ID of the ship dataset, taking into consideration

the number of samples in every category; then, we have

Lcls = −
N∑

j=1

t
(
1− sin

(π
2
p
))

cos
(π
2
p
)
f(λ, Nj , Nmax) log p.

(20)
In the experiments of Cascade networks [19], we modify the

original version with skew bounding boxes and change the loss
function to CI loss, which is the same as the loss function in
(20).

V. EXPERIMENTS AND RESULTS

To verify the effectiveness of our proposed CI loss, extensive
experimental evaluations were conducted for the three appli-
cation tasks. In terms of recognition tasks, our experiments
involved classification and detection. The optical ship dataset
is imbalanced because of the occurrence of different categories
of ships, while the MiniImageNet, MNIST, and MSTAR datasets
are sampled to be imbalanced datasets. Experiments were con-
ducted in three aspects:

1) datasets in equal distribution of each class in the training
and testing sets for normal sample scale learning (e.g.,
MNIST and MSTAR);

2) datasets in different distributions of each class in the
training and testing sets for few-shot learning (e.g., Mini-
ImageNet);

3) imbalance in both training and testing sets for objection
detection and recognition task [e.g., American Optical
Ship Recognition (NUDT-AOSR15)].
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TABLE I
EVALUATION ON MNIST DATASET

TABLE II
TRAINING AND TESTING SETS IN FOUR SITUATIONS

TABLE III
EVALUATION ON THE MSTAR DATASET AND THE BASIC INFORMATION OF

FOUR SITUATIONS CAN BE FOUND IN TABLE II

All experiments were run on a PC with an Intel single-core i8
CPU, two NVIDIA GTX-1080 Ti GPUs (12-GB VRAM each),
and 64-GB RAM. The PC operating system is Ubuntu 18.04.
All experiments were carried out using the Python language on
the Tensorflow deep learning framework and the CUDA 10.0
toolkit.

A. Experiments on Imbalanced Image Classification

Our results in two imbalanced datasets, MNIST and MSTAR,
are shown in Tables I and III. Each CNN method is trained
and tested with three different losses. To reduce the possi-
bility of accidental factors of sampling split in both MNIST
and MSTAR datasets, we conducted 20 and 100 experiments,
including training and testing, respectively, and recorded the
average recognition rate in each loss.

In the MNIST dataset, in order to imbalance the categories,
we used the same method as Cost-Sensitive [46]. The available
training data for the even class were used, and only 10% and
25% of the data in the odd classes were selected as the entire
training dataset. Analogously, experiments were also conducted
thorough a reversed situation, in which in the even classes, 10%
and 25% data were selected, and in the odd classes, the amount

of data were normal. The results of four networks are from [31]–
[33] and [46], and the CNN in the MNIST dataset has the same
configuration as in [46]. In contrast, we only modified the loss
and did not use any improvements of augmentation in both the
training and testing processes as in [46]. In our results, although
the FL showed an elevation on the imbalance dataset, our CI loss
outperformed CoSen CNN [46] and CNN with FL or CE loss.

As a matter of fact, the SAR images in the MSTAR dataset
were totally different in the imaging mechanism and the pattern
(RGB and grayscale) to optical images, which were involved in
the MiniImageNet, NUDT-AOSR15, and MNIST datasets. The
published MSTAR dataset contains ten types of Soviet military
vehicle targets (T-72 and T-62, tanks; BTR-60, BTR-70, BMP-2,
and BRDM-2, armored vehicles; ZIL-131, military truck; ZSU-
234, self-propelled artillery; 2S1, self-propelled howitzer; and
D7, bulldozer), and the specific training and testing samples
are shown in Table II. Our experiments were conducted under
standard operating conditions; samples in a depression angle of
17◦ were for training and 15◦ were for testing. In the training
process, we randomly sampled data from five categories in 17◦.
When not using the procedures of data augmentation, experi-
mental results were below 99.13% with exactly the same CNN
structure as in [30]. Because SAR targets are sensitive to azimuth
angles, we conducted 100 experiments of random sampling, and
the average score is shown in Table III. Substitution in CI loss
achieves a performance boost of about 4% and 5% in 24 and 12
to CE loss, respectively.

B. Experiments on Imbalanced Few-Shot Classification

We assessed our method on MiniImageNet, which is a few-
shot classification task. There are 64 training classes, 12 valida-
tion classes, and 24 test classes, and all images in MiniImageNet
were 84×84. This dataset makes it easy to compare our CI
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TABLE IV
ASSESSMENT ON IMBALANCED MINIIMAGENET DATASET WITHIN CI LOSS AND CE LOSS

Fig. 5. Experimental results on MiniImageNet.

loss with the CE loss on the basis of MAML. The processes
of few-shot training and few-shot testing were introduced in
Section IV-A and Fig. 4. We have performed more than 60
experiments on MiniImageNet, with the total sample number
of all classes set to 15, and these were divided into five classes
with 30 distributions, as shown in (21). For each distribution,
we calculated the ID and conducted the experiment with both
CI loss and CE loss. The results are presented in Fig. 5 and
Table IV

A =

{
(N1, N2, N3, N4, N5)|

5∑

i=1

Ni = 15

}

s.t. 1 ≤ Ni ≤ Nj , 1 ≤ i < j ≤ 5. (21)

The definition of ID is beneficial to sequence datasets, shared
same total elements 15 and fixed classes number 5. Next, we
analyzed how ID influenced the recognition rate and showed
the performance of our loss function. The classifier in few-shot
learning is a CNN with four pairs of convolutional layers and
max-pooling layers, which act as the feature extractor. The
basic information of the CNN is 3× 3, stride 1, 64 filters, and
ReLU as the activation function. In the end, a fully connected
layer works as the distinguishing part. To normalize the output
N -dimensional vector of the fully connected layer into the

distribution of probability p̂t for t = 1, 2, . . ., N , we use softmax
nonlinearity, as the following formulas show. CE loss is utilized
after the softmax layer. pt is the truth label of N classes. From
Table IV, we can see that CI loss is consistently higher than CE
loss in every set, which demonstrates the effectiveness of our
loss function. The experimental results on imbalanced few-shot
image classification (MiniImageNet) are shown in Table IV and
Fig. 5. Most of the experiments in Table IV are of five-category
classification, and the total number of samples in a set is 15.
The green points and red points in Fig. 5 are the results (from
Table IV) of CE and CI losses in imbalanced MiniImageNet
datasets, respectively. The Y -coordinate indicates the value of
recognition rate and the X-coordinate represents the corre-
sponding ID. Fig. 5 shows that when the ID ascends, which
means the difference in the amount of data in each category is
increased, the recognition rate will decline in both CE loss and
CI loss

p̂t =
et

∑N
i=1 e

i
(22)

Lcls = −
N∑

j=1

pt

(
1− sin

(π
2
p̂t

))

× cos
(π
2
p̂t

)
f(λ, Nj , Nmax)) log p̂t. (23)

C. Experiments on Ship Detection

Our dataset, which is named American Optical Ship Recogni-
tion (NUDT-AOSR15), contains 98 images (12 544×12 544 pix-
els) of different harbors, such as San Diego in the U.S. and
Yokosuka in Japan. All images, which were collected from
Google Earth, are in 19 levels, and the resolution ratio is 0.6
m per pixel. These remote sensing images are cut into 6000
smaller images, whose pixel size is 1000× 1000. Of these, 4800
images are for training and the remaining 1200 images are for
testing. There are 15 categories of ships in our dataset, which are
shown in Table V. Other types mean that some small ships are
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TABLE V
TRAIN AND TEST SETS OF OPTICAL SHIP LOCATION

AND RECOGNITION

Fig. 6. Long-tail distribution data is one of the features in imbalanced datasets.
Our detection and recognition dataset is named American Optical Ship Recogni-
tion (NUDT-AOSR15). The amount of data in this bar chart contain both training
and testing sets.

inappropriately classified to the other 14 categories. The number
of samples in the training set is shown in Fig. 6. From Fig. 7, it
is intuitive to find that this is an intractable task for location and
recognition. The ship examples in Fig. 7 are the actual size from
Google Earth. Ship sizes differ greatly; for example, an aircraft
carrier is 30 times larger than a small military warship. Specific
information about the training and testing datasets is shown in
Table V. There are 2306 samples for submarines, which is more
than 45 times the number of samples for tanks.

To evaluate the effectiveness of our loss function, we use the
following formulas:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Precision = TP
TP+FP

Recall = TP
TP+FN

F1score = 2 Precision×Recall
Precision+Recall

Gmean =
√

PrecisionRecall

. (24)

When the value of intersection over union, between the predic-
tion bounding box and the ground truth bounding box, is larger
than 0.6 and the label of ship is correct, we observe that such a

Fig. 7. Ship samples from 15 categories. (NUDT-AOSR15: (a) Aircraft Carrier
(USA), (b) Frigate (USA PERRY), (c) Cruiser (New Tikang), (d) Destroyer
(USA BoKe), (e) Frigate (USA Independence), (f) Frigate (USA Freedom),
(g) Amphibious Assault Ship (USA), (h) Tanker, (i) Container Ship, (j) Grocery
Ship, (k) Amphibious Transport Ship (USA), (l) Small Military Warship (USA),
(m) Supply Ship, (n) Submarine, and (o) Others.)

prediction bounding box is valid and correct. TP in (24) indicates
the total number of correct prediction bounding boxes, while
FP represents the bounding boxes that are incorrectly labeled
or that have a pure background. FN is the number of overall
missing targets in the ground truth bounding boxes. Average
precision (AP) is also used as the assessment criterion. When it
comes to a given task and category, the precision and recall curve
is calculated from a method’s ranked output. Recall is defined
as the ratio of all positive examples above a given rank, while
precision is the proportion of all examples above that rank that
are from the positive class. As shown in the following formula,
AP summarizes the configuration of the precision/recall curve
and is defined as the AP at a set of 11 equally spaced recall levels
[0,0.1,...,1]:

AP =
1

11

∑

r∈0,0.1,...,1
pinterp(r). (25)

The precision at each recall level r is interpolated by taking
the maximum precision measured for a method for which the
related recall exceeds r

pinterp(r) = max
r̃:r̃≥r

p(r̃) (26)

where p(r̃) is the measured precision at recall r̃ [56].
The CNN for feature extraction is based on Resnet [57]. To

verify the effectiveness of our loss function, we ran experiments
on R2CNN in both Resnet-101 and Resnet-50 with CE loss, FL,
and CI loss. The Cascade network in Resnet-101 was modified
in a skew bounding box so that it can be used in optical ship
detection. The results of optical ship detection are shown in
Table VI. Using R2CNN in Resnet-101 as the feature extractor,
it is evident that values of AP in Container Ship (i), Amphibious
Assault Ship (g), Amphibious Transport Ship (g), and Small
Military Warship (l) have been promoted over eight points,
and there are about four points of elevation in the PERRY
(b), New TiKang (c), Boke (d), Tank (h), Submarine (n), and
Others (o) categories by using our CI loss, while only the AP
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TABLE VI
RESULTS OF SHIP OBJECT DETECTION IN STANDARD NUDT-AOSR15

value of Aircraft Carrier (a) shows a decline of 3%. Because
some types of Amphibious Assault Ship (g) are similar to the
Aircraft Carrier (a) [for instance, the LHA-1 Tarawa class and
Wasp-class amphibious assault ship closely resemble Aircraft
Carrier (a)], we see an 8% increase in Amphibious Assault Ship
(g) through CI loss, which contributes to a slight decrease in
Aircraft Carrier (a). Some Aircraft Carriers (a) are classified
as Amphibious Assault Ships (g) by mistake. The mean AP
in R2CNN in Resnet-101 occupies 82.9%, which exceeds 3.8%
and 4% over CE loss and FL, respectively. The Cascade network
has a higher mean average precision (mAP) in CI loss than CE
loss and FL as well. Table VII shows six situations whose train
sets are sampled randomly from NUDT-AOSR15, and whose
test sets are the same as in Table VI. The results of these six
situations with compared losses show the effectiveness of our

CI loss. For the sake of brevity, G and F1 scores are omitted in
Table VII, and only AP and mAP are shown.

D. Results Discussion

In this section, we provide discuss and analysis of the ex-
periment results obtained by our proposed CI loss in different
application problems.

1) Results for Imbalanced Image Classification: Results on
the MNIST and MSTAR datasets are shown in Tables I and III.
Because the MNIST dataset is easy for algorithm to recognize,
even in the imbalanced situations, different methods still achieve
a high performance. The results of baseline CNN with CE loss
have already achieved 97%; thus, it is difficult to elevate the
accuracy even a bit. It is obvious that all the improved methods
overcome the CE loss in four imbalanced situations. Our CI
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TABLE VII
RESULTS OF SHIP OBJECT DETECTION IN SAMPLED NUDT-AOSR15 IN R2CNN WITH RESNET101

“Sit.” means situation.
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loss slightly exceeds FL and CoSen CNN, while CoSen loss
is only able to be used in classification tasks. When it comes to
the MSTAR dataset, the results in imbalanced situations witness
sharp drops in all the experiments. However, the results in CI
loss are about 4% and 2% higher than those in CE loss and
FL, respectively. This indicates that our proposed CI loss is
more effective than FL. These results in two imbalanced image
classification datasets, including optical and SAR images, have
proved that our CI loss indeed overcomes the imbalance in some
extent and promotes the performance.

2) Results for Imbalanced Few-Shot Image Classification:
From experiments on imbalanced few-shot classification in
Table IV and Fig. 5, the bigger the ID is, the more the CI
loss exceeds CE loss in recognition rate. The point on the red
line in Fig. 5, indicating CI loss, is approximately 0.4 in the
extreme situation [1,1,1,1,11], while the point on the green line
only occupies 0.325. The recognition rate to the ID is in the
monotonic decreasing tendency, while, in some points, there are
some fluctuations. This is because the categories are randomly
selected from the whole training and testing sets. In the metatest
process, there are only 600 random experiments. Thus, it is
impossible to traverse all of the categories and images.

From the above conclusion, it is obvious that if the class
number and the total number of samples are fixed, the more
imbalanced dataset will cause a lower recognition rate. Further-
more, in the condition of the same ID, the more the number of
data samples, the higher the recognition rate. For instance, data
amount distribution of [1,1,1,1,1], [3,3,3,3,3], and [5,5,5,5,5] is
the same as in ID (ID = 0), but the recognition rates are 0.481,
0.595, and 0.626 in CE loss, separately. In addition, the results
of CE loss and CI loss are very close. When the ID is not 0, just
like data distribution [1,2,3,4,5] and [2,4,6,8,10], the recognition
rates are 0.535 & 0.587 and 0.564 & 0.601 in CE loss and CI
loss, respectively.

3) Results for Ship Detection and Recognition: We conduct
abundant experiments on NUDT-AOSR15 with different detec-
tion methods (R2CNN and Cascade), different convolution neu-
ral networks (Resnet50 and Resnet101), and various imbalanced
situations. In terms of the results in standard NUDT-AOSR15 in
Table VI, Cascade with Resnet101 and CI loss achieves the
highest mAP, 83.4%, among other compared experiments. The
results of FL are approximate to the results of CE loss, which
is nearly 4% lower than our CI loss. Furthermore, the AP of
four to five categories in three sets of experiments is improved
significantly in the results of our CI loss to CE loss, which
contributes to the increase in the mAP.

Except conducting the experiments on the standard NUDT-
AOSR15, we have also conducted enough number of exper-
iments on the random sampled NUDT-AOSR15. The num-
ber of samples in each category and the relevant results are
shown in Table VII. We train the detection network (R2CNN
with ResNet101) only with different number of losses in each
situation. Owing to lower data amount than standard NUDT-
AOSR15, all the results of experiments undergo a decrease
in mAP. Overall, FL is able to ameliorate the imbalance in
the datasets, but CI loss still get the highest mAP in all the
experiments. Almost all the APs in every categories have been

elevated through CI loss. AP values of some categories increase
impressively, and this will also bring several mistakes in the
testing process. Thus, AP values of one or two categories in CI
loss are a bit lower than those in CE loss. The mAP values in six
situations with different training samples and different amount
of data of training samples, which are randomly sampled from
standard NUDT-AOSR15, demonstrate the effectiveness of our
proposed CI loss. This means that our proposed CI loss can be
used as one of the powerful methods to overcome the imbalance
of datasets.

To sum up, the imbalance of the dataset will influence the
performance of algorithms in recognition tasks. In addition,
the higher the ID, the poorer the results of algorithms. When
methods that are proposed to solve with the class imbalance
problem are used, the recognition rate or mAP will increase.
Our proposed CI loss is competitive among the state-of-the-art
methods.

VI. CONCLUSION

In this article, we realize that class imbalance is the general
problem in tasks, which chiefly come down to classification.
In the problems of image recognition and multicategory de-
tection, CI influences the gradient descent so that the trained
model performs well on majority classes, but poorly on minority
classes. CE loss is usable in class imbalance tasks. To address
this, we propose CI loss to handle the class imbalance problems
in classification and detection datasets. The essence of CI loss is
to descend the gradient more in the training process, by taking the
probability of occurrence in different classes into consideration.
In order to limit the ratio between classes, ID is also proposed as
a factor in our loss function and acts as a reasonable assessment
criterion in arbitrary datasets. Experimental results and their
analysis demonstrate that our loss function achieves higher
accuracy than other methods or losses. We hope to foster more
progress in the improvement of loss functions.
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