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a b s t r a c t 

This paper presents a simple and novel, yet highly effective approach for robust face recog- 

nition. Using LBP-like descriptors based on local accumulated pixel differences – Angular 

Differences and Radial Differences, the local differences were decomposed into comple- 

mentary components of signs and magnitudes. Based on these descriptors we developed 

labeled dominant patterns where the most frequently occurring patterns and their la- 

bels were learned to capture discriminative textural information. Six histogram features 

were obtained from each given face image by concatenating spatial histograms extracted 

from non-overlapping subregions. A whitened PCA technique was used for dimensional- 

ity reduction to produce more compact, robust and discriminative features, which were 

then fused using the nearest neighbor classifier, with Euclidean distance as the similarity 

measure. 

We evaluated the effectiveness of the proposed method on the Extended Yale B, the 

large-scale FERET, and CAS-PEAL-R1 databases, and found that that the proposed method 

impressively outperforms other well-known systems with a recognition rate of 74.6% on 

the CAS-PEAL-R1 lighting probe set. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Face recognition, as one of the most successful applications of image analysis and understanding, has received consid-

erable attention in the past decades due to its challenging nature and vast range of applications [18,42] . In recent years

this field progressed significantly and a number of face recognition and modeling systems have been developed [18] . Even

though current face recognition systems have reached a certain level of maturity, the performance of these systems in un-

controlled environments is still far from the capability of the human vision system [18,42] . In other words, there are still

many challenges associated with accurate and robust face recognition in regards to computer vision and pattern recognition,

especially under unconstrained environments. Therefore, this remains a stimulating field for further research. 

As a classical pattern recognition problem, face recognition primarily consists of two critical subproblems: feature ex-
traction and classifier designation, both of which have been the subject of significant study. Generally, facial feature descrip- 

tion plays a relatively more important role if poor features are used, and even the best classifier will fail to achieve good 
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recognition results. Numerous facial feature sets were presented with excellent surveys in reports by Zhao et al. [42] and

Li and Jain [18] . Nevertheless, designing useful face descriptors remains a great challenge when faced with three compet-

ing goals: computational efficiency, effective discrimination, and robustness to intra-person variations (including changes in

illumination, pose, expression, age, blur, and occlusion). 

Most facial extraction approaches can be categorized as utilizing either holistic features or local features. The holistic

approach uses the entire face region to construct a subspace representing a face image; Influential examples includes Prin-

ciple Component Analysis (PCA) [36] , Linear Discriminant Analysis (LDA) [3] , Locally Linear Embedding (LLE) [33] and Locally

Preserving Projections (LPP) [11] . In contrast, the local features approach involves local features first being extracted from

a subregion of a face and then classified by combining and comparing with corresponding local statistics. Holistic features

are unable to capture local variations in face appearance, and are more sensitive to variations in illumination, expression

and occlusions [18] . Local feature based approaches are advantageous in that distributions of face images in local feature

space are less affected by changes in facial appearance. As a result, local feature based face recognition approaches have

been widely studied in recent years. 

Among local feature approaches, local binary patterns (LBP) have emerged as one of the most prominent face analysis

methods since the pioneering work by Ahonen et al. [1] , and have attracted increasing attention due to their distinguished

advantages: (1) ease of implementation; (2) invariance to monotonic illumination changes; and (3) low computational com-

plexity. However, the original LBP method still has multiple limitations: (i) production of long histograms; (ii) capture of

only very local texture structure and not long range information; (iii) limited discriminative capability based purely on lo-

cal binarized differences; and (iv) limited noise robustness. On the basis of these issues, many LBP variants [12] have been

proposed to improve face recognition performance. 

Our research is motivated by recent work on texture classification in [24] , where four LBP-like descriptors – Center In-

tensity based LBP (CI-LBP), Neighborhood Intensity based LBP (NI-LBP), Radial Difference based LBP (RD-LBP) and Angular

Difference based LBP (AD-LBP) – were proposed, along with multiscale joint histogram features, which were found to be

highly effective to rotation invariant texture classification. We expanded this research [24] to address the face identifica-

tion problem by proposing a framework and more generalized formulation of the local intensities and differences f eatures.

Specifically, the major contributions of our work are summarized as follows: 

1. We proposed a new family of LBP-like descriptors based on local accumulated pixel differences: Angular Differences

(AD) and Radial Differences (RD). The descriptors presented advantages of efficiency, complementarity to LBP, robustness,

and the encoding of both microstructures and macrostructures, resulting in a more complete image representation. The

extraction of the proposed descriptors did not require any training, and thus this approach showed better generalizability

compared with popular learning methods, whose performance is degraded if the distribution of the testing sample varies

significantly from that of the training set. 

2. Using the proposed descriptors, we found that the properties of the original uniform patterns introduced by Ojala et al.

[30] did not hold true, and therefore we suggest the use of full patterns. We also proposed a labeled dominant pattern

(LDP) scheme, which learns a set of dominant patterns (the most frequently occurring patterns from a set of training

images) to capture discriminative textural information, but with lower dimensionality than the full pattern approach. 

3. Extensive experiments were conducted on the Extended Yale B, the FERET and the large-scale CAS-PEAL-R1 databases.

Our approach proved to be highly robust to illumination changes, as evident by our recognition rate of 74.6 % on the

CAS-PEAL-R1 lighting probe set. This is, to the best of our knowledge, the highest score yet achieved on this data set. 

A preliminary version of this work appeared in [22] . 

2. Related work 

The primary motivation of this work is to design novel LBP-like descriptors and apply them to face recognition, thus the

related literature focuses on LBP and its variants for face recognition. 

A brief review of LBP 

LBP was originally proposed for texture analysis [29,30] , and was later introduced to face recognition by Ahonen et al.

[1] . Since then, LBP-based facial image analysis has been one of its most popular and successful applications [6,12,17] . 

LBP characterizes the spatial structure of a local image texture by thresholding a 3 × 3 square neighborhood with the

value of the center pixel and considering only the sign information to form a local binary pattern. A more general formula-

tion defined on circular symmetric neighborhood systems was proposed by Ojala et al. [30] that allowed for multi-resolution

analysis and rotation invariance. Formally, given a pixel x 0, 0 in the image, the LBP pattern was computed by comparing its

value with those of its p neighboring pixels 

x r,p = [ x r,p, 0 , . . . , x r,p,p−1 ] 
T 
that were evenly distributed in angle on a circle of radius r centered on x 0, 0 , as shown in Fig. 1 , such that the LBP response 

was calculated as 
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Fig. 1. A central pixel and its p circularly and evenly spaced neighbors on a circle of radius r . 

Fig. 2. Two commonly used neighborhood structures: (a) concentric rings of interpolated pixels, (b) a ring of image patches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LBP r,p = 

p−1 ∑ 

n =0 

s (x r,p,n − x c )2 

n , (1) 

where s ( ·) was the sign function, defined as follows: 

s (x ) = 

{
1 x ≥ 0 

0 x < 0 

(2) 

Relative to the origin at (0, 0), the coordinates of the neighbors were given by −r sin (2 πn/p) , r cos (2 πn/p) . The intensity

values of neighbors not lying on a pixel location were estimated by interpolation. 

The original descriptor LBP r , p produces 2 p different output values, corresponding to the 2 p different binary patterns

formed by the p pixels in the neighborhood. Due to the rapid increase in the number of patterns for basic LBP r , p as p is

increased, it is difficult to apply LBP to large neighborhoods, therefore limiting its applicability. 

In order to reduce the dimensionality of the LBP histogram feature and increase its robustness to noise, Ojala et al.

[30] introduced uniform patterns, LBP u 2 r,p , where a binary pattern is uniform if it contains a maximum of two bitwise tran-

sitions from 0 to 1, or vice versa when the bit pattern is considered circularly. There are p(p − 1) + 2 uniform patterns,

and all of the remaining non-uniform patterns are accumulated into a single bin, resulting in a p(p − 1) + 3 dimensional

representation, and a great reduction to the 2 p dimensionality of LBP. The success of the LBP u 2 r,p operator came from the

experimental observations that the uniform patterns appeared to be fundamental properties of face images [1] , representing

salient local texture structure. 

As aforementioned, the original LBP method has limitations to be addressed, and therefore, a number of extensions and

modifications to it have been developed [12] . 

Changing neighborhood topology 

Some LBP variants were proposed by changing the topology of the neighborhood from which the LBP features were

computed, such as the Multi-scale Block LBP (MBLBP) [20] , Three Patch LBP (TPLBP) [38] and Four Patch LBP (FPLBP) [38] . In

MBLBP, the neighborhood shown in Fig. 2 (b) was adopted: a w × w patch centered on the pixel of interest and n additional

patches distributed uniformly in a ring of radius r around it. The LBP computation was done based on comparison of the

average values of the neighboring patches against that of the center patch. MBLBP was claimed to be more robust than

LBP since it encoded not only microstructures but also macrostructures of image patterns. A similar neighborhood was
used by TPLBP [38] , which computes patch differences, rather than single pixel or averaged pixel differences, as in LBP and 

MBLBP, respectively. TPLBP captured information complementary to pixel based descriptors. The Patterns of Oriented Edge 
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Magnitudes (POEM) descriptor proposed by Vu et al. [37] also used the same neighborhood structure as MBLBP and TPLBP,

but computed LBP-like features on histograms of gradients. 

Increasing discriminative power 

Researchers found it helpful to preprocess an image prior to LBP computation, where the most popular preprocess-

ing method is Gabor filtering, because Gabor and LBP provides complementary information: LBP captures local informa-

tion, while Gabor filters are non-local. Two such representative works are Local Gabor Binary Pattern Histogram Sequence

(LGBPHS) [41] and Histogram of Gabor Phase Patterns (HGPP) [40] . In both methods, an image is first convolved with 40

Gabor filters at five different scales and eight orientations, which is computationally expensive. In LGBPHS, the LBP method

is then applied to all 40 Gabor magnitude images. In HGPP, the Gabor phase information is encoded for 90 images of the

same size as the original. Due to richer information from this additional Gabor filtering stage, LGBPHS and HGPP improve

face recognition performance when compared to the original LBP method. However, the Gabor filtering step is accompanied

by a heavy computational burden, and the extremely high dimensionality of histogram representation limits the use of these

methods in real-time applications. Other promising work includes the Sobel-LBP approach [43] and the Local Derivative Pat-

tern (LDP) [39] . 

Recently researchers presented LBP-like descriptors based on discriminative learning. Notable examples include Decision

Tree-based LBP (DTLBP) [25] , Discriminative LBP (DLBP) [26] , Local Quantized Patterns (LQP) [14] and Discriminative Face

Descriptor (DFD) [17] . DTLBP attempts to learn discriminative patterns using decision tree induction, but one drawback of

the DTLBP is the high cost of constructing and storing the decision trees, especially when large neighborhoods are used. The

DLBP method represents LBP-like descriptors as a set of pixel comparisons between a center pixel and its 48 neighboring

pixels in a 7 × 7 patch, and seeks a subset from among all comparisons that maximizes the Fisher discrimination power.

Unfortunately, this is an intractable combinatorial optimization problem. Conversely, LQP makes use of vector quantization

and lookup tables to allow local pattern features a larger neighborhood and more quantization levels. LQP adopts the neigh-

borhood of Fig. 2 (a), and attempts to learn a codebook from all the LBP codes that have been extracted. This codebook

learning is not feasible with a large neighborhood since the number of local binary patterns grows exponentially with the

number of neighboring pixels. A further constraint is the size of the lookup table, which must store the output code of each

possible input pattern. Finally, the recent DFD descriptor learns the most discriminating local features, by computing the

difference vectors between the center patch and each of its neighboring patches to form a Pixel Difference Matrix, which

is then projected and re-grouped to form the discriminant pattern vector. A standard bag-of-words model [21] is applied

for face representation. The DFD descriptor performs well in face identification and verification, but involves a number of

parameters, has high dimensionality, requires time-consuming training, and has high training data needs. 

Enhancing noise robustness 

Tan and Triggs [35] introduced Local Ternary Patterns (LTP), where the binary LBP code was replaced by a ternary one.

The LTP method was more resistant to noise, but not strictly invariant to gray-scale changes, and the selection of additional

threshold values was not easy. Ahonen et al. [2] introduced Soft LBP (SLBP) histograms, which enhanced robustness by in-

corporating fuzzy membership in the representation of local texture primitives. Fuzzification allows multiple local binary

patterns to be generated, and thus one pixel position can contribute to more than a single bin in the histogram of possible

LBP patterns. However, this sacrifices invariance to monotonic variations, and computation of the contribution weights cre-

ates a computational burden. Noting this disadvantage of SLBP, Ren et al. [32] proposed a much more efficient variant: the

Noise Resistant LBP (NRLBP), which has fast contribution weight computation. 

Combining approaches 

A current trend in the development of new effective local descriptors is combining the strengths of multiple complemen-

tary descriptors. Huang et al. [13] proposed the Extended LBP (ELBP) method, which not only performed binary comparison

between the central pixel and its neighbors, but also encoded their gray value differences. Motivated by ELBP [9] , Guo et al.

developed a Completed LBP (CLBP) method by decomposing the local differences into two complementary components, the

signs and the magnitudes, which were coded using two LBP-like descriptors. Chan et al. [6] proposed to combine multi-

scale LBP with multi-scale Local Phase Quantization (LPQ) using kernel fusion for face recognition, and claimed improved

performance. Klare et al. [15] studied the combination of LBP and SIFT for heterogeneous face recognition. 

3. Extended LBP descriptors 

Guo et al. [9] proposed a complete LBP for texture classification, which included both the sign and the magnitude com-

ponents between a given central pixel and its neighbors in order to improve the discriminative power of the original LBP

operator. The operator derived from the sign component, denoted as LBP_S, is the same as the original LBP operator defined
in (2) : 

LBP _ S r,p = LBP r,p . (3) 
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Fig. 3. The two given patterns, left, would be considered equivalent by LBP, although the patterns are, in some ways, quite different from one other, not 

just due to a rotation, but due to underlying textural properties, revealed via angular and radial differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The operator computed from the magnitude component, denoted as LBP_M, performed a binary comparison between the

absolute value of the difference between the central pixel and its neighbors and a global threshold to generate an LBP-like

code: 

LBP _ M r,p = 

p−1 ∑ 

n =0 

s (| x r,p,n − x 0 , 0 | − μr,p )2 

n (4) 

where 

μr,p = 

1 

p 

p−1 ∑ 

n =0 

| x r,p,n − x 0 , 0 | . (5) 

3.1. Angular-differences based descriptors 

LBP encodes only the relationship between a central point and its neighbors. Moreover, its capability of encoding image

configuration and pixel-wise relationships is further weakened by the binary quantization of pixel differences. Although

extended to facilitate analysis of image textures at multiple scales [30] by varying the sampling radius ( r ) and the number

of sampling points ( p ), important information regarding the relationship between neighboring points on the same radius

(intra-radius) and the relationship between neighboring points across different radii (inter-radius) was lost. 

A simple example is shown in Fig. 3 . For standard LBP the two patterns were classified as the same class, although the

textural structures represented were actually quite different from one another. More specifically, the top and bottom pat-

terns in Fig. 3 show quite different inter-radius and intra-radius intensity variations, information which cannot be revealed

by LBP_S since it encodes only the relationship between a center pixel and its neighbors. With the aim to address these

issues, we investigated the feasibility and effectiveness of encoding angular and radial difference information for face rep-

resentation, where the angular and radial directions were on a circular grid. More specifically, we proposed two families of

related descriptors, the Angular Difference-based Local Binary Pattern (ADLBP) and the Radial Difference-based Local Binary

Pattern (RDLBP). Similar to LBP_S and LBP_M, both sign and magnitude components of angular and radial differences were

considered, leading to four LBP-like descriptors: ADLBP_S, ADLBP_M, RDLBP_S, and RDLBP_M, all illustrated in Fig. 4 . The

proposed new descriptors were not designed to compete with traditional LBP, but rather complement it and extend the set

of feature candidates. The derivation of ADLBP_S and ADLBP_M, were introduced first, followed by RDLBP_S and RDLBP_M

in Section 3.2 . 

For each pixel in an image, we considered the accumulated angular differences computed from its uniformly distributed

neighbors in a ring of radius r . Similar to the sampling scheme in the original LBP approach, we sampled pixels around a

central pixel x 0, 0 , but restricted the number of points on any circle of radius r sampled to be a multiple of eight, and thus

p = 8 q for some positive integer q . Therefore, the neighbors of x 0, 0 sampled on radius r are x r, 8 q = [ x r, 8 q, 0 , . . . , x r, 8 q, 8 q −1 ] 
T . 

Empirical tests suggested that averaging over two adjacent radii produced the best results, so the ADLBP_S descriptor

was computed by accumulating the angular differences of radii r and r − 1 : 

ψ 

r,δ,q 
= �Ang 

r,δ,q 
+ �Ang 

r−1 ,δ,q 
(6) 

where 
�Ang 

r,δ,q 
= 

[
�Ang 

r,δ,q, 0 
, . . . , �Ang 

r,δ,q, 8 q −1 

]T 
(7) 
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Fig. 4. The proposed extended set of features, made up of (a) local intensity features, (b) local angular-difference based features, and (c) local radial- 

difference based features. 

 

 

 

 

 

 

 

 

 

�Ang 

r,δ,q,n 
= x r,p,n − x r,p, mod (n + δ,p) (8)

The latter term is the angular difference computed over a given angular displacement δ(2 π / p ), where x r , p , n and

x r,p, mod (n + δ,p) correspond to the values of pixels at radius r spaced δ elements apart. 

Considering the rapid increase of the number of binary patterns with the increase of sampling points p , we did not want

to derive local binary patterns directly from ψ 

Ang 

r,δ,q 
, and instead followed the idea in our recent work in [23] . We transformed

ψ 

Ang 

r,δ,q 
by local averaging along an arc, 

φAngSign 

r,δ,q,n 
= 

1 

q 

q −1 ∑ 

k =0 

ψ 

Ang 

r,δ,q, (qn + k ) , n = 0 , . . . , 7 , (9)

as illustrated in Fig. 4 , such that the number of elements in φAngSign 

r,δ,q 
is always eight. 

Finally, given the sign component vector φAngSign 

r,δ,q 
, we trivially computed a binary pattern as in LBP_S in (2) : 

ADLBP _ S r,δ,q = 

7 ∑ 

n =0 

s (φAngSign 

r,δ,q,n 
)2 

n (10)

Similar to LBP_M, we also proposed the ADLBP_M descriptor based on the magnitude component of angular differences

| ψ 

Ang 

r,δ,q 
| . Specifically, we transformed the absolute angular differences | ψ 

Ang 

r,δ,q 
| , via local averaging as in (9) : 

φAngMag 

r,δ,q,n 
= 

1 

q 

q −1 ∑ 

k =0 

| ψ 

Ang 

r,δ,q, (qn + k ) | , n = 0 , . . . , 7 . (11)

from which we derived ADLBP_M as in LBP_M: 

ADLBP _ M r,δ,q = 

7 ∑ 

n =0 

s (φAngMag 

r,δ,q,n 
− μAngMag 

r,δ,q 
)2 

n , (12)
where μAngMag 

r,δ,q 
is the average of { φAngMag 

r,δ,q,n 
} 7 

n =0 
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3.2. Radial-differences based descriptors 

In order to obtain the radial-differences based descriptor RDLBP_S and RDLBP_M, we first computed the radial difference

vector: 

�Rad 
r,δ,q = [�Rad 

r,δ,q, 0 , . . . , �
Rad 
r,δ,q, 8 q −1 ] 

T , (13) 

where �Rad 
r,δ,q,n 

= x r,p,n − x r−δ,p,n is the radial difference computed with given integer radial displacement δ, and x r , p , n and

x r−δ,p,n correspond to the intensity values of pairs of pixels spaced δ apart in radius but in the same direction, as shown in

Fig. 4 . 

We computed the transformed sign and magnitude components φRadSign 

r,δ,q 
and φRadMag 

r,δ,q 
by averaging, as before: 

φRadSign 

r,δ,q,n 
= 

1 

q 

q −1 ∑ 

k =0 

�Rad 
r,δ,q, (qn + k ) , n = 0 , . . . , 7 (14) 

φRadMag 

r,δ,q,n 
= 

1 

q 

q −1 ∑ 

k =0 

| �Rad 
r,δ,q, (qn + k ) | , n = 0 , . . . , 7 . (15) 

Similar to (10) and (12) , the RDLBP_S and RDLBP_M descriptors are defined as follows: 

RDLBP _ S r,δ,q = 

7 ∑ 

n =0 

s (φRadSign 

r,δ,q,n 
)2 

n (16) 

RDLBP _ M r,δ,q = 

7 ∑ 

n =0 

s (φRadMag 

r,δ,q,n 
− μRadMag 

r,δ,q 
)2 

n , (17) 

where μRadMag 

r,δ,q 
is the average of { φRadMag 

r,δ,q,n 
} 7 

n =0 
. 

3.3. Statistical distribution examination of patterns 

In standard face recognition tasks using LBP, only uniform patterns were used [1,5,37] . The nonuniform patterns were

considered in only a single bin of the histogram that was used to extract features in the classification stage. However, the

representation of texture information using only uniform patterns may be problematic [10,19] , since the uniform patterns

may not be the dominant patterns, especially when the radius of the LBP operator increased. Fig. 5 shows distributions of

the patterns extracted from the gallery faces in the FERET database [31] for the proposed descriptors. The first nine bins of

each histogram corresponds to the rotation invariant uniform patterns, and the remaining bins to the nonuniform patterns.

It is clear that the uniform patterns may not necessarily represent a significant proportion of overall patterns. This was most

striking in the cases of ADLBP_S and ADLBP_M. Consequently, textural information could not be effectively represented by

solely considering the histogram of the uniform patterns. 

The original uniform patterns introduced by Ojala et al. [30] did not represent most of the observed patterns, and thus

we proposed use of the full descriptors, i.e. 256 binary patterns for each descriptor at each scale. Furthermore, as pointed

out by Ojala et al. [30] , the occurrence frequencies of different patterns vary greatly and some of the patterns rarely occur,

as illustrated in Fig. 5 . Therefore, we proposed a labeled dominant pattern (LDP) scheme which learned the most frequently

occurring patterns from a training set to reduce the dimensionality of the proposed descriptors without information loss.

First, the pattern histogram vectors of all images in the training set were computed. Then they were combined into one

histogram and sorted in descending order, and the labels of the minimum set of patterns that occupied 80% of the total

pattern occurrences were retained. At last, given the learned set of dominant patterns, any image was represented by the

probabilities of the dominant patterns. In summary, the pseudo-codes on determining the LDP patterns of an LBP descriptor

is presented in Fig. 6 . 

The proposed LDP scheme is different from the DLBP approach proposed by Liao et al. [19] . In DLBP, for each image

I i ∈ S train in the training set, the pattern histogram was extracted and sorted in descending order. Then the smallest number

of patterns k i for 80% pattern occurrences was found. Finally, the average number k = 

1 
|S train | 

∑ 

k i was defined as the required

number of patterns that occupy dominant ratio. The DLBP approach was not limited to consider only a fixed set of patterns.

For two different texture images, the dominant patterns could be of different types. It is important to remark that this is

an unlabeled feature reduction scheme in which no information is retained about the patterns’ labels, and some important

information was lost. In contrast, in our approach, the strong pattern occurrences were defined jointly for the entire image
set, such that a consistent set of features was extracted for each image, and thus each feature dimension corresponded to a 

fixed pattern type. 
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Fig. 5. Proportions of the rotation invariant LBPs for the proposed LBP-like descriptors: LBP_S 4, 8 , LBP_M 4, 8 , ADLBP_S 4, 1, 4 , ADLBP_M 4, 1, 4 , RDLBP_S 4, 1, 4 and 

RDLBP_M 4, 1, 4 using the FERET gallery set. 

Fig. 6. Learning the LDP pattern set from a given gallery face set. 



64 L. Liu et al. / Information Sciences 358–359 (2016) 56–72 

Fig. 7. Overview of the proposed face recognition framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Face representation 

With the proposed descriptors detailed in Section 3 , our face feature representation pipeline is similar to the one pro-

posed by Ahonen et al. [1] , but incorporates a more sophisticated illumination normalization step as used by Tan and Triggs

[35] . Fig. 4 illustrates the proposed extended set of features, and Fig. 7 summarizes the main operation for the face recog-

nition pipeline. Histogram feature extraction from a face image involves the following steps: 

(1) Crop the face region and align the face by mapping the eyes to a canonical location with a similarity transform. 

(2) Photometrically normalize the cropped faces by utilizing the preprocessing sequence approach [35] . 

(3) Divide the face image into a non-overlapping grid with equally sized subregions. 

(4) For each subregion, apply a feature extraction operator ( e.g. ADLBP_S) to each pixel. Afterward, create a histogram of

the feature values and concatenate these histograms into a single feature vector to represent the face image. 

4.1. Histogram features 

In order to incorporate more spatial information into the final descriptor, the proposed feature images were spatially

divided into multiple non-overlapping regions and histograms were extracted from each region. More precisely, a face image

I i is divided into 
√ 

w × √ 

w non-overlapping sub-regions, from each of which a sub-histogram feature of dimensionality m

is extracted and is normalized to sum one. By concatenating these regional sub-histograms into a single vector, a final

histogram feature h 

o 
i of dimensionality n = mw is obtained for face representation. We propose to compare three choices for

the extracted features: The uniform (“u2”) patterns, all of the patterns (“full”), and the LDP scheme (“ldp”) as just discussed

in Section 3.3 . 

Let h 

o 
1 i , h 

o 
2 i , h 

o 
3 i , h 

o 
4 i , h 

o 
5 i and h 

o 
6 i denote the histogram feature produced by descriptor LBP _ S , LBP _ M , ADLBP _ S , ADLBP _ M ,

RDLBP _ S and RDLBP _ M respectively, as illustrated in Fig. 7 . 

4.2. Dimensionality reduction and feature fusion 

The proposed extended set of LBP descriptors provide rich information, but need to be used to construct a powerful

classifier. Recent methods frequently combine multiple local features such as LBP, LTP, SIFT, LPQ and Gabor [6,15,35] , where

the actual combination strategy ranges from simple summing at the decision level to multiple kernel learning. For the

specific problem of face recognition, linear projection models [28,37] and kernel LDA [35] have been used. We strived to

show that the proposed radial and angular difference descriptors, which are designed to encode additional types of local

texture information, do capture information complementary to that of intensity-based descriptors and thus, when combined,

improve overall face recognition performance. 

A straightforward way to fuse the proposed features is to concatenate the feature vectors. Since the dimensionality n

of a single histogram feature h 

o 
ki (k = 1 , . . . , 6) is already relatively high, a drawback of feature concatenation is the so-

called “curse of dimensionality”, creating significant burdens on memory, storage and computation. Like other researchers

[14,17,28,37] , we believe that strong correlations exist between the proposed features and that most of the dimensions carry

redundant information, and hence further dimension reduction is necessary. 
The standard PCA technique selects a dimensionality reducing linear projection that maximizes the scatter of all pro- 

jected samples, which means the scatter being maximized is due not only to the interclass scatter that is useful for 
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classification, but also to the intraclass scatter unwanted for classification purposes. PCA has two disadvantages: (1) the

leading eigenvectors primarily encode variations such as illumination and expression, rather than information that is useful

for discrimination [3] ; and (2) the Mean-Square-Error principle underlying PCA favors low frequencies, and results in the

loss of discriminative information contained in high frequency components. 

The idea behind WPCA [14,17,28,37] is that discriminant information is equally distributed along all the principle compo-

nents. Therefore, all the principal components are divided by the square-roots of the corresponding eigenvalues to normal-

ize the projected features to the same variance. Specifically, suppose we have the PCA projected feature y = W 

T 
pca h 

o 
, where

W pca is the projection matrix computed by the standard PCA technique and is a matrix with orthonormal columns. Then, y

is subjected to a whitening transformation and yields the final WPCA projected feature h : 

h = �−1 / 2 
y = �−1 / 2 

W 

T 
pca h 

o 
(18)

where �−1 / 2 = diag{ λ−1 / 2 
1 

, λ−1 / 2 
2 

, . . . } , with λi being its eigenvalue. The integrated projection matrix �−1 / 2 
W 

T 
pca treats vari-

ance along all principal component axes as equally significant by more heavily weighting components corresponding to

smaller eigenvalues and is arguably appropriate for discrimination. Consequently, the negative influences of the leading

eigenvectors are reduced, whereas the discriminating details encoded in trailing eigenvectors are enhanced [14] . 

We applied WPCA to each single feature, letting h ki be the WPCA projected feature of h 

o 
ki . The similarity function is

denoted as d( h ki , h k j ) ; for fusing K features, we used the sum of the similarity measures of the individual features: 

d( I i , I j ) = 

K ∑ 

k 

d( h ki , h k j ) . (19)

As adopted in previous research [14,17,37] , WPCA was conducted on the gallery set only. 

4.3. Distance measure and classification 

To perform face recognition, there are two crucial components: (1) extracting low-level features, and (2) building classifi-

cation models. In this work, focus was on evaluating the discrimination properties of the proposed descriptors, and therefore

tried to make as few assumptions as possible and chose the simple Nearest Neighbor Classifier (NNC). 

First, we evaluated the effectiveness of the original histogram feature vector { h 

o 
ki } 6 k =1 

corresponding to the proposed

descriptors. The distance between two normalized frequency histograms was measured using the Chi squared distance. The

face samples were then classified according to their normalized histogram feature vectors h 

o 
i and h 

o 
j : 

χ2 ( h 

o 
i , h 

o 
j ) = 

1 

2 

∑ 

k 

[ h 

o 
i (k ) − h 

o 
j (k )] 2 

h 

o 
i (k ) + h 

o 
j (k ) 

(20)

the same distance metric used in [1] . 

We further evaluated the performance of the more efficient features { h ki } 6 k =1 
, which were obtained by applying the

WPCA technique on the original histogram feature vectors { h 

o 
ki } 6 k =1 

. The WPCA projected features were no longer histogram

frequencies, and therefore the χ2 distance may not be a good choice. Instead, we employed the conventional Euclidean

distance metric to compare faces in the normalized projected space. 

5. Experiments 

We conducted extensive experiments on three commonly-used databases: Extended Yale B, FERET and CAS-PEAL-R1.

We used the standard evaluation protocol for each database in order to facilitate comparison with previous work. These

databases incorporate several deviations from the ideal conditions, including illumination, expression, occlusion and pose

alterations. We adopt several of the standard evaluation protocols reported in the face recognition literature, and we present

a comprehensive comparison of the proposed approach with the recent state of the art. 

5.1. Image data and experimental setup 

The Extended Yale B database [16] consists of 2414 frontal face images of 38 subjects, with about 64 samples per subject,

which were captured under controlled lighting conditions and were cropped and normalized to a standard size of 192 ×
168 pixels. Instead of randomly selecting half of the images per subject for training and the remaining for testing, we used

a more difficult setup [27,34] . The database was divided into five subsets according to light direction with respect to the

camera axis ( Fig. 8 (a)): subset 1 consisted of gallery images under nominal lighting conditions, while all others were used

as probes. Subsets 2 and 3 were characterized by slight-to-moderate illumination variations, while subsets 4 and 5 depicted

severe illumination changes. 
The FERET database [4,31] is one of the largest publicly available databases, consisting of a total of 14,051 gray scale 

images representing 1199 subjects. The images contain variations including lighting, facial expressions and pose angle. To 
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Fig. 8. (a) Examples of one of the 38 subjects in the Extended Yale database B under the five subsets of lighting [16] . (b) Cropped example face images 

from the FERET database [4,31] . (c) Cropped example face images from CAS-PEAL-R1 [8] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ensure the reproducibility of tests, we used the publicly available CSU face identification evaluation framework [4] to eval-

uate the performance of our proposed methods, with a standard gallery (fa) and four probe sets (fb, fc, dup1, dup2). All

images were normalized according to the provided eye coordinates and cropped to 150 × 130. Example images are shown

in Fig. 8 (b). 

The CAS-PEAL-R1 database [8] is a large-scale Chinese face database for face recognition algorithm training and evalua-

tion, containing 30,863 images of 1040 individuals. The standard experimental protocol [8] divides the data into a training

set, a gallery set and six probe sets. No overlap exists between the gallery and any of the probes. The gallery contains one

image taken under standard conditions for each of the 1040 subjects, while the six probes respectively contain images with

the following variations: expression, lighting, accessories, background, distance and aging. Like in previous work [17] , we

used the expression, lighting, accessory subsets as probes. All images were cropped to 150 × 130 based on the provided

eye coordinates, with examples shown in Fig. 8 (c). The CAS-PEAL-R1 is challenging because it contains 27 times more sub-

jects than in the Extended Yale B, and has a greater degree of intrinsic variability due to its more natural image capture

conditions. 

For all databases, all face samples were photometrically normalized by the preprocessing sequence approach proposed by

Tan and Triggs [35] . This photometric normalization method reduced the effects of illumination variation, local shadowing

and highlights, while still keeping the essential visual appearance information for use in recognition. 

5.2. Parameter evaluation 

The key parameters involved in the proposed method are as follows: 

1. number of sampling points 8 q on radius r ; 

2. the step parameter δ for computing differences; 

3. uniform vs. full vs. LDP; 

4. Chi square+NNC vs. WPCA+Euclidean+NNC; 

5. which descriptors to fuse; 

6. the number of sub-regions 
√ 

w × √ 

w ; 

7. the radius r for extracting the proposed descriptors. 

For the LBP_S and LBP_M, we used a constant q = 1 ( i.e. a constant number of 8 sampling points for any radius r ),

as done in previous work [1,5,6] . For other descriptors, we proposed an intermediate sampling scheme aimed to prevent

over-smoothing at larger radii r , and set q = r for r ≤ 4, and q = 4 for r > 4. In terms of parameter δ, we set δ = 1 . 

Table 1 shows the recognition rates of the individual proposed descriptors on the Extended Yale B database, compar-

ing the three pattern grouping schemes discussed in Section 3.3 , using only the elementary histogram features (without

dimensionality reduction by WPCA). 

From Table 1 , we can make the following observations. First, for each proposed descriptor, the histogram representa-

tion generated by the full pattern method is ideal, significantly outperforming the uniform pattern method and marginally
outperforming the dominant scheme, clearly demonstrating the insufficiency of the uniform patterns for representing face 

images. On this basis we will not report results for the uniform pattern scheme in our latter experiments. Second, the 
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Table 1 

Recognition rates (%) of the proposed single elementary features on the Extended Yale B database, comparing “uniform”, “full” and “labeled dominant”. The 

NNC classifier with χ2 distance measure is used for classification. The radius r is 4 and the number of subregions 
√ 

w × √ 

w is set as 9 × 9. 

Method S2 S3 S4 S5 Mean 

U 1 LBP _ S u2 99 .8 99 .6 93 .2 77 .7 92 .6 

U 2 LBP _ M 

u2 99 .8 99 .2 95 .8 91 .7 96 .6 

U 3 ADLBP _ S u2 99 .8 89 .5 28 .5 12 .5 57 .6 

U 4 ADLBP _ M 

u2 99 .8 99 .6 94 .5 88 .7 95 .7 

U 5 RDLBP _ S u 2 99 .8 99 .4 91 .9 68 .5 89 .9 

U 6 RDLBP _ M 

u2 99 .8 99 .6 98 .2 91 .5 97 .3 

F 1 LBP _ S full 99 .8 99 .8 99 .6 96 .2 98 .9 

F 2 LBP _ M 

full 99 .8 99 .6 99 .6 97 .6 99 .2 

F 3 ADLBP _ S full 99 .8 99 .6 91 .4 67 .1 89 .5 

F 4 ADLBP _ M 

full 99 .8 99 .6 99 .4 97 .8 99 .2 

F 5 RDLBP _ S full 99 .8 99 .6 98 .7 86 .6 96 .2 

F 6 RDLBP _ M 

full 99 .8 99 .6 98 .9 95 .7 98 .5 

D 1 LBP _ S ldp 99 .8 99 .6 98 .3 92 .7 97 .6 

D 2 LBP _ M 

ldp 99 .8 99 .8 99 .1 97 .3 99 .0 

D 3 ADLBP _ S ldp 99 .8 99 .4 90 .1 65 .1 88 .6 

D 4 ADLBP _ M 

ldp 99 .8 99 .6 98 .9 96 .5 98 .7 

D 5 RDLBP _ S ldp 99 .8 99 .6 97 .1 82 .9 94 .9 

D 6 RDLBP _ M 

ldp 99 .8 99 .6 98 .7 94 .8 98 .2 

PCA [27] 98 .5 80 .0 15 .8 24 .4 54 .7 

LRC [27] 100 100 83 .27 33 .61 79 .2 

LRC_Fused [34] 100 100 88 .97 84 .73 93 .4 

Table 2 

Recognition rates (%) of the proposed WPCA features on the FERET database. The WPCA dimension is 1196 (the size of the gallery set). The NNC classifier 

with Euclidean distance measure is used for classification. The values of parameters r and w are the same as those in Table 1 . 

Method fb fc dup1 dup2 

F 1 LBP _ S full + χ2 96 .1 97 .4 75 .2 70 .1 

F 2 LBP _ M 

full + χ2 92 .8 95 .9 70 .4 66 .2 

F 3 ADLBP _ S full + χ2 97 .2 97 .4 75 .9 73 .1 

F 4 ADLBP _ M 

full + χ2 95 .7 97 .9 73 .3 70 .9 

F 5 RDLBP _ S full + χ2 95 .7 97 .9 73 .3 70 .9 

F 6 RDLBP _ M 

full + χ2 91 .5 96 .9 66 .2 66 .7 

F 1 LBP _ S full +WPCA 99 .0 100 .0 83 .2 80 .3 

F 2 LBP _ M 

full +WPCA 98 .3 99 .0 79 .4 78 .6 

F 3 ADLBP _ S full +WPCA 97 .1 95 .9 78 .9 73 .9 

F 4 ADLBP _ M 

full +WPCA 98 .1 98 .5 75 .1 73 .9 

F 5 RDLBP _ S full +WPCA 86 .9 79 .9 50 .6 45 .7 

F 6 RDLBP _ M 

full +WPCA 93 .1 86 .6 58 .7 52 .1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

magnitude-based descriptors consistently outperformed the corresponding sign-based descriptors, particularly under very

severe lighting changes (S4 and S5). This finding is different from those by Guo et al. [9] , in that the sign component was

more informative than magnitude. Finally, the proposed LBP_S, LBP_M, ADLBP_M and RDLBP_M (either with full or dom-

inant patterns) outperformed the results obtained using a Linear Regression Classification (LRC) method [27] , particularly

under severe lighting variations. 

Table 2 illustrates the effect of WPCA dimensionality reduction on the FERET database. The principal component axes

were calculated using the 1196 gallery faces, with no additional training set. We observed that the recognition perfor-

mance of the individual descriptors was consistently improved by WPCA+Euclidean relative to Chi-square, with the ex-

ception of the radial descriptors RDLBP_S and RDLBP_M, possibly because the WPCA dimensionality of 1196 is not adequate

for these two descriptors to represent face images. A more significant consideration was the computational advantage of

WPCA+Euclidean+NNC over Chi square+NNC due to the much lower feature dimensionality of WPCA. In our further experi-

ments we will focus on WPCA+Euclidean+NNC. 

We did not expect individual descriptors to capture all of the salient image features in recognizing a face. Indeed, it has

been our premise, from the outset, to wish to identify and fuse those descriptors having complementary information. To

simplify the notation, we refer to the full and LDP features as F i and D i , respectively, as identified in Table 1 and 2 . 

It would be possible to directly fuse all the six proposed descriptors, but there are two concerns. First, it is not obvious

that fusing all six features necessarily gives the best recognition performance, and second, there is a concern regarding pro-
cessing and computational costs. Other things being equal, we would prefer to fuse the fewest features giving the strongest 

performance. 
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Table 3 

Recognition rates (%), comparing results of fusing multiple descriptors. WPCA dimension set as 1196 for FERET and 1040 for CAS-PEAL-R1. Values of 

parameters r and w are the same as those in Table 1 . 

Method FERET CAS-PEAL-R1 

fb fc dup1 dup2 Mean Expression Accessary Lighting Mean 

F 1 99 .0 100 .0 83 .2 80 .3 92 .4 97 .5 92 .4 42 .9 75 .5 

F 2 98 .3 99 .0 79 .4 78 .6 90 .6 94 .1 85 .1 36 .5 69 .5 

F 3 97 .1 95 .9 78 .9 73 .9 89 .1 98 .1 93 .6 47 .0 77 .6 

F 4 98 .1 98 .5 75 .1 73 .9 88 .6 95 .1 87 .0 42 .1 72 .6 

F 5 86 .9 79 .9 50 .6 45 .7 71 .0 96 .1 90 .5 33 .1 70 .8 

F 6 93 .1 86 .6 58 .7 52 .1 77 .9 91 .3 78 .1 34 .8 65 .6 

F 34 99 .4 100 .0 85 .6 84 .2 93 .7 98 .4 93 .5 59 .2 82 .1 

F 14 99 .4 100 .0 87 .3 86 .3 94 .4 98 .3 93 .6 57 .6 81 .6 

F 13 99 .2 100 .0 87 .7 84 .6 94 .3 98 .7 94 .7 55 .8 81 .4 

F 134 99 .6 100 .0 88 .8 87 .2 95 .1 98 .9 94 .8 63 .4 84 .3 

F 1346 99 .6 100 .0 88 .9 87 .6 95 .1 98 .4 93 .9 65 .9 84 .8 

F 13456 99 .6 100 .0 89 .1 86 .8 95 .1 98 .7 94 .2 66 .4 85 .1 

F 123456 99 .6 100 .0 88 .8 87 .2 95 .1 98 .5 93 .8 66 .2 84 .8 

Table 4 

Comparisons of the recognition rates (%) of fusing the proposed LDP features on the FERET and CAS-PEAL-R1 Databases. 

Method FERET CAS-PEAL-R1 

fb fc dup1 dup2 Mean Expression Accessary Lighting Mean 

D 1 98 .8 100 .0 81 .4 77 .8 91 .5 96 .6 90 .8 34 .9 71 .7 

D 2 98 .4 97 .9 78 .1 75 .2 89 .8 93 .0 83 .1 33 .4 67 .3 

D 3 97 .2 98 .5 80 .9 77 .8 90 .4 97 .5 92 .1 41 .2 74 .8 

D 4 98 .2 98 .5 75 .6 73 .9 88 .8 94 .3 84 .2 37 .0 69 .4 

D 5 94 .4 95 .9 63 .6 58 .5 81 .4 94 .9 88 .4 27 .6 67 .7 

D 6 96 .2 94 .3 68 .7 65 .4 84 .5 89 .9 75 .9 31 .2 63 .1 

D 34 99 .3 99 .5 86 .8 84 .6 94 .0 98 .0 92 .8 55 .3 80 .4 

D 14 99 .3 100 .0 86 .4 84 .6 93 .9 98 .0 92 .3 51 .5 78 .8 

D 13 98 .8 99 .5 87 .5 83 .8 93 .9 98 .3 93 .8 50 .8 79 .2 

D 134 99 .3 100 .0 88 .6 86 .8 94 .8 98 .7 94 .5 60 .3 83 .0 

D 1346 99 .5 100 .0 89 .1 87 .6 95 .1 98 .2 93 .6 63 .9 83 .8 

D 13456 99 .6 100 .0 89 .6 87 .6 95 .4 98 .5 94 .1 64 .3 84 .3 

D 123456 99 .5 100 .0 89 .5 86 .8 95 .2 98 .4 93 .9 65 .4 84 .6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We tested all 57 possible descriptor sets, both full and dominant, with experiments carried out on the FERET and CAS-

PEAL-R1 databases. For the CAS-PEAL-R1 database, the principal component axes were calculated using the 1040 gallery

images, and the WPCA dimension was fixed to 1040. Table 3 compares the results of the feature fusion methods with those

achieved by the single descriptor method. Table 3 lists only those feature combinations that performed the best on both the

FERET and CAS-PEAL-R1 databases. 

The following observations can be made from Table 3 . First, the fused features consistently achieved much better recog-

nition scores than any single descriptor, especially on the FERET dup1, dup2 and the CAS-PEAL-R1 lighting probe sets. For

example, the fused feature F 1346 increased the recognition rate by 23%, 19%, 24% and 31% respectively relative to the LBP_S

(F 1 ), ADLBP_S (F 3 ), ADLBP_M (F 4 ) and RDLBP_M (F 6 ) descriptors alone on the CAS-PEAL-R1 lighting probe set, suggesting that

the proposed descriptors indeed captured complementary information. Second, it was observed that among the six proposed

descriptors, the LBP_S (F 1 ), ADLBP_S (F 3 ), ADLBP_M (F 4 ) played the more important roles in feature fusion, whereas LBP_M

(F 2 ) played the least important. Finally, the fused features F 1346 , F 13456 and F 123456 gave robust results on the test databases,

differing only in computational cost. 

Paralleling Table 3, Table 4 lists the results of the fused LDP features. The results in Table 4 support the findings given

by Table 3 . 

Figs. 9 and 10 plot the results of the fused full descriptors as a function of the number of sub-regions 
√ 

w × √ 

w . In

general, the recognition accuracy peaked for an intermediate value of w, suggesting that a small number of large regions

led to a loss of spatial information, whereas a large number of small regions increased the computation time and degraded

system accuracy. Conclusively, 9 × 9 was a defensible choice for both the FERET and CAS-PEAL-R1 databases. 

Finally, we addressed the question of radius parameter r with regards to recognition performance. Fig. 11 plots the results

of the proposed fused descriptors against the radius parameter r , suggesting that r = 4 and r = 5 are ideal choices. 

5.3. Comparative evaluation 
With parameter settings determined, examined the effectiveness of the proposed fused descriptors against previously 

established methods: traditional multiscale LBP by Ahonen et al. [1] ; Local Gabor Binary Pattern (LGBP) by Nguyen et al. 
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Fig. 9. Recognition rates (%) of the WPCA features as a function of the number of subregions on the FERET database. 

Fig. 10. Recognition rates (%) of the WPCA features as a function of the number of subregions on the CAS-PEAL-R1 database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Recognition rates (%) of the WPCA features as a function of the radius parameter r on the CAS-PEAL-R1 database. 

[28] , which utilizes Gabor filter bank as preprocessing before LBP extraction; Histogram of Gabor Phase Patterns (HGPP) by

Zhang et al. [40] , which quantizes Gabor filtered images into histograms that encode not only the magnitude, but also the

phase information from the image; Multi-scale LBP Histograms (MLBPH) with LDA learning and kernel fusion by Chan et al.

[5] ; learning based methods Discriminative LBP (DLBP) [26] and Decision Tree-based LBP (DT-LBP) [25] ; and very recent

approaches: POEM by Vu et al. published in 2012 [37] , which computes LBP-like features from SIFT histograms; LQP by

Hussain et al. published in 2012 [14] , which first learns significant LQP patterns globally with KMeans clustering and then

uses them to encode the face images; DFD by Lei et al. published in 2013 [17] , which first learns discriminative local features

from local pixel differences and then applies the standard Bag-of-Features (BoF) model to extract histogram features for face

representation. The results are shown in Tables 5 and 6 . 

Table 5 illustrates that the proposed method either matched or significantly outperformed all other approaches. To the

best of our knowledge, these are the best results reported to date on the FERET database. The DFD method was the only one

to perform similarly, however it is quite complex, involving LDA learning and KMeans clustering, both of which are time-

consuming and require enough training data to extract discriminative and stable face representation. On the contrary, our

proposed method is simple, efficient and free of pre-training. Since the face images in the FERET probe sets contain several
sources of variation, such as expression, lighting, and aging, these comparisons illustrated that our proposed methods is 

impressively robust to these extrinsic imaging conditions. 
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Table 5 

Comparisons of the recognition rates (%) of the proposed methods with previous results on the FERET Database. WPCA dimension is 1196. The values of 

parameters r and w are identical to those in Table 1 . 

Method fb fc dup1 dup2 

LBP [1] 97 .0 79 .0 66 .0 64 .0 

HGPP [40] 97 .5 99 .5 79 .5 77 .8 

DT-LBP [25] 99 .0 100 .0 84 .0 80 .0 

DLBP [26] 99 .0 99 .0 86 .0 85 .0 

MLBPH+LDA+SUM [5] 99 .2 99 .5 88 .4 85 .5 

Gabor+WPCA [7] 96 .3 99 .5 78 .8 77 .8 

LGBP+WPCA [28] 98 .1 98 .9 83 .3 81 .6 

POEM+WPCA [37] 99 .6 99 .5 88 .8 85 .0 

LPQ+WPCA [14] 99 .8 94 .3 85 .5 78 .6 

DFD+WPCA [17] 99 .3 99 .0 88 .8 87 .6 

F 1346 (proposed) 99 .6 100 .0 88 .9 87 .6 

F 13456 (proposed) 99 .6 100 .0 89 .1 86 .8 

F 123456 (proposed) 99 .6 100 .0 88 .8 87 .2 

D 1346 (proposed) 99 .5 100 .0 89 .1 87 .6 

D 13456 (proposed) 99 .6 100 .0 89 .6 87 .6 

D 123456 (proposed) 99 .5 100 .0 89 .5 86 .8 

Table 6 

Comparisons of the recognition rates (%) of the proposed methods with previous results on the CAS-PEAL-R1 Database. WPCA dimension is 1040. 

Method Expression Accessary Lighting 

HGPP [40] 96 .8 92 .5 62 .9 

DT-LBP [25] 98 .0 92 .0 41 .0 

DLBP [26] 99 .0 92 .0 41 .0 

DFD+WPCA [17] 99 .0 96 .9 63 .9 

F �
1346 

(proposed) 98 .3 94 .2 68 .7 

F �
13456 

(proposed) 98 .5 94 .4 70 .0 

F �
123456 

(proposed) 98 .3 94 .0 69 .6 

F ∗1346 (proposed) 98 .4 93 .9 72 .2 

F ∗13456 (proposed) 98 .7 94 .4 71 .9 

F ∗123456 (proposed) 98 .5 94 .0 72 .3 

D ∗1346 (proposed) 98 .2 93 .0 71 .3 

D ∗13456 (proposed) 98 .5 93 .8 71 .7 

D ∗123456 (proposed) 98 .4 93 .7 72 .9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, Table 6 compares the results of the proposed method with previously reported results on the CAS-PEAL-R1

database. Methods F � were obtained by combining the fused descriptors from two scales, radius r = 4 and r = 5 . Methods

F ∗ and D 

∗ used only one scale r = 4 , and were then obtained by optimizing the number of subregions 
√ 

w × √ 

w over the

training set from the CAS-PEAL-R1 database. 

As seen in Table 6 , our proposed method achieved comparable results on the expression probe set, outperformed all but

DFD on the accessory probe set, and significantly outperformed on the lighting probe set. In both accessory and lighting, we

outperformed HGPP (which is known to be very computationally expensive) and along with the two learning based methods

DT-LBP and DLBP. The high recognition rate on the lighting probe set indicates that the proposed approach is much more

robust to illumination variations than other methods in the literature. 

As a separate test, we conducted experiments with multiscale F �
13456 

, and with 13 × 13 subregions, and obtained a

recognition rate of 74.6 % on the lighting probe set, which, to the best of our knowledge, is currently the best score achieved

on this data set. 

6. Conclusions 

In this paper we proposed a novel extended set of LBP-like descriptors and developed a simplistic framework to fuse

the proposed descriptors for face identification. The proposed set of descriptors consists of two intensity based descriptors

LBP_S, and LBP_M, and four accumulated local differences based descriptors ADLBP_S, ADLBP_M, RDLBP_S, and RDLBP_M. 

All of the proposed descriptors have desirable features of robustness to lighting, pose, and expression variations, com-

putational efficiency when compared to many of the competing descriptors, and an encoding of both microstructures and

macrostructures resulting a more complete image representation. Because the descriptors have a form similar to that of
LBP, they inherit the merits of LBP codes and are readily fused to represent face images. The extraction of the proposed 

descriptors requires no training, and therefore, in contrast to popular learning methods, generalizability is avoided. 
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The proposed local descriptors significantly exploit available information and as well as contain complementary informa-

tion, which is shown by significantly improved performance of fused descriptors over single descriptor. We found that both

full pattern features and the proposed LDP features have strong recognition performance, and the LDP features have lower

feature dimensionality. 

Results show that our proposed approach outperforms all other descriptor-based techniques, and is comparable with

other much more complex learning-based descriptors. High performance coupled with low complexity suggests that our

algorithm is a strong candidate for face recognition. 
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