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Abstract—Multiple kernel learning (MKL) has been intensively studied
during the past decade. It optimally combines the multiple channels of
each sample to improve classification performance. However, existing
MKL algorithms cannot effectively handle the situation where some
channels of the samples are missing, which is not uncommon in practical
applications. This paper proposes three absent MKL (AMKL) algorithms
to address this issue. Different from existing approaches where missing
channels are firstly imputed and then a standard MKL algorithm is
deployed on the imputed data, our algorithms directly classify each
sample based on its observed channels, without performing imputation.
Specifically, we define a margin for each sample in its own relevant
space, a space corresponding to the observed channels of that sample.
The proposed AMKL algorithms then maximize the minimum of all
sample-based margins, and this leads to a difficult optimization problem.
We first provide two two-step iterative algorithms to approximately solve
this problem. After that, we show that this problem can be reformulated
as a convex one by applying the representer theorem. This makes it
readily be solved via existing convex optimization packages. In addition,
we provide a generalization error bound to justify the proposed AMKL
algorithms from a theoretical perspective. Extensive experiments are
conducted on nine UCI and six MKL benchmark datasets to compare
the proposed algorithms with existing imputation-based methods. As
demonstrated, our algorithms achieve superior performance and the
improvement is more significant with the increase of missing ratio.

Index Terms—absent data learning, multiple kernel learning, max-
margin classification

1 INTRODUCTION

MUltiple kernel learning (MKL) has been an active
topic in machine learning community during the

last decade [1]–[11]. By assuming that the optimal kernel
can be expressed as a linear combination of a group
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of pre-specified base kernels, MKL learns the optimal
combination coefficient and the structural parameters of
support vector machines (SVMs) jointly [3], [12]–[14].
Through this way, MKL not only learns an optimal data-
dependent kernel for a specific application, but also pro-
vides an elegant framework to integrate heterogeneous
data sources for learning. Such merits make MKL widely
used in practical applications such as object detection
[15], [16], bioinformatics data fusion [17] and signal
processing [18], to name just a few.

Research work in the literature has made important
progress on improving the efficiency of MKL algorithms
[2], [3], [12], [19]–[21], designing non-sparse and non-
linear MKL algorithms [12], [22]–[24], developing two-
stage MKL algorithms [5], [13], [25] and integrating
radius information into traditional margin-based MKL
algorithms [26]–[28]. Besides, many novel extensions,
including online MKL algorithms [7], MKL algorithms
for clustering [17], [29], [30], domain transfer MKL al-
gorithms [11], [31] and sample-adaptive MKL [32]–[34],
have been proposed recently, which further expands the
application of MKL algorithms.

Existing research work on MKL usually takes the
following implicit assumption: the data of all channels
are available for every sample. However, this assump-
tion will not hold anymore when some channels of a
sample are absent, which is common in a number of
practical applications including neuroimaging [35], [36],
computational biology [37], and medical analysis [38], to
name just a few. For example, in predicting Alzheimer’s
Disease with multiple imaging modalities, subjects may
only participate in part of the medical examinations,
resulting the information of various modalities missed
[35]. Formally speaking, this case is called the missing
value problem [38], [39] or absent data learning [37],
which has attracted research attention in the literature
[35], [37], [39]–[41]. Nevertheless, to the best of our
knowledge, designing efficient MKL algorithms to di-
rectly handle absent channels has not been sufficiently
researched in the literature and remains an open issue.

The violation to the above assumption makes existing
MKL algorithms unable to work as usual. Traditionally,
the samples with absent channels are discarded, result-
ing in a severe loss of available information. A straight-
forward remedy may firstly impute these absent chan-
nels with zero (known as zero-filling in the literature), or
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the mean value (mean-filling), or impute them by more
advanced approaches such as expectation-maximization
(EM-filling) [40]. After that, a standard MKL algorithm
is then deployed on the imputed data. Such imputa-
tion methods could work when missing ratio is small.
Nevertheless, they could produce inaccurate imputation
when the absence becomes more significant, and this will
deteriorate the performance of the subsequent MKL.

Different from the afore-mentioned imputation ap-
proaches, this paper proposes to directly classify samples
with absent channels without imputation. It is inspired
by the concept of sample-based margin developed in
[37]. In this paper, we first transplant the concept of
sample-based margin into multiple kernel-induced fea-
ture spaces, and propose to maximize the minimum
of all the sample-based margins. On one hand, our
approach is able to effectively handle the issue of ab-
sent channels. On the other hand, it yields a more
difficult optimization problem than the one encountered
in traditional MKL algorithms. We then develop three
algorithms from different perspectives to solve this opti-
mization problem. The main contributions of this paper
are highlighted as follows:

• Our work extends existing MKL framework by
enabling it to directly handle samples with absent
channels, which widens the application scope of
existing MKL algorithms.

• A two-step iterative MKL (I-AMKL) algorithm is
developed to iteratively solve the corresponding
optimization problem in the dual space. After that,
a new variant, termed I-AMKL-λ, is proposed to
improve its theoretical convergence.

• By proving the validity of the representer theorem
[42] for our optimization problem, we reformulate it
as a convex absent MKL (C-AMKL) in its primal s-
pace. It can be readily solved by off-the-shelf convex
optimization packages such as CVX [43].

• We provide a generalization error bound to theoret-
ically justify the proposed absent MKL algorithms.

• We conduct extensive experiments to compare
the proposed algorithms with existing imputation-
based methods on nine UCI and six MKL bench-
mark datasets, with various missing ratios. The
results clearly verify the superiority of the proposed
algorithms, especially in the presence of intensive
absence of channels.

We end up this section by discussing the differences
between our work and the work in [37]. Both papers
classify samples with missing observations by maximiz-
ing the sample-based margin. However, they have the
following important differences: (1) Our work deals with
the case in which channels (i.e., a group of features)
of samples are absent, while the work in [37] studies
the problem that features of samples are missing. Form
this perspective, the work in [37] is a special case of
our work, when each individual feature is viewed as a
channel and a linear kernel is applied to all channels; (2)

Our algorithms are able to work with the absence of both
input features and the entries of kernel matrices. How-
ever, the algorithm in [37] does not study the absence of
kernel matrices but only considers the absence of input
features; and (3) In addition to developing a two-step
iterative algorithm to solve the resultant optimization
problem as what has been done in [37], we design a
new variant with proved convergence and another new
convex algorithm that directly solves the problem in
the primal space by employing the representer theorem
[42]. More importantly, the newly proposed algorithms
consistently achieve significant improvements over the
former, as validated by our experimental results.

2 RELATED WORK

2.1 The Sample-based Margin

The sample-based margin is firstly proposed in the
seminal work [37] and applied to absent data learning
where some features of a sample are missing. An im-
portant assumption for the sample-based margin is that
the learned classifier should have consistent parameters
across samples, even if those samples do not reside in
the same space, i.e., having different sets of observed
features. Based on this assumption, the margin ρi(ω, b)
for the i-th (1 ≤ i ≤ n) sample is defined as

ρi(ω, b) =
yi(ω

(i)>xi + b)

‖ω(i)‖
, (1)

where {(xi, yi)}ni=1 is a training data set, xi is charac-
terized by a subset of features from a full set F , and
yi ∈ {+1,−1} is the label of xi. ω is the normal vector of
SVMs on the full feature set F , ω(i) is a vector obtained
by taking the entries of ω that are relevant to xi, namely
those for which the sample xi has observed features, and
b is the bias term. f(xi) = ω(i)>xi+b denotes the decision
score of the learned classifier on xi.

Eq. (1) defines the margin for each sample in its
own relevant space in which the sample has observed
features. As can be seen, it will reduce to a traditional
margin as in SVMs when all samples have a full set
F . From this perspective, the work in [37] provides
an elegant approach to handling samples with absent
features. Though bearing this advantage, the maximiza-
tion over the above sample-based margin makes the
corresponding optimization problem more difficult to
solve than the one in traditional SVMs. In [37], a two-step
iterative optimization procedure is proposed to solve
the problem. However, the optimization in [37] is non-
convex and the global optimum cannot be guaranteed
to obtain, which affects the performance of the learned
classifier.

2.2 Multiple Kernel Learning

In MKL, each sample x = [x(1)>, · · · ,x(m)>]> is as-
sociated with a concatenation of multiple base kernel
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mappings. Specifically, it takes the form of

φ(x) = [φ>1 (x
(1)), · · · , φ>m(x(m))]>, (2)

where {x(p)}mp=1 represents features from m views, and
{φp(x(p))}mp=1 are the m feature mappings corresponding
to m pre-defined base kernels {κp(·, ·)}mp=1, respectively.
Based on this definition, the seminal work in MKL [1]
proposes to optimize the following problem in Eq. (3),

min
ω,b,ξ

1

2

(∑m

p=1
‖ωp‖Hp

)2
+ C

n∑
i=1

ξi,

s.t. yi
(∑m

p=1
ω>p φp(x

(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i,

(3)

where ωp is the normal vector corresponding to the p-th
base kernel, b is the bias, ξ consists of the slack variables
and Hp is a Hilbert space corresponding to base kernel
κp.

Note that the first term of the objective function in Eq.
(3) is not smooth since ‖ωp‖Hp is not differentiable at
ωp = 0. This non-smoothness makes the problem hard
to optimize. Fortunately, according to [3], [44], such a
non-smooth term can be turned into a smooth one, as
stated in Eq. (4),

1

2

(∑m

p=1
‖ωp‖Hp

)2
=
{
min
γ

1

2

∑m

p=1

‖ωp‖2Hp

γp

s.t.
∑m

p=1
γp = 1, γp ≥ 0, ∀p

}
.

(4)
Therefore, the MKL formulation in Eq. (3) can be equiv-
alently rewritten as the one commonly used in the MKL
literature [3]

min
ω,b,ξ,γ

1

2

∑m

p=1
‖ωp‖2Hp

+ C
∑n

i=1
ξi,

s.t. yi
(∑m

p=1

√
γpω

>
p φp(x

(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i,∑m

p=1
γp = 1, γp ≥ 0, ∀p.

(5)
In this paper, we adopt the formulation in Eq. (3) for the
convenience of introducing the sample-based margin in
a multiple-kernel-induced space.

To integrate the information from multiple channels,
current MKL algorithms assume that each sample xi
can be represented as φ(xi) = [φ>1 (x

(1)
i ), · · · , φ>m(x

(m)
i )]>,

where φp(·) is applied to x
(p)
i (1 ≤ p ≤ m) corresponding

to one of its channels, as shown in Eq. (2).
A question that naturally arises is how to effectively

perform MKL when some channels, i.e., part of φp(xi)
in Eq. (2), are absent for a sample? In the following
parts, we address this channel absence issue by defining
the sample-based margin in a multiple-kernel-induced s-
pace and develop three absent MKL (AMKL) algorithms
based on this concept.

3 ABSENT MKL ALGORITHMS

3.1 The Sample-based Margin in AMKL
We are given n training samples {(φ(xi), yi)}ni=1 and a
missing matrix s ∈ {0, 1}n×m, where φ(xi) is defined as

in Eq. (2) and the (i, p)-th entry of s, s(i, p) ∈ {0, 1} (1 ≤
i ≤ n, 1 ≤ p ≤ m), indicates whether the p-th channel
of the i-th sample is absent or not. Specifically, s(i, p) =
0 implies absence and s(i, p) = 1 otherwise. Note that
the missing matrices for both training and test sets are
random and known in advance.

Similar to [37], we assume that a normal vector should
be consistently shared across samples, no matter whether
they have the same observed channels or not. Under this
assumption, we define the margin for the i-th (1 ≤ i ≤ n)
sample as,

ρi(ω) =
yi
(∑m

p=1 s(i, p)ω
>
p φp(x

(p)
i ) + b

)
∑m
p=1 s(i, p)‖ωp‖Hp

, (6)

where ω = [ω>1 , · · · ,ω>m]> and ωp (1 ≤ p ≤ m) are the
normal vectors corresponding to the whole channels and
the p-th channel, respectively. ‖ωp‖Hp is the norm in a
Hilbert space induced by the p-th base kernel.

As can be seen, Eq. (6) defines the margin in a
multiple-kernel-induced feature space for the samples
with absent channels, i.e., some of {φp(x(p)

i )}mp=1 (1 ≤
i ≤ n) are absent, as indicated by s(i, p). At this point,
we have extended the sample-based margin in [37],
where some individual features of samples are missing,
to MKL where some channels of samples are missing.
As well known in the literature [1], the generalization
performance of MKL is theoretically related to the mar-
gin between classes and a large margin is preferred. In
AMKL, we propose to maximize the minimum of all
sample-based margins so that the resultant classifier can
separate the two classes as far as possible. This objective
is fulfilled as in Eq. (7),

max
ω

 min
1≤i≤n

yi
(∑m

p=1 s(i, p)ω
>
p φp(x

(p)
i ) + b

)
∑m
p=1 s(i, p)‖ωp‖Hp

 . (7)

Different from the traditional MKL optimization prob-
lem where its denominator is shared by all samples,
the denominator in Eq. (7) varies across samples. This
prevents Eq. (7) from being equivalently rewritten as
a readily solvable optimization problem, and makes it
much more difficult than a traditional MKL problem.

In the following parts, we solve this optimization
problem by proposing three algorithms, namely two it-
erative procedures solving its dual problem, and another
easy-to-implement variant solving its primal problem
reformulated to be convex. We term these algorithms it-
erative AMKL (I-AMKL), I-AMKL-λ and convex AMKL
(C-AMKL), respectively.

3.2 The Proposed I-AMKL

The difficulty of optimizing the problem in Eq. (7) lies in
the variation of both of the numerator and denominator
with samples. To overcome this difficulty, we maintain
the denominator as a variable shared across all samples
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by defining n auxiliary variables τi (1 ≤ i ≤ n) as in Eq.
(8),

τi =

∑m
p=1 s(i, p)‖ωp‖Hp∑m

p=1 ‖ωp‖Hp

. (8)

Based on τ = [τ1, · · · , τn]>, Eq. (7) can be reformulated
as

max
ω,b

1
m∑
p=1

‖ωp‖Hp

(
min

1≤i≤n

(
yi
τi

)( m∑
p=1

s(i, p)ω>p φp(x
(p)
i ) + b

))

s.t. τi =

∑m
p=1 s(i, p)‖ωp‖Hp∑m

p=1 ‖ωp‖Hp

.

(9)
Due to the scale invariance of the fraction optimization,
Eq. (9) is equivalently rewritten as a constrained opti-
mization problem over ω and τ , as in Eq. (10),

max
ω,τ ,b

1∑m
p=1 ‖ωp‖Hp

,

s.t.

(
yi
τi

)(∑m

p=1
s(i, p)ω>p φp(x

(p)
i ) + b

)
≥ 1, ∀i,

τi =

∑m
p=1 s(i, p)‖ωp‖Hp∑m

p=1 ‖ωp‖Hp

.

(10)

Turning the maximization optimization to a minimiza-
tion one and adding slack variables ξ to handle the non-
separable cases, Eq. (10) is conceptually rewritten as,

min
ω,b,ξ,τ ,γ

1

2

∑m

p=1
‖ωp‖2Hp

+ C
∑n

i=1
ξi,

s.t.

(
yi
τi

)( m∑
p=1

s(i, p)
√
γpω

>
p φp(x

(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i∑m

p=1
γp = 1, 0 ≤ γp ≤ 1, ∀p

τi =

∑m
p=1 s(i, p)‖ωp‖Hp∑m

p=1 ‖ωp‖Hp

.

(11)
where the constraints on the base kernel weights γ are
derived according to Eq. (4).

As observed, Eq. (11) has an additional variable τ
to be optimized when compared with the traditional
MKL optimization problem in Eq. (5). To solve Eq. (11),
we propose a two-step alternate algorithm in which an
MKL-like optimization problem and the update of τ
are alternately performed. Specifically, we optimize the
parameters ω, b, ξ in the first step by solving an MKL-
like problem with fixed τ . After that, τ is updated with
the optimized ω in the last iteration via Eq. (8). To
optimize ω, b, ξ, we present the Lagrange function of
Eq. (11) with a fixed τ as

L(ω, b, ξ;α,β) = 1

2

m∑
p=1

‖ωp‖2Hp

γp
+ C

n∑
i=1

ξi

−
n∑
i=1

αi
((yi
τi

)( m∑
p=1

s(i, p)ω>p φp(x
(p)
i ) + b

)
− 1 + ξi

)
−

n∑
i=1

βiξi,

(12)
where α and β are the Lagrange multipliers. By taking
the derivative of L(ω, b, ξ;α,β) with respect to ω, b, ξ

and let it vanish, we obtain
ωp = γp

∑n
i=1 αi(

yi
τi
)s(i, p)φp(x

(p)
i ), ∀p

αi + βi = C, ∀ i = 1, · · · , n∑n
i=1 αi(

yi
τi
) = 0

(13)

After combining Eq. (13) into Eq. (12), we derive the
dual problem of Eq. (11) with a fixed τ as follows

min
γ

max
α

1>α− 1

2
(α ◦ (y � τ ))>

(
m∑
p=1

γpK̂p

)
(α ◦ (y � τ ))

s.t. α>(y � τ ) = 0, 0 ≤ αi ≤ C, ∀i,
1>γ = 1, 0 ≤ γp ≤ 1, ∀p,

(14)
where y = [y1, y2, · · · , yn]> and τ = [τ1, τ2, · · · , τn]>.
We use ◦ and � to denote the element-wise product
and division, respectively. 1 is a vector of all ones. K̂p

denotes m base kernel matrices with K̂p(x
(p)
i ,x

(p)
j ) =

s(i, p)s(j, p)Kp(x
(p)
i ,x

(p)
j ) (1 ≤ i, j ≤ n). It is worth

pointing out that K̂p is still positive semi-definite (PSD)
since it can be represented as

(
s(:, p)s(:, p)>

)
◦ Kp and

the element-wise product of two PSD matrices are still
PSD [45]. As a result, the inner maximization problem
of Eq. (14) is kept convex as in traditional SVMs and the
global optimum with respect to α is guaranteed.

After obtaining α by solving Eq. (14), the norm of
ωp (p = 1, · · · ,m) can be calculated via Eq. (15)

‖ωp‖Hp = γp

√
(α ◦ (y � τ ))> K̂p (α ◦ (y � τ )), (15)

and then τ is updated via Eq. (8).
This two-step procedure continues until the conver-

gence criterion “max{|γ(t+1) − γ(t)|} ≤ η0” is satisfied,
where γ(t+1) and γ(t) are the learned base kernel weights
at the (t + 1)-th and t-th iterations, respectively. The
outline of the algorithm for solving I-AMKL is presented
in Algorithm 1.

Algorithm 1 I-AMKL

1: Input: {Kp}mp=1, y, s, C and η0.
2: Output: α, b, γ and τ .
3: Initialize τ (0) = 1 and t = 0.
4: repeat
5: Update (α(t+1), γ(t+1)) by solving Eq. (14) with
τ (t).

6: Update τ (t+1) with (αt+1, γ(t+1), τ (t)) via Eq. (8)
and (15).

7: t = t+ 1.
8: until max{|γ(t+1) − γ(t)|} ≤ η0

As observed, Algorithm 1 iteratively performs a tra-
ditional MKL algorithm with the given τ (t) to obtain
ω

(t+1)
p and then updates τ with ω

(t+1)
p . Consequently,

the computational complexity of the proposed I-AMKL
is O(N · TMKL), where N is the number of iterations
and TMKL is the computational complexity of running
a traditional MKL at each iteration. According to our
experimental results, it takes I-AMKL several iterations,
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usually less than ten (N ≤ 10), to reach convergence for
all the data sets used in our experiments.

After obtaining α, b, γ and τ by Algorithm 1, the
decision score of the resultant classifier on a test sample
xt is calculated as

ŷ(xt) =

m∑
p=1

γp

n∑
i=1

αi

(
yi
τi

)
s(i, p)t(p)Kp(x

(p)
i ,x

(p)
t ) + b, (16)

where t ∈ {0, 1}m is a pre-specified vector indicating the
absence of the channels for xt.

3.3 The Proposed I-AMKL-λ
Although the aforementioned I-AMKL in Algorithm 1
can be effectively solved, it is observed that the op-
timization w.r.t τ is unconstrained during the whole
course. Specifically, τ is updated with the optimized ω
in the last iteration via Eq. (8). This makes I-AMKL only
approximately solve the original optimization and its
convergence hard to be theoretically guaranteed. In the
following, we propose another new algorithm that incor-
porates the equality constraints on τi into the objective
to address this issue to the following optimization,

min
τ

min
ω,b,ξ,γ

1

2

m∑
p=1

‖ωp‖2Hp
+ C

n∑
i=1

ξi +
λ

2n

n∑
i=1

∣∣∣t>i w∣∣∣2 ,
s.t.

(
yi
τi

)( m∑
p=1

s(i, p)
√
γpω

>
p φp(x

(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0,∀i∑m

p=1
γp = 1, 0 ≤ γp ≤ 1, ∀p

(17)
where the equality constraints are incorporated as penal-
ty terms appended to the original objective, λ is a hyper-
parameter to enforce these equality constraints, ti =
[τi−s(i, 1), · · · , τi−s(i,m)]> and w = [‖ω1‖, · · · , ‖ωm‖]>.

The optimization in Eq. (17) is convex but non-smooth.
We therefore turn to optimize its upper bound by ob-
serving that |t>i w|2 ≤ ‖ti‖2‖w‖2, ∀i. This leads to the
optimization as follows,

min
ω,ξ,b,γ,τ

1

2

(
1 +

λ

n

∑n

i=1
‖ti‖2

)∑m

p=1
‖ωp‖2 + C

∑n

i=1
ξi

s.t.
(yi
τi

)( m∑
p=1

s(i, p)
√
γpω

>
p φp(x

(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i∑m

p=1
γp = 1, γp ≥ 0,

(18)
which is equivalent to

min
ω,ξ,b,γ,τ

1

2

(
1 +

λ

n

∑n

i=1
‖ti‖2

)∑m

p=1

‖ωp‖2

γp
+ C

∑n

i=1
ξi

s.t.

(
yi
τi

)( m∑
p=1

s(i, p)ω>p φp(x
(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i∑m

p=1
γp = 1, γp ≥ 0.

(19)
One can derive the Lagrangian dual or Fenchel-dual

[46] of Eq. (19), and alternately solve the ω,γ, ξ and τ ,
as done in [3]. However, it would lead to a complicated
fractional optimization on τ , which is difficult to solve.

Instead, we take another approach to overcome this
obstacle. To do so, we first show the form of ωp in Eq.
(19) by the following Theorem 1.

Theorem 1. The solution of ωp in Eq. (19) (and Eq. (28))
should take the form of

ωp =
∑n

i=1
αiκp(x

(p)
i , ·), ∀p (20)

where κp(·, ·) is the p-th base kernel.

The proof of Theorem 1 is provided in the appendix
due to space limit.

Based on Theorem 1, the optimization problem in Eq.
(19) can be equivalently written as

min
α,ξ,b,γ,τ

1

2

(
1 +

λ

n

∑n

i=1
‖ti‖2

)∑m

p=1

α>Kpα

γp
+ C

∑n

i=1
ξi

s.t. yi

(
m∑
p=1

s(i, p)α>Kp(:,x
(p)
i ) + b

)
≥ τi(1− ξi), ξi ≥ 0,∀i∑m

p=1
γp = 1, γp ≥ 0,

(21)
We design a two-step alternate algorithm to solve the

optimization problem in Eq. (21). In the first step, α,γ
and ξ are optimized with given τ . With the given τ ,
the optimization in Eq. (21) is jointly convex w.r.t α,γ
and ξ, which could be easily handled via existing convex
optimization packages such as CVX [43]. In the second
step, τ is optimized with given α,γ and ξ. With the
fixed α,γ and ξ, the optimization in Eq. (21) w.r.t τ is
as follows,

min
τ

1

2

∑n

i=1
τ2i −

∑n

i=1

∑m
p=1 s(i, p)

m
τi

s.t. viτi ≤ ui, ∀i
(22)

where vi = 1−ξi and ui = yi(
∑m
p=1 s(i, p)α

>Kp(:,x
(p)
i )+

b).
Directly solving the optimization problem in Eq. (22)

appears to be computationally intractable because it is
a quadratic programming problem with n variables.
Looking into this optimization problem, we can find
that these constraints are separately defined on each τi
and that the objective function is a sum over each τi.
Therefore, we can equivalently rewrite the problem in
Eq. (22) as n independent sub-problems, as stated in Eq.
(23),

min
τi

1

2
τ2i − oiτi, s.t. viτi ≤ ui, (23)

where oi =
∑m

p=1 s(i,p)

m . The optimization in Eq. (23) can
be analytically solved.

It is worth pointing out that the objective of I-AMKL-
λ is guaranteed to be monotonically decreased when
optimizing one variable with the others fixed at each
iteration. At the same time, the objective in Eq. (21)
is lower-bounded by zero. As a result, the proposed I-
AMKL-λ is guaranteed to converge. In addition, it is well
recognized that the representer theorem in Theorem 1
usually gives a theoretically less elegant dual than the
Lagrangian or Fenchel dual. However, we maintain to
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adopt the representer theorem dual in the paper because:
1) it well simplifies the resultant optimization problem;
and 2) it demonstrates competitive classification perfor-
mance in our experimental study.

3.4 The Proposed C-AMKL

As can be seen, the procedure for I-AMKL and I-
AMKL-λ alternately solves the optimization problems
by defining an extra variable τ and its global optimum
is not guaranteed. This sometimes could deteriorate the
classification performance of the learned classifier. In
the following part, we show how to reformulate the
optimization problem in Eq. (7) as a convex one such that
it could be easily solved via existing convex optimization
packages such as CVX [43]. To this end, we first express
the optimization problem in Eq. (7) as a constrained one
as in Eq. (24),

max
ω

min
1≤i≤n

1∑m
p=1 s(i, p)‖ωp‖Hp

,

s.t. yi
(∑m

p=1
s(i, p)ω>p φp(x

(p)
i ) + b

)
≥ 1, ∀i,

(24)

which can be rewritten as Eq. (25),

min
ω

max
1≤i≤n

1

2

(∑m

p=1
s(i, p)‖ωp‖Hp

)2
,

s.t. yi
(∑m

p=1
s(i, p)ω>p φp(x

(p)
i ) + b

)
≥ 1, ∀i.

(25)

The optimization problem in Eq. (25) is non-smooth.
Applying the similar trick in Eq. (4) and switching the
minimization over γ and the maximization over i in Eq.
(25), we reformulate it as a smooth one, as stated in Eq.
(26),

min
ω,γ

max
i

1

2

∑m

p=1
s(i, p)

‖ωp‖2Hp

γp
,

s.t. yi
(∑m

p=1
s(i, p)ω>p φp(x

(p)
i ) + b

)
≥ 1, ∀i,∑m

p=1
γp = 1, 0 ≤ γp ≤ 1, ∀p.

(26)

It is not difficult to check that the objective of Eq. (26)
is an upper bound of Eq. (25). In the literature, one can
minimize an objective by minimizing its upper bound.
In addition, we prove that the optimums of these two
optimization problems are equal. The detailed proof is
provided in the appendix due to space limit.

Eq. (26) can be further rewritten as

min
ω,γ

u,

s.t. yi
(∑m

p=1
s(i, p)ω>p φp(x

(p)
i ) + b

)
≥ 1, ∀i,

1

2

∑m

p=1
s(i, p)

‖ωp‖2Hp

γp
≤ u, ∀i,∑m

p=1
γp = 1, 0 ≤ γp ≤ 1, ∀p.

(27)

After adding slack variables ξ to deal with non-separable

cases, we rewrite Eq. (27) as

min
ω,γ,b, ξ, u

u+ C
∑n

i=1
ξi

s.t. yi

(
m∑
p=1

s(i, p)ω>p φp(x
(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i,

1

2

∑m

p=1
s(i, p)

‖ωp‖2Hp

γp
≤ u, ∀i,∑m

p=1
γp = 1, 0 ≤ γp ≤ 1, ∀p.

(28)
As can be seen in Eq. (28), the objective function as
well as the first and third constraints are all linear in
variables [ω>,γ>, b, ξ>, u]>. In addition, the second con-
straint, which is a quadratic cone, is also jointly convex
in [ω>,γ>]> [43]. As a consequence, the optimization
problem in Eq. (28) is convex.

Solving Eq. (28), however, is still difficult since the
feature mapping functions {φp(x)}mp=1 are usually not
explicitly known. A commonly used trick to handle this
problem is to derive its Lagrangian (or Fenchel) dual
where {φp(x)}mp=1 appears in the form of inner product
in the kernel-induced feature space. Nevertheless, its
dual problem, no matter Lagrangian or Fenchel dual,
would lead to a complicated fractional optimization
caused by the second constraint of Eq. (28). Instead,
we apply the representer theorem [42] to overcome this
obstacle. We firstly prove that ωp in Eq. (28) should take
the form in Theorem 1. The proof is provided in the
appendix due to space limit.

Based on Theorem 1 and the kernel reproducing prop-
erty [47], we have

fp(x
(p)) = 〈ωp, κp(x(p), ·)〉Hp =

∑n

i=1
αiκp(x

(p)
i ,x(p)), (29)

and

‖ωp‖2Hp
= 〈ωp,ωp〉Hp =

∑n

i,j=1
αiαjκp(x

(p)
i ,x

(p)
j ). (30)

With Eq. (29) and (30), the optimization problem in Eq.
(28) can be equivalently rewritten as

min
α,γ,b, ξ, u

u+ C
∑n

i=1
ξi

s.t. yi

(
m∑
p=1

s(i, p)α>Kp(:,x
(p)
i ) + b

)
≥ 1− ξi, ξi ≥ 0,∀i,

1

2

∑m

p=1
s(i, p)

α>Kpα

γp
≤ u, ∀i,∑m

p=1
γp = 1, 0 ≤ γp ≤ 1, ∀p,

(31)
where Kp(:,x

(p)
i ) = [κp(x

(p)
1 ,x

(p)
i ), · · · , κp(x(p)

n ,x
(p)
i )]>

and α = [α1, · · · , αn]>.
The optimization problem in Eq. (31) is called convex

AMKL (C-AMKL) in this paper, which has some intu-
itive explanation. Specifically, the first constraint requires
that the learnt classifier classifies samples by using the
observed channels, i.e., those for which s(i, p) = 1.
This maximally utilizes the available information while
avoiding the potentially inaccurate imputation. The sec-
ond constraint takes the maximum of the reciprocal of
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each sample-based margin and the objective function
minimizes this maximum, which is equivalent to max-
imizing the minimum of all sample-based margins. By
this way, the learnt classifier is expected to have good
generalization performance. Finally, we apply the convex
optimization package CVX [43] to solve the optimization
problem in Eq. (31). After obtaining α and b, the deci-
sion score of the classifier on a new test sample xt is
calculated as

ŷ(xt) =
∑m

p=1
t(p)α>Kp(:,x

(p)
t ) + b, (32)

where t ∈ {0, 1}m is a vector indicating the absence of
the channels for xt.

As can be seen from Eq. (31), its optimization prob-
lem is a linear programming with convex quadratic
constraints. It is therefore a Quadratically Constrained
Quadratic Program (QCQP), which can be efficiently
solved by being reformulated as a Second Order Cone
Program problem (SOCP) [48]. Some advanced opti-
mization techniques can be used to further improve
the computational efficiency of the proposed C-AMKL,
which will be a piece of our future work.

4 GENERALIZATION ANALYSIS

We provide a generalization bound for the proposed
absent multiple kernel learning algorithms. According
to the Lagrange function in Eq. (12) and the objective
function in Eq. (28), we conclude that all the proposed al-

gorithms encourage the term 1
2

∑m
p=1

‖ωp‖2Hp

γp
to be small.

Let ωp , γpwp and 1
2

∑m
p=1

‖ωp‖2Hp

γp
≤ µ for simplicity.

We analyze the generalization property of the proposed
learning algorithms by considering the complexity of the
following hypothesis class

WK =
{
w : x 7→

∑m

p=1
γp
〈
wp, φp(x

(p))
〉 ∣∣∑m

p=1
γp = 1,

γp ≥ 0,
1

2

∑m

p=1
γp‖wp‖2Hp

≤ µ
}
,

(33)
where x = [x(1)>, · · · ,x(m)>]> represents the features
from m views.

Assume that data are generated independently from a
fixed but unknown probability distribution D over the
joint space of the observed features and label, i.e., s ◦ x
and y. Note that if the p-th view of x is unobserved
or absent, s(p) = 0; otherwise, s(p) = 1. Exploiting the
indicator property of s(p), we can define the expected
error of a function fw(·) =

∑m
p=1 γps(p) 〈wp, φp(·)〉 by

R(w) = Ex∼D

[
1(y(

∑m
p=1 γps(p)〈wp,φp(x)〉)≤0)

]
, (34)

where 1(·) is the indicator function representing the 0-
1 loss function. Accordingly, we define the empirical
margin error of the function fw as

R̂ρ(w) =
1

n

n∑
i=1

1
yi
(∑m

p=1 γps(i,p)〈wp,φp(x
(p)
i )〉

)
≤ρ, (35)

where ρ is the margin. We have Rρ(w) → R(w) when
ρ→ 0.

Let ŵ be the learned classifier. The following Theorem
2 upper bounds the generalization error R(ŵ)− R̂ρ(ŵ).

Theorem 2. Let {φ1, · · · , φm} be the kernel mappings of
a family of kernels containing m base kernels with different
kernel widths. Assume that all the kernels are bounded, i.e.,
‖φp(x(p))‖2Hp

≤ B for all x(p) ∈ X (p) and p ∈ {1, · · · ,m}.

Let {(xi, yi)}ni=1 with xi = [x
(1)
i

>
, · · · ,x(m)

i

>
]> be an i.i.d.

sample. For any ρ > 0 and δ > 0, with probability at least
1− 3δ, we have

R(ŵ)− R̂ρ(ŵ) ≤ max
1≤p≤m

2
√
2µB

nρ

√√√√ n∑
i=1

s(i, p) + 3

√
log 1/δ

2n

+
16

ρ

√
µB ln((m+ 1)/δ)

n
.

(36)

Note that
√∑n

i=1 s(i, p) ≤
√
n. Theorem 2 implies

that the generalization bound will converge to zero
when the training sample size n is sufficiently large. The

convergence rate is of order O(
√

lnm
n ), which justifies

that the proposed algorithms will generalize fast.

5 EXPERIMENTAL RESULTS

5.1 Experimental Settings
In this section, we conduct experiments to compare the
three variants of the proposed AMKL, i.e., I-AMKL, I-
AMKL-λ and C-AMKL, with several commonly used
imputation methods, including ZF-MKL, MF-MKL, EM-
MKL and SVT-MKL. These methods are different in the
imputation. Specifically, they are:
• ZF-MKL assigns zero to all absent channels.
• MF-MKL fills the absent channels with the value

averaged on the samples for which the channels are
observed.

• EM-MKL imputes the absent channels using the
expectation maximization (EM) algorithm [40].

• SVT-MKL has been recently proposed to recover
a large matrix from a small subset of its entries
via nuclear norm minimization [49], [50]. We al-
so include this imputation approach to see how
it (singular value thresholding (SVT)) performs in
the MKL setting. The SVT codes are downloaded
from http://svt.stanford.edu and we follow their
suggestions to set its parameters.

We discuss the differences between the proposed AMKL
and the aforementioned imputation methods, i.e., ZF-
MKL, MF-MKL, EM-MKL and SVT-MKL. The difference
between AMKL and zero-filling is the way in calculating
the margin. ZF-MKL first imputes the absent channels
with zeros and maximizes the margin defined on the im-
puted samples. Differently, in AMKL the margin of each
sample is calculated in its own relevant space and the
minimum of these sample-based margins is maximized.
Note that calculating the margin in a relevant space does
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Fig. 1: Classification accuracy comparison of the above algorithms on nine UCI data sets.

not imply that the unobserved channels are set to zero.
This difference can be clearly seen from Eq. (6). For ZF-
MKL, all the term s(i, p) in the denominator will simply
be treated as one after the absent channels are imputed
with zeros, and this will result in a denominator different
from the one optimized by AMKL.

Besides differing in calculating the margin, MF-MKL
fills the absent channels with the value averaged on the
samples for which the channels are observed. EM-MKL
imputes the absent channels with expectation maximiza-
tion technique. Specifically, EM algorithm performs the
following expectation (E) and maximization (M) steps
iteratively at each iteration. In the E-step, the mean and
covariance matrix are estimated from the data matrix
with missing channels filled via the previous M-step.
Then, based on the estimated mean and the covariance,
the M-step fills the missing channels of each column with
their conditional expectation values. These two steps
are iteratively performed until convergence. The recently
proposed SVT algorithm estimates the absent channels
via minimizing the trace norm of data matrix. Note that
all zero-filling, mean-filling, EM-filling and SVT-filling

may become inaccurate when the channel absence is
intensive, which would deteriorate the performance of
the learnt classifier. The above drawback of ZF-MKL,
MF-MKL, EM-MKL and SVT-MKL will be well verified
in our experiments.

We then compare the pre-processing time of the above
algorithms. For the proposed I-AMKL, I-AMKL-λ and
C-AMKL, they directly classify the samples with ab-
sent channels without imputation. Therefore, the pre-
processing time is zero. The pre-processing time of ZF-
MKL and MF-MKL is a little longer than that of I-AMKL,
I-AMKL-λ and C-AMKL. However, this is not the case
for EM-MKL and SVT-MKL. Their pre-processing time is
significantly longer than the others. For example, it may
take EM-MKL and SVT-MKL several days to finish the
imputation even when the number of samples is smaller
than three thousands. This is because calculating the
conditional expectation values in M-step is computation-
ally intensive in EM-MKL. Similarly, the singular value
decomposition (SVD) required at each iteration makes
SVT-MKL computationally inefficient. The I-AMKL, I-
AMKL-λ, ZF-ML, MF-MKL, EM-MKL and SVT-MKL
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are implemented based on the SimpleMKL packages1.
Meanwhile, we implement the C-AMKL via CVX [43].

We first evaluate the classification performance of the
aforementioned algorithms on nine UCI data sets for
binary classification2, including heart, ionosphere, sonar,
spambase, splice, wdbc, musk1, pima and fourclass. For these
data sets, we follow the approach in [5] to generate 20
Gaussian kernels as base kernels, whose width param-
eters are linearly equally sampled between 2−7σ0 and
27σ0, with σ0 the mean value of all pairwise distances.
For each data set, 60% samples are randomly selected
as the training set and the rest as test set. The detailed
information about these data sets is summarized in the
upper part of Table 2, where we treat each base kernel
as a channel.

TABLE 2: UCI and MKL benchmark datasets used in our
experiments.

Data
Number of

training testing classes channels

heart 162 108 2 20

ionosphere 211 140 2 20

sonar 125 82 2 20

spambase 600 400 2 20

splice 600 400 2 20

wdbc 343 226 2 20

musk1 287 189 2 20

pima 461 307 2 20

fourclass 518 344 2 20

protein 427 267 27 12

psortPos 326 215 4 69

psortNeg 868 576 5 69

plant 566 374 4 69

flower17 816 544 17 21

caltech101 1020 2040 102 48

After that, we report the classification results of these
algorithms on another six MKL benchmark data sets,
including the protein fold prediction data set3, psortPos,
psortNeg, plant data sets4, flower17 data set5 and the
Caltech1016. All of them are multi-class classification
tasks. The base kernel matrices of these data sets are pre-
computed and publicly available from the above web-
sites. For protein, psortPos, psortNeg, plant and flower17
data sets, 60% samples are randomly selected as the
training set and the rest as the test set. For Caltech101,
ten samples are selected from each class as training set
and the rest as test set. The detailed information about
these data sets is presented in the lower part of Table 2.

We then show how to construct the absent matrix
s ∈ {0, 1}n×m on the training data, where n and m are
the number of training samples and channels. Specifi-

1. http://asi.insa-rouen.fr/enseignants/∼arakoto/code/mklindex.
html

2. https://archive.ics.uci.edu/ml/datasets.html
3. http://mkl.ucsd.edu/dataset/protein-fold-prediction/
4. http://raetschlab.org//suppl/protsubloc/
5. http://www.robots.ox.ac.uk/∼vgg/data/flowers/17/index.

html/
6. http://files.is.tue.mpg.de/pgehler/projects/iccv09/

cally, we randomly generate a row of s and set its first
round(ε0 ∗m)7 smallest values as zeros and the rest as
ones. We repeat this process for n times to construct each
row of s. By this way, we construct an absent matrix s on
training data. The absent matrix on test data is generated
in the same way. The parameter ε0, termed missing
ratio in this paper, will affect the performance of the
above algorithms. Intuitively, the larger the value of ε0
is, the worse the performance that these algorithms can
achieve. In order to show this point in depth, we com-
pare the performance of these algorithms with respect
to different ε0. Specifically, ε0 on all data sets is set to
be [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], where ε0 = 0.1
denotes the least intensive absence while ε0 = 0.9 means
the most intensive absence.

The aggregated performance is used to evaluate the
goodness of the above algorithms. Taking the aggregated
classification accuracy for example, it is obtained by av-
eraging the averaged accuracy achieved by an algorithm
with different ε0. We repeat this procedure 30 times on
UCI data sets and ten times on MKL benchmark data
sets to eliminate the randomness in generating the absent
matrices, and report the averaged aggregated results and
standard deviation. Furthermore, to conduct a rigorous
comparison, the paired student’s t-test is performed. The p-
value of the pairwise t-test represents the probability that
two sets of compared results come from distributions
with an equal mean. A p-value of 0.01 is considered
statistically significant. In our experiments, each base
kernel is centralized and then scaled so that its diagonal
elements are all ones. The regularization parameters C
and λ for each algorithm are chosen from an appropriate-
ly large range [2−1, 20, · · · , 27] by 5-fold cross-validation
on the training data. All experiments are conducted on
a high performance cluster server, where each node has
2.3GHz CPU and 12GB memory.

5.2 Results on UCI Datasets

In Figure 1, we report the classification accuracy of the
above-mentioned algorithms on nine UCI data sets with
the variation of missing ratios. From these figures, we
have the following observations:
• The curves corresponding to the proposed C-AMKL

algorithm are at the top in all sub-figures, indi-
cating its best overall performance. At the same
time, the proposed I-AMKL-λ algorithm generally
demonstrates the overall second best performance.
These results well demonstrate the effectiveness of
the proposed AMKL algorithms.

• The improvement of our proposed I-AMKL, I-
AMKL-λ and C-AMKL algorithms is more signif-
icant with the increase of missing ratios. Taking the
results on ionosphere data set for example, I-AMKL
achieves higher accuracy than the best imputation
algorithm (MF-MKL) by 1.07% when the missing

7. round(·) denotes a rounding function.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 07,2020 at 07:31:24 UTC from IEEE Xplore.  Restrictions apply. 

http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html
http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html
https://archive.ics.uci.edu/ml/datasets.html
http://mkl.ucsd.edu/dataset/protein-fold-prediction/
http://raetschlab.org//suppl/protsubloc/
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html/
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html/
http://files.is.tue.mpg.de/pgehler/projects/iccv09/


SUBMITTED TO IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH MAY, YEAR 2018 10

TABLE 1: Classification accuracy comparison (mean±std) with the pair-wise t-test on nine UCI data sets. Boldface
means no statistical difference from the best one (p-val ≥ 0.01).

Proposed Imputation Methods
I-AMKL I-AMKL-λ C-AMKL ZF-MKL MF-MKL EM-MKL SVT-MKL

heart
81.78± 2.69 82.41± 2.53 82.45± 2.76 75.55± 2.06 80.59± 2.30 79.99± 2.18 76.12± 2.40

0.03 0.86 1.00 0.00 0.00 0.00 0.00

ionosphere
91.76± 1.58 93.70± 1.35 93.76± 1.33 86.49± 1.68 88.67± 1.42 84.51± 1.35 84.92± 1.34

0.00 0.44 1.00 0.00 0.00 0.00 0.00

sonar
76.85± 3.19 82.46± 2.87 82.24± 3.07 68.18± 3.19 74.82± 2.75 71.74± 2.72 64.16± 2.10

0.00 1.00 0.11 0.00 0.00 0.00 0.00

wdbc
96.34± 0.84 97.10± 0.56 97.06± 0.59 93.82± 0.78 95.82± 0.92 90.97± 1.02 89.72± 0.89

0.00 1.00 0.49 1.00 0.00 0.00 0.00

musk1
83.76± 2.02 88.22± 2.09 88.35± 2.16 77.46± 1.58 81.25± 1.82 77.25± 1.81 69.02± 1.39

0.00 0.09 1.00 0.00 0.00 0.00 0.00

splice
80.75± 1.22 83.53± 1.26 83.40± 1.38 75.90± 1.17 80.26± 1.17 76.13± 1.29 60.90± 1.13

0.00 1.00 0.03 0.00 0.00 0.00 0.00

spambase
92.30± 0.61 93.45± 0.73 93.69± 0.70 90.11± 0.47 90.90± 0.50 83.58± 0.16 83.88± 0.27

0.00 0.00 1.00 0.00 0.00 0.00 0.00

pima
75.93± 0.96 75.57± 1.05 76.84± 1.09 72.47± 1.26 74.43± 1.03 73.81± 0.88 70.84± 0.57

0.00 0.00 1.00 0.00 0.00 0.00 0.00

fourclass
96.65± 0.45 97.72± 0.36 97.94± 0.35 95.91± 0.46 94.78± 0.51 93.45± 0.40 89.92± 0.46

0.00 0.00 1.00 0.00 0.00 0.00 0.00

avg. 86.24 88.24 88.41 81.77 84.61 81.27 76.61

TABLE 3: Classification accuracy comparison (mean±std) with the pair-wise t-test on the protein fold prediction.
Boldface means no statistical difference from the best one (p-val ≥ 0.01).

Proposed Imputation Methods [37]
I-AMKL I-AMKL-λ C-AMKL ZF-MKL MF-MKL EM-MKL SVT-MKL MMAF

52.88± 1.32 56.96± 0.79 55.65± 1.62 49.82± 1.44 52.92± 1.76 47.28± 1.57 34.00± 1.18 42.84± 1.40

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4: Classification accuracy comparison (mean±std) with the pair-wise t-test on the protein subcellular
localization. Boldface means no statistical difference from the best one (p-val ≥ 0.01).

Proposed Imputation Methods
I-AMKL I-AMKL-λ C-AMKL ZF-MKL MF-MKL EM-MKL SVT-MKL

psortPos 83.28± 2.04 83.92± 1.56 85.32± 2.09 75.37± 1.66 82.12± 1.57 76.77± 1.33 67.58± 1.35

0.00 0.00 1.00 0.00 0.00 0.00 0.00

plant 84.23± 1.23 87.52± 1.70 86.55± 1.00 80.20± 0.80 83.31± 1.13 83.33± 0.70 66.39± 1.07

0.00 1.00 0.00 0.00 0.00 0.00 0.00

psortNeg 82.40± 1.01 83.21± 1.46 83.11± 0.83 76.17± 0.80 82.29± 0.70 78.37± 0.97 60.96± 0.65

0.00 1.00 0.48 0.00 0.00 0.00 0.00

ratio equals 0.5, and this improvement goes up to
13.76% when the missing ratio reaches 0.9. In addi-
tion, C-AMKL further increases these improvements
to 2.17% and 23.19%, respectively.

• In terms of the classification performance, the vari-
ation of C-AMKL is much less with respect to the
increase of the missing ratio when compared with
other algorithms. It implies that the performance of
C-AMKL is relatively more stable, which is a desired
characteristic for a good classifier.

The aggregated classification accuracy, standard devia-
tion and the p-value of statistical test for each algorithm
are reported in Table 1. As observed, I-AMKL and I-
AMKL-λ usually achieve better performance than that
of ZF-MKL, MF-MKL, EM-MKL and SVT-MKL. Also, C-
AMKL further significantly improves over I-AMKL and

I-AMKL-λ, which is consistent with our observations in
Figure 1.

We attribute the superiority of the proposed I-AMKL,
I-AMKL-λ and C-AMKL algorithms to the sample-based
margin maximization in each sample’s own relevant
space. In detail, the proposed AMKL algorithms take
the channel absence of samples into consideration by
maximizing the minimum of all sample-based margin-
s. In contrast, ZF-MKL, MF-MKL, EM-MKL and SVT-
MKL algorithms firstly fill the absent channels, and
then maximize the margin on the imputed samples, as
in a standard MKL algorithm. As can be seen, such
imputation approaches may not be reliable when the
channel absence is relatively intensive, leading to poor
performance in the sequential classification tasks. Also,
though I-AMKL, I-AMKL-λ and C-AMKL maximize the
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Fig. 2: Classification accuracy comparison of the above algorithms on the MKL benchmark data sets. (a) Protein
Fold Predication. (b) PsortPos. (c) Plant. (d) PsortNeg. (e) Flower17. (f) Caltech101.

minimum of sample-based margins, they differ in the
optimization procedure. The optimization problem cor-
responding to I-AMKL and I-AMKL-λ is non-convex and
prone to being trapped into a local minimum. Differently,
C-AMKL is free of this issue. This difference makes C-
AMKL able to achieve better performance, as validated
by the experimental results.

5.3 Results on Protein Fold Prediction
Besides the nine UCI data sets, we also compare the
aforementioned algorithms on the protein fold predic-
tion data set, which is a multi-source and multi-class
data set based on a subset of the PDB-40D SCOP col-
lection. It contains 12 different feature spaces, including
composition, secondary, hydrophobicity, volume, polar-
ity, polarizability, L1, L4, L14, L30, SWblosum62 and
SWpam50. This data set has been widely adopted in
the MKL community [22], [51]. For the protein fold
prediction data set, the input features are available and
the kernel matrices are generated as in [51], where
the second order polynomial kernels are employed for
feature sets one to ten and the linear kernel for the rest
two feature sets.

This data set is a 27-class classification task and the
one-against-rest strategy is used to solve the multi-class
classification problem. As before, we vary the missing
ratio from 0.1 to 0.9 with step size 0.1, and record the
performance of these algorithms under different missing
ratio, as plotted in Figure 2a. As can be observed, the
proposed C-AMKL shows significant improvement after
the missing ratio is larger than 0.4. With the missing

ratio 0.5, it outperforms the second best one (MF-MKL)
by 3.41%. Moreover, C-AMKL gains 6.10% improvement
over the second best one (MF-MKL) when the missing
ratio reaches 0.9.

The mean aggregated classification accuracy, standard
deviation and the statistical test results are reported in
Table 3. Again, we observe that: (1) The classification
accuracy of I-AMKL is on par with the best imputation
algorithms (MF-MKL), (2) I-AMKL-λ further improves I-
AMKL, and demonstrates even better performance than
C-AMKL when the missing ratio is larger than 0.4.
In detail, I-AMKL-λ outperforms the best imputation
algorithms (MF-MKL) by 4.04% in terms of the mean
aggregated classification accuracy.

5.4 Results on Protein Subcellular Localization
In this subsection, we compare the performance of the
aforementioned MKL algorithms on psortPos, psortNeg,
plant data sets, which are from the protein subcellular
localization and have been widely used in MKL com-
munity [52]–[55]. The base kernel matrices for these
data sets have been pre-computed and can be pub-
licly downloaded from the websites. Specifically, there
are 69 base kernel matrices, including two kernels on
phytogenetic trees, three kernels from BLAST E-values,
and 64 sequence motif kernels. The class number of
psortPos, psortNeg, plant data sets is four, five and four,
respectively.

The accuracy achieved by the above algorithms on
these three data sets with different missing ratios is plot-
ted in Figures 2b, 2c and 2d, respectively. As can be seen,
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TABLE 5: Classification accuracy comparison (mean±std) with the pair-wise t-test on Flower17. Boldface means no
statistical difference from the best one (p-val ≥ 0.01).

Proposed Imputation Methods
I-AMKL I-AMKL-λ C-AMKL ZF-MKL MF-MKL EM-MKL

77.90± 1.04 80.61± 0.23 81.40± 1.17 70.94± 1.08 75.40± 1.17 78.65± 1.13
0.00 0.00 1.00 0.00 0.00 0.00

the proposed I-AMKL demonstrates overall comparable
or better classification performance when compared with
the imputation based algorithms on all data sets. In
addition, the curves of C-AMKL and I-AMKL-λ are
at the top in most of the cases, indicating the best
performance. The improvement of both algorithms over
the others becomes more significant with the increase
of missing ratio. For example, C-AMKL outperforms the
second best one by 8.97% (Figure 2b), 2.81% (Figure 2c)
and 5.73% (Figure 2d) on psortPos, psortNeg, plant data
sets when the missing ratio is 0.9. The mean aggregated
accuracy, standard deviation and the p-value of statistical
test of each algorithm are reported in Table 4. Again, the
proposed C-AMKL and I-AMKL-λ demonstrate statisti-
cally significant improvement over the others.

5.5 Results on Flower17 Dataset
We compare the above MKL algorithms on Oxford Flow-
er17, which has been widely used as a MKL benchmark
data set [56]. There are seven heterogeneous data chan-
nels available for this data set. For each data channel,
we apply a Gaussian kernel with three different width
parameters, i.e., 2−2σ0, 20σ0 and 22σ0 to generate three
kernel matrices, where σ0 denotes the averaged pairwise
distance. In this way, we obtain 21 (7 × 3) base kernels,
and use them for all the MKL algorithms compared in
our experiment.

Figure 2e plots the accuracy of the above algorithms
with different missing ratios on the Flower17 data set.
From this figure, we observe that the C-AMKL and
I-AMKL-λ obtain superior performance to the others.
Also, they demonstrate more improvement with the
increase of missing ratio. When the missing ratio reaches
0.9, C-AMKL and I-AMKL-λ are superior to the second
best one (MF-MKL) by nearly 13% and 10%, respectively.
The corresponding mean aggregated accuracy, standard
deviation and the statistical results are reported in Table
5. We can see that C-AMKL and I-AMKL-λ are consis-
tently better than the other ones.

TABLE 6: Classification accuracy comparison on Cal-
tech101.

Proposed Imputation Methods
I-AMKL I-AMKL-λ C-AMKL ZF-MKL MF-MKL

47.51 51.20 52.22 44.48 44.67

5.6 Results on Caltech101
Finally, we conduct another experiment on the Cal-
tech101 dataset to evaluate the performance of the pro-
posed algorithms. This data set consists of a group of

kernels derived from various visual features computed
on the Caltech-101 object recognition task with 102 cate-
gories. It has 48 base kernels which are publicly available
on websites8.

The classification accuracy of the above algorithms
is plotted in Figure 2f. As can be seen, the proposed
I-AMKL is significantly better than the others after
the missing ratio is larger than 0.3. I-AMKL-λ further
significantly improves the classification accuracy of I-
AMKL, and demonstrates comparable performance with
C-AMKL. We also report the mean aggregated classifica-
tion accuracy, standard deviation and the statistical test
results in Table 6. Again, we observe that the proposed
C-AMKL, I-AMKL-λ and I-AMKL achieve higher classi-
fication accuracy than the rest ones.

From the above experiments on nine UCI data sets
and six MKL benchmark data sets, we conclude that: (1)
The proposed AMKL effectively addresses the issue of
channel absence in MKL; (2) The proposed C-AMKL, I-
AMKL-λ and I-AMKL achieve superior performance to
ZF-MKL, MF-MKL, EM-MKL and SVT-MKL, especially
in the presence of intensive absence.

6 CONCLUSION
While MKL algorithms have been used in various ap-
plications, they are not able to effectively handle the
scenario where some channels are absent in samples.
To address this issue, this paper proposes to maximize
the minimum of all sample-based margins in a multiple-
kernel-induced feature space. After that, we propose
three algorithms, namely I-AMKL, I-AMKL-λ and C-
AMKL, to solve the optimization problem. Comprehen-
sive experiments have demonstrated the effectiveness of
the proposed algorithms, especially when the missing
ratio is relatively high.

Many research issues are worth exploring in the fu-
ture. For example, we plan to improve the computa-
tional efficiency of C-AMKL by solving it via more
advanced optimization techniques such as the cutting
plane method [19]. Moreover, considering the radius
of the minimum enclosing ball (MEB) [27], [28] may
vary due to the channel absence of samples, it is worth
trying to integrate the sample-based radius information
to further improve the performance of the proposed
AMKL.
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