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Abstract

This paper presents a simple and highly effective system

for robust texture classification, based on (1) random lo-

cal features, (2) a simple global Bag-of-Words (BoW) rep-

resentation, and (3) Support Vector Machines (SVMs) based

classification. The key contribution in this work is to apply

a sorting strategy to a universal yet information-preserving

random projection (RP) technique, then comparing two dif-

ferent texture image representations (histograms and signa-

tures) with various kernels in the SVMs.

We have tested our texture classification system on six

popular and challenging texture databases for exemplar

based texture classification, comparing with 12 recent state-

of-the-art methods. Experimental results show that our

texture classification system yields the best classification

rates of which we are aware of 99.37% for CUReT, 97.16%

for Brodatz, 99.30% for UMD and 99.29% for KTH-TIPS.

Moreover, combining random features significantly outper-

forms the state-of-the-art descriptors in material catego-

rization.

1. Introduction

Texture classification is a branch of computer vision and

pattern recognition which has received considerable atten-

tion. Yet despite almost 50 years of research and develop-

ment, designing a high-accuracy and robust texture classi-

fication system for real-world applications remains a chal-

lenge for at least three reasons: the wide range of various

natural texture types; the presence of large intra-class vari-

ations in texture images, such as brightness, contrast, ro-

tation, skew, occlusion, scale and even non-rigid surface

deformation, caused by arbitrary viewing and illumination

conditions; and the demands of low computational com-

plexity and a desire to limit algorithm tuning.

The basic building elements that constitute a reliable tex-

ture classification system are (i) local texture descriptors,

(ii) non-local statistical descriptors, (iii) the design of a dis-

tance/similarity measure, and (iv) the choice of classifier.

Recently, there has been significant interest in using a

Bag-of-Words (BoW) model for texture classification, to

represent a texture non-locally by the distribution of local

textons [1, 2, 6, 7, 8, 11]. Given a BoW framework, the key

remaining challenge, and the focus of our present work, is

on points (i) and (iv), the development of effective local tex-

ture descriptors and a corresponding classifier.

It is well known that the true, inherent dimensionality of

a textured image is far less than the dimensionality of the

neighborhood over which the texture is defined. In order

to reduce the number of features, trimming the number of

required dimensions for texture representation, filter bank-

based techniques are conventionally used. The motivating

principal underlying filter bank methods is that the local ap-

pearance of a texture can be summarized by the distribution

of the responses of a family of filters. However, the design

of an optimal filter bank is nontrivial and normally applica-

tion dependent.

Notably, the supremacy and dominant role of filter bank-

based methods for texture analysis have been recently chal-

lenged: Varma and Zisserman [6] argue that raw image

patch descriptors achieve better performance than the pop-

ular filter banks they compared against. Clearly the size of

the patch must be large enough to encompass the dominant

texture variations, however the increase in the dimension of

the feature space with the size of the neighborhood and the

sensitivity to image rotation limits the applicability of the

patch descriptor. Similarly, in [7] Ojala et al. advocated the

use of the Local Binary Pattern (LBP) textons. However,

the size of the LBP textons increases drastically with an in-

crease in sampling radius and number of sampling points,

leading to only uniform textons being kept which are insuf-

ficiently descriptive.

In contrast, in [3, 4] Liu et al. introduced an important

innovation by using Random Projections (RP), a univer-

sal, information-preserving, dimensionality-reduction tech-

nique to project from the patch vector space to a compressed
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patch space without loss of salient information, and claim

that the performance achieved by random features can out-

perform patch features, LBP and various filter bank-based

methods.

However the results in [3, 4] were obtained with a

BoW approach using a nearest-neighbor classifier, whereas

SVMs classifiers have shown substantial promise for texture

classification tasks, and the development of kernels suitable

for use with local features has emerged as a hot research

topic [2, 12, 22, 23].

The above two paragraphs serve as the motivation for

the research of this paper: we seek to build an effective

and robust texture classification system, taking advantage

of the universality of random features, but further gener-

alizing them for robustness to rotation, together with the

local-global representation of the BoW approach and with

a kernel-based learning method. This paper conducts a

comprehensive assessment of the proposed method, try-

ing both a Histograms-Of-Global-Codebook (HOGC) and

Signatures-Of-Local-Codebook (SOLC) using an SVMs

classifier. Furthermore, motivated by the excellent classi-

fication results obtained by using single sorted random pro-

jection (SRP) feature, this paper also seeks to combine mul-

tiple SRP features using multiple kernel SVMs. Combining

descriptors has been explored in [1, 2] in texture classifica-

tion and texture material categorization.

The rest of this paper is organized as follows. Section 2

gives a very brief review on the background and some re-

lated work. Details of our descriptors, the building of our

texture classification system, as well as the method for com-

bining multiple SRP features are elaborated in Section 3.

Experimental results are given in Section 4.

2. Background and Related Work

A BoW approach represents an image as a collection of

regions described by some local descriptors, spatially pos-

sibly sparse [1, 2] or dense [3, 5, 6, 7, 8, 23]. An interest-

ing alternative, the so-called MFS-based approach, was pro-

posed by Xu et al. [9, 10, 11] where, as opposed to sparse

and dense approaches, the MFS approach characterizes the

marginal histogram bins of the extracted features using frac-

tal geometry, and this characterization encodes the spatial

distribution of the image pixels in the bin.

Rather than a specialized feature extractor, tuned to

a particular texture database, random projection [15, 16]

refers to the technique of projecting a set of points from

a high-dimensional space to a randomly chosen low-

dimensional subspace. The technique has been used

for combinatorial optimization, information retrieval, face

recognition [17] and machine learning. Random features

represent a computationally simple and efficient means of

preserving texture structure without introducing significant

distortion.

The information-preserving and dimensionality reduc-

tion power of RP is firmly demonstrated by the theory of

compressed sensing (CS) [13, 14], which states that for

sparse and compressible signals, a small number of non-

adaptive linear measurements in the form of random pro-

jections can capture most of the salient information in the

signal. Moreover, RP also provides a feasible solution to the

well-known Johnson-Lindenstrauss (JL) lemma [16, 15],

which states that a point set in a high-dimensional Euclidean

space can be mapped down onto a space of dimension loga-

rithmic in the number of points with the distances between

the points approximately preserved. RP plays an important

role in both JL embedding and CS [18].

3. The Proposed SRP Classifier

Let D = {{Ic,t}Tt=1}Cc=1 denote the whole texture

dataset, with C distinct texture classes and each class hav-

ing T texture samples. Suppose T1 samples are selected as

training samples, with the remaining T2 = T − T1 samples

for testing. Let Yc,t = {y
c,t,i

}i denote the random feature

vector set extracted from the corresponding texture sample

Ic,t, and let Yc = {{y
c,t,i

}i}T1

t=1 denote the random feature

vector set extracted from all the training samples available

for class c.

The RP classifier uses random measurements of local

image patches to perform texture classification, however the

fact that the image patch features are not rotationally invari-

ant can be a serious limitation. Existing general method-

ologies to achieve rotation invariance in the patch vector

representation include three main approaches.

1. Add randomly rotated versions of the training sam-

ples to the training set when learning textons. This results

in clusters having many more points and a much greater

spread (Fig. 2 (a)), clearly posing storage and processing

challenges, and also creating challenges in clustering the

texton space, since the required number of cluster centers k

increases with cluster spread. 2. Estimate the dominant gra-

dient orientation of the local patch and align the patch with

respect to it [1, 2, 5, 6]. The dominant orientation estimates

tend to be unreliable, especially for blob regions which lack

strong edges, and for corner regions which have more than

one dominant orientation. 3. Marginalize the intensities

weighted by the orientation distribution over angle, or com-

pute multilevel histograms at fixed distances from the center

of a patch (e.g. the SPIN descriptor adopted in [1, 2]).

Motivated by the striking classification results by Liu

et al. [3, 4], we would like to further capitalize on the

RP approach by proposing a robust variant. An ensemble

of patches extracted from a texture produces a cluster of

points in some feature space. However, as is illustrated in

Fig. 2, rotating the texture patch causes the cluster to be

spread along some curve, where the greater class spread and
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Figure 1. Extracting SRP features on an example local image patch of size 7× 7: sorting pixels (a, b, c) or sorting pixel differences (d, e).

The pixels may be taken natively on a square grid (a, b) or interpolated to lie on rings of constant radius (c, d, e).

(a)

CorduroyRibbed Paper
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Figure 2. Consider random projections of two different textures at

varying orientations. The scatter plots in the bottom row show

the random projections for a large number of extracted texture

patches. Relative to random projections (a), it is clear that the

sorted random projections in (b) offer superior class compactness

and separability.

complexity leads to a greater difficulty in the correspond-

ing clustering. As is seen in the figure, the random projec-

tions can lose class separability when rotated, and because

the clustering requires many more codevectors (i.e., clus-

ter centers or textons) to cover the more complex, rotated

cluster shapes, the method has increased computational re-

quirements.

Our goal, then, is to re-localize the cluster, to make it

more compact, with the intent of improving separability

and reducing the number of textons. To this end, we pro-

pose to replace a local texture patch vector with a sorted

one: y = Φ sort(x), where we sort over all (or parts) of x.

Fig. 2 (b) shows the potential of this idea: In striking con-

trast to the scatter plots of the RP features in Fig. 2 (a), the

sorted features offer better localization, better separability,

and simpler cluster shapes.

3.1. GrayScale and Rotation Invariance

Since textures often appear on undulating real-world sur-

faces, invariances to contrast and rotation must necessar-

ily be local rather than global [8]. Whereas in filter bank

based methods a local texture patch is convolved with a set

of filters, usually with large support, in [3, 4] random pro-

jections in a BoW context provided excellent classification

results based on modestly-sized patches. Therefore the RP

approach would appear to be well suited for generalization

to the rotation-invariant context.

To begin, consider a (2a+1)×(2a+1) square neighbor-

hood. Let xsi,j represent the pixel in the jth position in the

ith square ring about the neighborhood origin, as illustrated

in Fig. 1 (b); similarly define xci,j to represent the pixel in

the jth position in the ith circular ring, illustrated in Fig. 1

(c). Since the native image pixels lie on a square grid, nec-

essarily the circular pixel values xci,j represent a bilinear in-

terpolation of nearby native pixels.

We can modify the RP classifier by replacing the RP

measurements of a local patch vector with the RP measure-

ments of globally sorted pixels in a patch:

y = Φ xGlob (1)

xGlob = [x0,0, sort([x
s
1,0, ..., xsa,pa−1])]

T (2)

illustrated in Fig. 1 (a).
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Clearly, global sorting provides a poor discriminative

ability, since crudely sorting the whole patch (the center

pixel excluded) leads to an ambiguity of the relationship

among pixels from different scales. A natural extension of

global sorting is to sort pixels of the same scale, where our

schemes follow a strategy similar to some recently devel-

oped descriptors like SIFT, SPIN and RIFT [1, 2]. By def-

inition, sorting provides stability against rotation, since no

notion of angle or orientation is preserved, however sorting

at each scale individually preserves some spatial informa-

tion. In this way, a compromise is achieved between the

conflicting requirements of greater geometric invariance on

the one hand and greater discriminative power on the other.

Sorting each ring of pixels loses any sense of spatial cou-

pling, whereas textures clearly possess a great many spatial

relationships. Therefore, as the next step in sophistication

we propose sorting radial or angular differences, illustrated

in Fig. 1 (d) and (e). Of specific interest are the radial dif-

ferences, which encode the inter-ring structure, thus sorted

radial differences will achieve rotation invariance while pre-

serving the relationship between pixels of different rings, a

concept which has not been explored by many rotation in-

variant methods such as LBP. Furthermore, by preserving

only pixel differences, the method is inherently invariant to

additive shifts in texture intensity.

3.2. Texture Description

Given a set of extracted random vectors (local features),

many such vectors, extracted for an ensemble of patches,

need to be characterized in order to learn the non-local be-

havior of the texture. This characterization is undertaken us-

ing a histogram, for which there are two basic approaches:

(1) HOGC. A global texton codebook learning stage is

needed. A histogram hc,t of compressed textons is learned

for each particular training sample Ic,t by labeling each of

the random feature vectors extracted at its pixels with the

closest texton. Each texture class then is represented by a

set of normalized histogram models Hc = {hc,t}t corre-

sponding to the training samples of that class.

(2) SOLC. There is no global texton codebook learn-

ing stage here. Instead of representing each texture im-

age as a histogram of global texton codebook, it represents

each image as a signature Sc,t = {(pc,t,i, uc,t,i)}Ki=1, which

is learned for each training sample Ic,t by clustering only

Yc,t = {y
c,t,i

}i, where K is the number of clusters, uc,t,i is

the center of the ith cluster, and pc,t,i is the cluster frequen-

cies by counting how many of the pixels belong to cluster

uc,t,i.

A classifier needs only to be able to assess the degree of

dissimilarity between two histograms, measured using a χ2

statistic:

D(h1, h2) =
1

2

∑

k

[h1(k)− h2(k)]
2

h1(k) + h2(k)
(3)

Table 1. Random projection dimensionality used for the corresponding patch sizes

in our experimental evaluation. Theoretical and technical developments for deciding

the dimensionality can be found in [4].

Patch Size5 × 57 × 79 × 911 × 1113 × 1315 × 1517 × 1719 × 19

RP Dim 10 20 30 40 50 60 70 80

The Earth Mover’s Distance (EMD) is used to measure the

dissimilarity between signatures that are compact represen-

tations of distributions. The EMD distance between two

signatures S1 = {(pi,ui)}K1

i=1 and S2 = {(qj , vj)}K2

j=1 is

defined as follows:

D(S1, S2) =

∑K1

i=1

∑K2

j=1 f̂ijd(ui, vj)
∑K1

i=1

∑K2

j=1 f̂ij
(4)

where d(ui, vj) is the so-called ground distance between

cluster centers ui and vj (Euclidean distance is used in this

work), and f̂ij is the optimal flow which can be determined

by solving a linear programming problem. While the EMD

works very well on signatures it should not, in general,

be applied to histograms. Small histograms invalidate the

ground distance as the bin centers are rather far, while com-

puting the EMD on large histograms can be very slow.

3.3. Classification

The benefits of the SVMs for histogram-based classifica-

tion is clearly demonstrated in [2, 23, 22]; here we use the

non-linear SVMs of [20].

Kernels commonly used include polynomials and Gaus-

sian Radial Basis Function (RBF). The Gaussian RBF has

been found to perform better for histogram-like features. In-

corporating distance functions (e.g. the distance measures

defined in (3) and (4)) into kernel functions is a well-known

method to create problem specific SVMs [2, 20]. For the

histogram-based representation, we test the performance

with two types of kernels: a Gaussian Radial Basis Func-

tion (RBF) kernel

K(hi, hj) = exp(−γ‖hi − hj‖2) (5)

and the χ2 kernel

K(hi, hj) = exp(−γD(hi,hj) (6)

for D from (3)). For the signature-based representation,

only the EMD kernel is used:

K(Si, Sj) = exp(−γD(Si, Sj) (7)

for D in (4).

SVMs were originally designed for binary classification.

In the case of texture classification we are clearly dealing

with a multi-class problem. How to effectively extend the

two-class problem for multi-class classification is still an

on-going research issue [20]. Of the two basic strategies
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Figure 3. Classification accuracy for all the five descriptors on the KTHTIPS database, comparing the proposed SVMs and NNC. The

number of training images per class is 41. The number of textons K per class is 20. The χ2 distance is used.

Table 2. Summary of texture datasets used in our experiments.
Texture
Dataset

Dataset
Notation

Image

Rotation
Controlled

Illumination
Scale

Variation

Significant

Viewpoint
Texture
Classes

Sample

Size

Samples

per class

Samples

in Total

CUReT DC √ √
61 200 × 200 92 5612

CUReTRot DCRot √ √
61 140 × 140 92 5612

UIUC DUIUC √ √ √
25 640 × 480 40 1000

UMD DUMD √ √ √
25 320 × 240 40 1000

Brodatz DB 111 215 × 215 9 999

KTH-TIPS DKT √ √
10 200 × 200 81 810

for extension — one-against-one and one-against-other —

it has been shown that one-against-one is more suitable for

practical use, so in this paper we propose the one-against-

one technique, which trains a classifier for each possible

pair of classes.

Since the descriptors in this paper (especially SRP Rad-

Diff) are, on their own, already very discriminative, there

may be limitations to applying Multiple Kernel Learning

(MKL); furthermore, simple kernel combination methods

are capable of reaching the same classification accuracy as

MKL. Therefore, we propose to combine kernels in a pre-

defined deterministic way and subsequently use the result-

ing kernel for SVMs training.

To combine multiple SRP features, we use the kernel

K(hi, hj) = exp(−γχ2(hi,hj). When multiple descriptor

types are used, we represent each texture sample using F

Bag-of-Words histograms derived from F feature descrip-

tors. The multiple kernel method we consider is to combine

several kernels by multiplication. Richer representations

can be achieved in such case, since taking products of ker-

nels corresponds to taking a tensor product of their feature

spaces, leading to a much higher dimensional feature rep-

resentation and corresponding SVMs kernel K∗(hi, hj) =
∏F

l=1 Kl(hi,hj).

4. Experimental Evaluation

4.1. Datasets and Experimental Setup

To demonstrate the effectiveness of the proposed ap-

proach for robust texture classification we have performed

extensive testing in a comprehensive set of six commonly-

used texture datasets:

For CUReT, we use the same subset of images as Varma

and Zisserman [5, 6]. The texture appearances vary signif-

icantly from one to the next due to being captured under

different illuminations and viewing directions. The CRot

dataset is generated from DC by rotating each sample ac-

cording to a randomly generated angle, uniformly between

0 and 360 degrees. Randomly rotating the texture samples

can help validate the rotation invariance, since there is not

significant rotation of each texture in DC.

For Brodatz we used the same dataset as [3, 1, 2].

The UIUC dataset [1] has been designed to require

local invariance. Textures are acquired under significant

scale and viewpoint changes, arbitrary rotations, and un-

controlled illumination conditions, even including textures

with nonrigid deformation. The UMD dataset [11] has been

designed in a similar way as DUIUC.

The KTH-TIPS dataset [23] extends CUReT by imag-

ing new samples of ten of the CUReT textures at a subset

of the viewing and lighting angles used in CUReT but also

over a range of scales. Although KTH-TIPS is designed to

be combined with CUReT in testing, we follow Zhang et

al. [2] in treating it as a stand-alone dataset.

Implementation details. To make the comparisons as

meaningful as possible, we use the same experimental set-

tings as in [3] and [6], and the reader is referred to those

papers for additional details. The RP dimensions used in

our experiments are summarized in Table 1. Each sam-

ple is normalized to be zero mean and unit standard devi-

ation, and the extracted SRP vector is normalized via We-

ber’s law. All results are reported over 50 random parti-

tions of training and testing sets. Half of the samples per

class are randomly selected for training and the remaining

half for testing, except for DB, where three samples are ran-

domly selected as training and the remaining six as testing

and except for those clearly stated. The kernel parameter

γ is found by cross-validation within the training set. The

values of the parameters and of SVMs are specified using

a grid search scheme. In this work, the publicly available

LibSVM library [21] is employed. The parameters C and γ

are searched exponentially in the ranges of
[

2−5, 218
]

and
[

2−15, 28
]

, respectively, with a step size of 21 to probe the

highest classification rate.

4.2. Implementation Evaluation

Evaluation of Sorted Descriptors: Fig. 3 plots the clas-

sification performance for all five proposed descriptors on

dataset DKT, based on distance measure χ2. It is clear

that the classification rates for SVMs are consistently higher
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Figure 4. Classification accuracy for SRP Circular (top row) and SRP Radial-Diff (bottom row) on four texture databases: CUReT,

KTHTIPS, UIUC and UMD, comparing the proposed SVMs and NNC. The number of training images per class is 46. The number

of textons K per class is 10 for CUReT, 20 for KTHTIPS, and 40 for UIUC and UMD. The χ2 distance is used. A comparison of the

accuracies achieved by NNC and SVMs classifiers as a function of the neighborhood size. We see that NNC accuracies are consistently

lower than those of the SVMs methods.

Table 3. Classification accuracy (%) of different kernels for SRP Radial-Diff on six texture datasets DC, DCRot, DUIUC, DUMD, DB and DKT. For HOGC, the number of

textons K used per class are 10, 10, 40, 40, 10 and 40 respectively, while for SOLC, the number of textons used per class are all 40. The number of training samples per class are

46, 46, 20, 20, 3 and 41 respectively.
Paradigm HOGC

Classifier NNC SVMs

Metric χ2 RBF χ2 RBF χ2 RBF χ2

Patch size 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13

DC 95.51 96.61 96.52 95.53 97.92 96.83 98.39 97.72 99.05 SOLC

Patch size 9 × 9 15 × 15 19 × 19 9 × 9 15 × 15 19 × 19 NNC SVMs

DCRot 94.55 94.76 95.01 94.69 96.95 95.76 97.05 96.18 97.45 EMD EMD

Patch size 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13

DUIUC 91.40 94.28 95.43 95.66 96.35 96.40 97.06 97.18 98.08 78.49 84.58 88.14 88.77 92.40 93.28

Patch size 7 × 7 9 × 9 13 × 13 7 × 7 9 × 9 13 × 13 7 × 7 9 × 9 13 × 13 7 × 7 9 × 9 13 × 13

DUMD 98.48 98.60 98.26 98.92 98.86 98.59 98.92 98.53 98.67 90.37 91.37 92.97 94.92 95.16 96.08

Patch size 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13 5 × 5 9 × 9 13 × 13

DB 93.13 94.74 94.73 93.07 94.44 94.29 95.77 94.24 96.04 84.18 89.30 91.38 87.78 90.72 92.67

Patch size 9 × 9 13 × 13 15 × 15 9 × 9 13 × 13 15 × 15 9 × 9 13 × 13 15 × 15 9 × 9 13 × 13 15 × 15

DKT 97.16 97.35 97.71 98.78 98.95 98.72 99.02 98.65 99.11 93.06 95.28 95.27 94.63 95.78 95.20

than those of NNC by roughly 2%-5%, with the best SVMs

results achieved by the Radial-Difference method, surpass-

ing an accuracy of 99%, with the high performance of

Radial-Difference supporting the large body of work using

gradient histograms for recognition. Since all results are av-

eraged over 50 runs with randomly chosen disjoint sets of

training and testing samples, Fig. 3 implies that there is a

statistically significant difference in performance between

SVMs and NNC.

Comparison of SVMs and NNC over datasets: We now

compare the performance of SVMs and NNC on four

benchmark datasets, with the results shown in Fig. 4. Due to

space limitation, and motivated by the results of Fig. 3, we

only show the results for the SRP Circular and SRP Radial-

Difference descriptors. Clearly, for both proposed descrip-

tors and across all datasets, the SVMs approach signifi-

cantly and consistently outperforms NNC, consistent with

recent work [22, 2, 23] that favors the use of SVMs for tex-

ture classification. From the results of DUIUC and DUMD,

we can readily observe the relative complexity of the two

datasets, as even simple NNC performs well for the simpler

dataset DUMD.

Kernel Evaluation: For SVMs under the HOGC repre-

sentation, we followed the methodology of [22]; for SOLC

we use 40 clusters per sample, consistent with [2, 1]. As

a baseline comparison, we also implemented EMD with a

nearest neighbor classifier. Table 3 shows the classification

results, again using the preferred Radial-Difference. We

can see that the HOGC representation performs consistently

and significantly better than SOLC, with the χ2-SVMs in

HOGC being the clear winner. Note that both EMD-NNC

and EMD-SVMs outperform any single descriptor evalu-

ated in the work of Zhang et al. [2] on DKT. For the EMD

kernel in SOLC on DB, the result of 92.67% is better than

the results of single descriptor SPIN and RIFT in [2].

Combining SRP Features: Fig. 5 shows results for three

datasets, comparing the combined descriptors with the best

single one (SRP Radial-Diff). What is clear from both the

table and the figure is that, uniformly across all datasets and

across all degrees of training data, the combined classifiers
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Figure 5. Classification rate vs. number of training samples, comparing single and combined SRP results. The patch sizes used are 13 × 13, 13 × 13, and 9 × 9 for DC,

DKT, and DUMD respectively. The number of textons K used per class is 10, 40, and 40 respectively. The product kernel SVMs with χ2 distance is used.
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Figure 6. Classification rate vs. number of training samples, comparing the proposed combining SRP approach with various state-of-the-arts methods. Implementation

parameters involved are the same as those in Fig. 5.

outperform the single one.

4.3. Comparative Evaluation

Our specific experimental goal is to compare the pro-

posed SRP approach with a comprehensive suite of five re-

cent state-of-the-art methods. (1) Random Projections [3]:

Each patch is compressed using random projection; both

training and testing are performed in the compressed do-

main. (2) Patch [6]: Each local patch of size
√
n × √

n is

reordered into an n-dimensional patch vector. Both train-

ing and testing are performed in the patch domain. (3) The

method of Lazebnik et al. [1]: First characterize the tex-

ture using Harris-affine corners and Laplacian-affine blobs,

with two descriptors (SPIN and RIFT) used for feature ex-

traction, and the NNC is used for classification. (4) The

method of Zhang et al. [2]: Based on the method of Lazeb-

nik et al. [1], using three types of descriptors (SPIN, RIFT

and SIFT) and a kernel SVMs classifier. (5) WMFS[11]:

Based on a combination of wavelet transform and multi-

fractal analysis.

All results are taken directly from the original publica-

tions, except that the results of Caputo on DC and the results

of Lazebnik on DKT are quoted from the recent comparative

study of Zhang et al. [2], and the results of Lazebnik with

SVMs on DUMD from the work of Xu et al. [11]. Fig. 6

compares our approach with the state-of-the-art of Zhang et

Table 4. Comparing the best classification scores achieved by our approach with

those achieved by 13 state-of-the-art methods on five datasets. Scores are as originally

reported, except for those marked (∗) which are taken from the comparative study in

Zhang et al. [2] The bracketed numbers are the number of training samples per class

used for the corresponding databases.

DC (46) DB (3) DKT (41) DUIUC (20)DUMD (20)

1. Our Results 99.37% 97.16% 99.29% 98.56% 99.30%

SRP Radial-Diff
√

RP Rad-Diff
√ √ √

SRP Circular
√

RP Ang-Diff
√ √ √

SRP Angular-Diff
√ √ √

2. VZ-MR8 [5] 97.43%

3. VZ-Patch [6] 98.03% 92.9%(∗) 92.4%(∗)97.83%
4. Caputo et al. [23] 98.46% 95.0%(∗) 94.8%(∗)92.0%(∗)
5. Lazebnik et al. [1] 72.5%(∗)88.15% 91.3%(∗)96.03%
6. Mellor et al. [19] 89.71%

7. Zhang et al. [2] 95.3% 95.9% 96.1% 98.7%

8. Varma and Ray [12] 98.76%

9. Crosier and Griffin [8]98.6% 98.5% 98.8%

10. Xu-MFS et al. [9] 92.74% 93.93%

11. Xu-OTF et al. [10] 97.40% 98.49%

12. Xu-WMFS et al. [11] 98.60% 98.68%

13. Liu et al. [3] 98.52% 96.34% 97.71% 96.27% 99.13%

al. [2] and Lazebnik et al. [1] on three datasets, who have

attempted to combine local RIFT, SIFT and SPIN descrip-

tors. Our method consistently improves significantly out-

performs competing methods.

Table 4 gives a comprehensive summary of the results

for our proposed approach with 12 recent state-of-the-art
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results. We can observe that our approach scores very well

across all five commonly used datasets, producing what

we believe to be the best reported result on the CUReT,

Brodatz, KTH-TIPS, and UMD datasets, and for UIUC

database our classification rate 98.56% is very close to the

best reported results (98.9%). It needs to be emphasized that

our method is universal and achieved this state-of-the-art

performance without any database-specific parameter tun-

ing.

Finally, before concluding this work, we present some

results on the very chalenging Flickr Material Database

(FMD) used in the work of Liu et al. [24]. FMD is des-

ignated for material recognition, which is closely related

to, but different from, texture recognition. Our single SRP

Radial-Diff descriptor gives 48.2% classification accuracy1,

which significantly outperformed the rate 35.2% of the best

single feature (i.e. the texture feature SIFT) reported by Liu

et al. [24] with their aLDA system. Our preliminary result

48.2% is even better than the best reported rate of 44.6% by

Liu et al. [24], who have combined color, texture, shape and

edge features with aLDA.

5. Conclusions

This paper has introduced a simple, robust, but remark-

ably capable texture classification system, combining sorted

random projections with a bag-of-words approach and a

SVMs classifier. The experiments reveal that (1) SVMs

outperforms NNC; (2) dense HOGC outperforms SOLC;

(3) the Radial-Difference sorting approach outperforms the

other proposed sorting methods; and (4) Combing SRP fea-

tures is found to produce consistently better classification

performance than a single SRP feature. We compared the

proposed approach with 12 recent state-of-the-art methods,

and the proposed approach outperformed the state-of-the-

art in three different standard benchmark texture databases.
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