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 

Abstract—Automated computer-vision-based defect detection has 

received much attention with the increasing surface quality 

assurance demands for the industrial manufacturing of flat steels. 

This paper attempts to present a comprehensive survey on surface 

defect detection technologies by reviewing about 120 publications 

over the last two decades for three typical flat steel products of 

con-casting slabs, hot- and cold-rolled steel strips. According to 

the nature of algorithms as well as image features, the existing 

methodologies are categorized into four groups: Statistical, 

spectral, model-based and machine learning. These literatures are 

summarized in this review to enable easy referral to suitable 

methods for diverse application scenarios in steel mills. 

Realization recommendations and future research trends are also 

addressed at an abstract level. 

 
Index Terms—Automated visual inspection (AVI), automated 

optical inspection (AOI), surface defect detection, flat steel, 

survey. 

I. INTRODUCTION 

S A DOMINANT steel product, flat steel occupies more 

than 65% of all the products in the iron and steel industry, 

which is the vital fundamental material for the related planar 

industries, including without limitation, architecture, aerospace, 

machinery, automobile, and so on. Any quality problems 

suffering on flat steel would lead to huge economic and 

reputation losses to steel manufacturers. For thin and wide flat 

steel, surface defects are the greatest threat to the product 

quality. Even for occasional internal defects, morphological 

changes will arise on the surface with large probability. 

Automated visual inspection (AVI) instrument targeting on 

surface quality emerges as a standard configuration for flat steel 

mills to improve product quality and promote production 

efficiency.  

A general AVI instrument provides two main functions of 
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Fig. 1.  The contribution of defect detection in a typical AVI instrument. 

 

defect detection and classification [1-4]. The former detection 

process recognizes defective regions from normal background 

without identifying what types of defects they are. This step is 

the foundation of the “quality problem close loop”, earlier 

defect detection allows less economic losses. The latter process 

is dedicated to identify and label detected defects to support 

finishing product grading. In this context, the flat steel covers 

three categories of con-casting slabs, hot- and cold-rolled steel 

strips, where slabs are rolled into hot strips and then to cold 

strips. Taking hot strip as an example, Fig. 1 briefly gives the 

flow chart of AVI processes. In general, defect detection is 

required to be in strict real-time while defect classification can 

be handled in quasi real-time. The total performance of AVI 

system is mainly limited by the accuracy, time-efficiency and 

robustness of the arithmetical methods in the defect detection 

process which is the very focus of this paper. 

However, on-site surface defect detection in real-world steel 

mills is seriously challenging: 1) Unsatisfactory imaging 

environments. Continuous casting and rolling production lines 

involve multiple sufferings of high temperature, dense mist, 

heavy cooling water drops [5], uneven illumination, stochastic 

noises [1, 2], and aperiodic vibration [6]. The undesirable 

image quality requires preeminent detection algorithms to resist 

large intra-class variation and minor inter-class distance [1-4]. 

2) Eternally continuous image streams. The online dual-surface 

quality measurement for average flat steel mills requires the 

surface AVI instrument to continuously process about 2.56 

Gbps of image flows [5] to identify defective regions, which 
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force the detection algorithms to achieve excellent balance 

between accuracy, computational complexity and reliability.  

Over the years, industry and academia devote themselves to 

address the aforementioned challenges from hardware upgrade 

to algorithmic optimization. The hardware architecture based 

on either server expansion [7-9] or ASIC acceleration [5] has 

been opened in some recent reports. Furthermore, it is not easy 

to see dramatic hardware breakthroughs within relatively short 

time due to the limitation of Moore’s law [10]. This review thus 

focuses on the latest theoretical and algorithmic advances of 

automated visual defect detection over the past two decades to 

enable easy referral to suitable methods for diverse application 

scenarios in steel mills. Especially the literatures over the last 

five years accounted for nearly 50%. 

The structure of this context is as follows. After the 

introduction in Section I, some relevant prior survey papers are 

briefly reviewed in Section II. Typical defect morphologies on 

flat steel surfaces are illustrated vividly in Section III. The four 

categories of defect detection approaches are presented in 

Section IV in detail. This paper is ended in Section V with the 

conclusion and comments on the realization recommendations 

and future research trends. 

II. PRIOR LITERATURE REVIEW 

A number of AVI surveys (such as [11-13]) with a wide 

coverage of inspection problems can be available successively. 

Recently published surveys gradually pay more attention to 

specific planar materials like fabric [8] and semiconductor [14]. 

Notably, a brief but rare AVI review covering defect detection 

and classification techniques for steel products was reported [9], 

where nearly all types of steel products (slab, billet, plate, hot 

strip, cold strip, rod/bar) are involved at an overview level. It is 

widely recognized that AVI techniques are more suitable to 

inspect surface defects on sheet materials than on wire rod/bar 

with minor diameter or even special-shaped structures [15]. To 

further narrow the scope of [9], that is, concentrate on the vital 

defect detection process on only flat steel products, this paper 

attempts to present a first Transactions survey on this focused 

topic, so as to support the AVI applications for the relevant 

industrial manufacturing. 

III. DEFECT MORPHOLOGIES ON FLAT STEEL SURFACE 

Various defects on flat steel surface are generally caused by 

mechanical or metallurgical imperfection during the industrial 

manufacturing. To save paper space, we only take some surface 

defect image samples for hot-rolled steel strips and con-casting 

slabs by using the AVI instrument designed in [5] for 

illustration. Fig. 2(a) lists four raw defective images 

(4096×1024 pixel) acquired by the equipped line-scan camera. 

And Fig. 2(b) presents eighteen typical defect samples with 

256×256 pixel obtained from raw images after defect detection 

process. These are roller marks, longitudinal scratches, 

horizontal scratches, inclusions, scarring, holes, waves, pitting, 

air bubbles, peeling, water droplets, convex bags, reticulations, 

star cracks, foreign bodies, heavy leather, wrinkles and 

longitudinal cracks, respectively. Finally, in Fig. 2(c), some 

longitudinal crack image samples of con-casting slabs are 

presented (512×512 pixel), and this defect type is with high 

probability of occurrence on continuous casting line, which has 

great threat to the quality of downstream products. Besides the 

diversity and complexity of these defects, nearly all the 

challenges mentioned in Sec. I can be encountered in these 

image samples. For example, some pseudo defects of water 

droplets and mill scales are pretty commonly distributing on the 

surfaces of hot-rolled strips and casting slabs, which would 

trigger false detection. Another example, the image intensity is 

fairly inhomogeneous and varies actively. 

IV. TAXONOMY OF DEFECT DETECTION METHODS 

This section presents a review on the prior techniques and 

models for defect detection of flat steel surfaces. In general, 

researchers categorize previously proposed methods into 

different groups based on the distinct features, while the 

taxonomy also varies from person to person. Timm et al. [16] 

broadly separated texture defect detection approaches into local 

and global groups. According to different technique roadmaps, 

defect detection methods are summarized as classification-, 

local-abnormalities-, and template-matching-based methods in 

[17]. Youkachen et al. [18] classified defect detection methods 

into probabilistic, statistical, proximity-based, deviation-based 

and network-based models. At the microscopic level, the flat 

steel surface inspection problem is essentially a texture analysis 

problem [8]. Normally, texture analysis problem can be solved 

by statistical-, spectral- and model-based methods. Notably, 

machine learning enjoys its popularity in computer vision in 

recent years, especially in texture analysis. Thus, as shown in 

Fig. 3, this paper classifies defect detection methods for flat 

steel surfaces into four categories: conventional statistical, 

spectral, model-based and emerging machine learning. 

A. Statistical  

Statistical approaches are frequently used to detect defects of 

flat steel surface by evaluating the regular and periodic 

distribution of pixel intensities. Eight representative statistical 

methods are briefly introduced as follows. 

1) Thresholding 

Thresholding methods are usually used to separate the 

defective regions on flat steel surfaces, which have been widely 

applied in online AVI systems [19, 20]. The traditional 

thresholding methods identify defects by comparing the value 

of image pixels to a fix number and turn the test image into a 

simple binary frame, which is sensitive to random noises and 

non-uniform illuminations. Djukic et al. [21] first estimated the 

probability distribution of pixel intensities from some 

defect-free hot-rolled steel images, which was considered as a 

basis for adaptively determining threshold. The dynamical 

thresholding procedure can then discriminately separate true 

defects from random noise. Further, Nand et al. [22] calculated 

the local entropy of defective and defect -free images 

respectively and extracted defective region of image by using 

background subtraction method by comparing their entropy, it 

is reported to perform better on detecting defective blocks of  
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(a) 

 
(b) 

 
(c) 

Fig. 2.  Typical defect image samples. For hot-rolled steel strips: (a) are typical defective raw images of steel surface (4096×1024 pixel) acquired by line-scan 

camera and (b) are a series of typical defect samples with 256×256 pixel. For con-casting slabs: (c) are typical longitudinal cracks acquired by area-scan camera.  
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Fig. 3.  The overall structure of detection method taxonomy.
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low-quality steel surface than former dynamical thresholding 

method. To obtain a better global detection performance, Neogi 

et al. [23] proposed a global adaptive percentile thresholding 

scheme based on gradient images. It can selectively segment 

defective region and effectively preserve the defect edges 

regardless of the size of defects. In order to further accomplish 

the task of defect detection, it is promising to obtain the optimal 

thresholds or design smarter dynamic thresholding mechanism. 

2) Clustering 

Based on the similarity among image pixels, clustering 

method is specialized in mining information implicitly existing 

in texture images, then defect detection can be achieved by the 

multiple-class defect classification. Real-time and anti-noise 

capability are always the basic requirements of industrial defect 

detection, Bulnes et al. [24] detected the defects occurring 

periodically by clustering the characteristics (i.e., position, type) 

of each defect. This method can timely detect periodical defects 

even in noisy environment. However, some interferences like 

stochastic industrial liquids increase the detection difficulty. 

Zhao et al. [25] proposed a two-level labeling technique to 

solve the above problem based on superpixels. The pixels are 

clustered into superpixels and then superpixels are clustered 

into subregions, the superpixel boundaries are updated 

iteratively until pixels with similar visual senses are clustered 

into one superpixel, subregions after many rounds of growth 

will converge towards defects. This method achieved an 

average correct detection rate of 91% when applying on cold 

strips. Further, Wang et al. [26] proposed an entity sparsity 

pursuit (ESP) method to detect surface defects. Defect image 

can be segmented into several superpixels to realize entity 

sparsity pursuit of defects, while defects do not satisfy the 

sparsity assumption in pixel level. The ESP method is 

insensitive to noise and computationally efficient. For the 

nature of clustering, it is more suitable for defect classification 

than defect detection. 

3) Edge-based 

The purpose of edge detection is to identify points with 

obvious brightness changes in digital images. Researchers 

often use local image differentiation technique to obtain edge 

detection operator, the commonly used edge detection 

templates for flat steel surface are Kirsch, Sobel and Canny 

operator. It is investigated that Sobel is specialized in weighing 

the influence of pixel position to reduce the ambiguity of edge, 

but it is sensitive to uneven illumination on flat steel surface, 

which easily leads to false edge detection. In order to avoid the 

false detection, Borselli et al. [27] modified Sobel operator by 

applying thresholding to convert the grayscale image to binary 

matrix. Further, Shi et al. in [28] developed eight directional  

templates to obtain more comprehensive edge information than 

the original Sobel operator which only has horizontal and 

vertical directions. Fig. 4 illustrates the technique details of 

these two Sobel operators including template topology, detect 

performance, etc. The easily trigged false edge detection was 

well suppressed by the eight-directional Sobel operator.  With  
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Fig. 4.  Comparison of the traditional and the optimized Sobel operator. 

the weighted factor and multiple templates, Kirsch is more 

noise-robust for tiny defect detection among flat steel images 

especially suffered with uneven illumination. While the eight 

directional templates bring large computation amounts to 

Kirsch. Bo et al. [29] simplified the original Kirsch operator by 

choosing some partial templates on the premise of little 

influence on edge extraction. Compared with the first-order 

Kirsch and Sobel operator, Canny possesses better 

signal-to-noise ratio and detection accuracy due to its 

second-order feature. However, it suffers with low adaptive 

ability and sometimes is easy to blur the noise-free region. 

Hence, it is not a wise choice to directly apply existing edge 

detection operator on steel surface defect inspection until 

appropriate algorithm is imported to enhance its edge detail 

retaining ability. Furthermore, many edge detection operators 

have not been used to detect surface defects of flat steel, such as 

Prewitt, Laplacian and Log. Specifically, Prewitt has been used 

for object enhancement and extraction. Laplacian sharpening 

template and Log operators have been reported performing well 

in determining edge position. So, it is highly recommended to 

explore other edge detection operators on the task of steel 

surface inspection in the near future. 

4) Fractal Dimension 

Fractal Dimension (FD) has the desirable self-similarity 

which means the overall information can be expressed by 

partial features. It is reported that statistical gray value of defect 

images practically possesses some features of FD, especially in 

self-similarity. Zhiznyakov et al. [30] employed fractal features 

of digital images to detect defects of flat steel surfaces by 

characterizing the internal distribution of self-similarity and the 

image segments with the highest similarity. The experimental 

results are basically consistent with inspected data from a 

non-destructive testing inspector. Similarly, multifractal 

dimension is utilized by Yazdchi et.al [31] to detach and 

specify the defective region for five typical defects of steel 

surfaces. It should be pointed out that the application of FD has 

some limitations because it is only suitable for self-similar 

defect image detection. 
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TABLE I 
LIST OF SOME OF TYPICAL STATISTICAL METHODS OF DEFECT DETECTION 

Ref. Year Methods Applications Objects Difficulties Image source Performance 

[19] 2008 Fixed threshold Hot-rolled strip Multi-type defects 
Uneven 

illumination 
Raw images 

TPR = 0.929 

FPR, FNR, T = NA 

[20] 2008 
Double threshold and Hough 

transform 
Steel sheet Multi-type defects 

Complex texture 

characteristics 

Database 

(PRI) 

TPR = 0.868 

FPR, FNR, T = NA 

[22] 2014 Histogram thresholding Hot-rolled steel Multi-type defects 
Uneven 

illumination 
Raw images All not given 

[23] 2017 
Global Adaptive Percentile 

Thresholding 
Hot-rolled steel 

Blister defect 

water-deposit 
Size uncertainty 

Database 

(PRI) 

TPR = 0.942 

FPR = 0.026 

FNR = 0.155 

T: = NA 

[63] 2017 Double threshold Steel plates Multi-type defects 

Surface noise  

and uneven defect 

positions 

Raw images 

TPR = 0.88-1.00 

FPR = 0.00-0.15 

FNR, T = NA 

[64] 2017 Double threshold Steel slab Pinhole 

Small size and 

pseudo-noise 

interference 

Raw images 

TPR = 0.962 

FPR = 0.0131 

FNR, T = NA 

[24] 2012 Clustering Algorithm Hot-rolled strip Periodically defects 
Complex texture 

characteristics 
Raw images 

F-Measure: 0.86 

TPR, FPR, FNR = NA 

T = NA 

[25] 2016 
Two-level labeling 

technique 
Cold-rolled strip 

Cracks 

scratches 

Pseudo-noise 

interference 
Raw images 

TPR = 0.91 

FPR, FNR, T = NA 

[26] 2019 
LBP-spired and superpixel 

segmentation 
Hot-rolled plates Multi-type defects 

Pseudo-noise 

interference 

Database 

(PUB) 

FPR = 0.088, 

FNR = 0.266, 

MAE = 0.143 
TPR, T = NA 

[27] 2010 Sobel method Flat steel 
Inclusions 

rolled in defect 

Complex texture 

characteristics 

Database 

(PRI) 

TPR = 0.87 

FPR, FNR, T = NA 

[31] 2009 

Multifractal Dimension and 

Temporal Fourier 
transformation 

Cold-rolled mill Multi-type defects 
Defects with 

irregular shapes 

Database 

(PRI) 

TPR = 0.979 

FPR, FNR, T = NA 

[39] 2017 HOG and GLCM Steel surface 
Distributed defects: 

scale 

Complex texture 

characteristics 
Raw images 

TPR = 0.909 

T: 19.79 ms per image 
FPR, FNR = NA 

[41] 2015 SLBP and GLCM Strip steel Multi-type defects 
Random noise and 

uneven illumination 

Database 

(PRI) 

TPR = 0.916±0.02 

T: 7.45 ms per image 
FPR, FNR = NA 

[2] 2013 

Adjacent evaluation 

completed local binary 

patterns (AECLBPs) 

Hot-rolled strip Multi-type defects 

The variations of the 

intra-class changes, 
the illumination and 

grayscale changes 

Database 
(PUB) 

TPR = 0.989±0.37 
FPR, FNR, T = NA 

[50] 2011 Gabor and morphological Steel slab Pinhole 
Small size and 

uneven illumination 
Raw images 

TPR = 0.871 
FPR = 0.038 

FNR, T = NA 

[52] 2016 
Genetic algorithm and 
mathematical morphology 

Strip steel Multi-type defects 
Non-uniform 
illumination 

Database 
(PRI) 

T: 7.48 ms per image 
TPR, FPR, FNR = NA 

Notes: 
Image source. 
PUB: Public, PRI: private 

Performance criteria. 

TPR: True positive rate, FPR: False positive rate, FNR: False negative rate, 
MAE: Mean absolute error, T: Detection time 

5) Gray-Level Statistic  

Using thresholding methods for defect detection directly 

may be ineffective in low contrast images, so it is necessary to 

analyze the distribution of image gray level before threshold 

operation. Yang et al. [32] utilized the features (i.e., mean value 

and distribution of pixels) from steel surface background to 

separate bright and dark defect objects simultaneously. Further, 

to be insensitive to noise, Choi et al. [33] first estimated the 

distribution of background by a spectral-based approach and 

then locally refined the defective regions to obtain the 

probabilistic estimation. This method is superior to the previous 

defect detection methods and gives robust results even in noisy  

environment. However, the above methods for surface defect 

detection are limited by application scenarios due to the 

diversity of surface defects. Ma et al. [34] proposed a 

neighborhood gray-level difference method using the 

multidirectional gray-level fluctuation which combined the 

advantages of global and local characteristics. The proposed 

algorithm not only enhances the generalization also improve 

the accuracy of surface defects inspection. 

6) Co-occurrence Matrix 

Gray level co-occurrence matrix (GLCM) is a common mean 

to describe texture by studying the spatial correlation of gray 

level. In 1973, Haralick et al. [35] first presented GLCM, the 



0018-9456 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2019.2963555, IEEE
Transactions on Instrumentation and Measurement

>Paper ID: IM-19-22905R                                      Title: Automated Visual Defect Detection for Flat Steel Surface: A Survey< 6 

TABLE II 
STRENGTHS AND WEAKNESSES OF DIFFERENT STATISTICAL METHODS OF DEFECT DETECTION 

Taxonomy Methods Strengths Weaknesses 

Statistical 

Thresholding Simple, easy to understand and implement. 
Fail to detect the defect with little difference from 

background. 

Clustering Robust to noise and with high computational efficiency. 
Easy to be disturbed by pseudo defects such as industrial 

water droplets. 

Edge-based 
Can extracted some low-order features of the image and 
easy to realize. 

Susceptible to noise and only suitable for images with 
low resolution. 

Fractal Dimension 
The overall information of images can be expressed by 
partial features. 

Detection accuracy is unsatisfactory and have limitation 
on images without self-similar. 

Gray-level statistic Suitable for low resolution images. Low timeliness and no automatic threshold selection. 

Co-occurrence matrix 
The spatial relation of extracted image pixels is 

complete and accurate. 
Computation and memory requirements are relatively 

high. 

Local binary pattern 
Can quickly extract discriminative features with rotation 
and gray invariance. 

Scale change and noise have a great influence 

Morphological 
Highly suitable for random or natural textures and 

computationally simple. 
Only suitable for aperiodic image defects 
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Fig. 5. (a) Direction analysis, (b) an image block and (c) the GLCM of P0. 

matrix is defined according to the spatial relation between 

adjacent pixels of the input image, then based on the GLCM, 14 

texture descriptors (i.e., angular second moment, contrast, 

correlation, entropy, variance, sum of average, sum of variance, 

inverse difference moment, variance of difference, sum of 

entropy, difference of entropy, shadow of clustering, 

prominence of clustering and maximal probability) are 

generated to successfully describe the relationship between 

adjacent pixels in an image by calculating the angular relations 

and distances between adjacent resolution units. Fig. 5 shows 

the direction analysis of GLCM with a simple example. 

Subsequently, GLCM has shown powerful ability on automatic 

texture discrimination in [36-38]. However, it is not an easy job 

to balance the matrix performance and the window size. In 

order to overcome the local-descriptive limitation of GLCM, 

authors in [39] combined complementary feature-sets of the 

histogram of oriented gradient (HOG) and GLCM to describe 

global and local textures of steel surface images, respectively. 

But this approach is sensitive to background noises and 

ununiform gray level changes, moreover, the computation is 

relatively complex. Thus Tsai et al. [40] used the weighted 

eigenvalue of GLCM as a single discriminative feature, so low 

computational complexity and considerable robustness to noise 

were achieved simultaneously. Nevertheless, there might be 

some potential but useful discriminative features in GLCM,  
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Fig. 6.  The standard pipeline of original LBP and the variants of LBP based on 

changing threshold and scale. 

which could be explored for future texture analysis. 

Furthermore, lots of other types of features extracted by some 

descriptors are suggested to be fused with those of GLCM, and 

smoothed local binary pattern (SLBP) [41] is a typical example 

of this method. If so, more descriptive feature vectors can be 

built for better surface defect recognition of flat steels. 

7) Local Binary Pattern  

As a classical operator, local binary pattern (LBP) is widely 

used to characterize local texture features of images, which has 

significant advantages of rotation and gray invariance. In 1994, 

LBP is first proposed by Ojala et al. in [42], Later, LBP is 

frequently used to detect defects on flat steel surface [43-45]. In 

order to overcome the shortcomings of the original LBP (i.e., 

weak global descriptive and noise-sensitive), various LBP 

variants are developed based on changing the threshold or scale 

of the original LBP (refer to Fig. 6), and these variants are 

widely applied on defect detection of flat steel surface. For 

example, Wang et al. [26] proposed a LBP-inspired feature 

extractor by estimating the variations of four directions 
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simultaneously, which are horizontal, vertical, and two 

diagonal directions, so that the features extracted by this 

method have better visual discrimination. Still, the 

noise-sensitive has not been eliminated for this method. Song et 

al. [2] designed an adjacent evaluation completed local binary 

pattern (AECLBP) by replacing the central pixel with its 

neighbor pixels. Authors claimed that AECLBP had achieved 

considerable recognition accuracy and great robustness to noise. 

However, its scale adaptability is not so preeminent as it 

inherits the nature of CLBP. Further, Chu et al. [41] proposed a 

novel LBP version called SLBP, fusing the SLBP frames and 

GLCM, this method can not only suppress noise effectively, but 

also extract features with scale, rotation, illumination and 

translation invariance. Nevertheless, descriptive information 

among non-uniform patterns have been ignored in all these 

LBP variants. Using reverse thinking, Luo et al. [3] proposed a 

generalized completed local binary patterns (GCLBP) by first 

exploring the non-uniform patterns to supplement the 

descriptive information in uniform patterns. Further the work of 

GCLBP, Luo et al. developed a more effective LBP-descriptor 

(namely SDLBP) in [46], which has remarkable advantages in 

anti-interference and simplicity of calculation. As a lightweight 

feature descriptor, LBP variants can be applied on both defect 

detection and classification, developing more noise-robust and 

scale-invariant LBP variants or LBP-like descriptors is highly 

encouraged and coincides with the AVI future trends.  

8) Morphological 

Mathematical morphology is an arithmetical tool for image 

analysis based on morphological structural elements. It has a 

huge influence on the theory and technology of image 

processing, especially on shape and structure analysis, which 

has been widely applied in noise removal [47, 48], feature 

extraction [49, 50] and image enhancement [51, 52]. 

Mathematical morphology is specialized in edge processing for 

its capability of global description. Song et al. [53] removed the 

edges of oil pollution interference and reflective pseudo-defect 

by fusing dilation and erosion operations into image subtraction 

operations. Further, this research team [25] utilized 

morphology subtraction to extracted defect edges from 

industrial liquid region on steel surface in the cold rolling 

process. With the firm and complete theory basis, mathematical 

morphology is widely used in nearly all aspects in image 

processing, including image segmentation, feature extraction, 

edge detection, image filtering, image enhancement, and so on. 

Nevertheless, the calculation expenses when using morphology 

should be highly emphasized in the online application of 

surface defect detection for flat steels, as it mainly relies on a 

so-called structural element probe to traverse pixels on image 

for collecting image information, but such operation will 

generate a large amount of calculation.  

9) Brief Summary 

Table I and Table II give a quick glance for these eight types 

of statistical methods. In summary, these methods are based on 

two kinds of fundamental structural properties, regularity and 

local orientation (anisotropy), both properties have great 

perceived value. Chetverikov et al. [54] analyzed and 

compared these two approaches comprehensively, then they 

concludes that the approaches presented above support and 

complement each other in a natural and understandable way. 

B. Spectral  

Although the statistical approaches occupy the largest 

amount of literatures for steel surface detection in this context, 

many of them fail to yield reliably correct detection results for 

several defects with subtle intensity transitions (such as thin roll 

marks, tiny scratches) especially when illumination varies or 

pseudo-defect visits frequently. Consequently, emergent AVI 

methods are highly expected for steel surface defect detection 

in real-world production. Early report about AVI system for hot 

steel slabs [55] has recommended that it may be possible to find 

better solutions in transform domain which are less sensitive to 

noise and intensity variations than the direct processing 

methods in pixel domain, which will be reviewed in the 

following subsections. 

1) Fourier Transform 

With the appearance of the Fourier transform (FT), image 

features of translation invariance, expansion invariance and 

rotation invariance are realized. Generally, the defect images 

obtained directly from the steel production line need to be 

further processed to effectively enhance the quality of images. 

For removing the background noise, Yazdchi et al. [31] 

adopted temporal Fourier analysis to eliminate black and white 

vertical strips in the images formed by the steel plate reflecting 

ambient light, which appears as the band near a single direct 

current (DC) term. Similarly, to detect longitudinal cracks from 

complicated backgrounds on con-casting slab surfaces, Fourier 

amplitude spectrum of each sub-band is computed to get 

features with translational invariance [56]. Inspired by discrete 

Fourier transform, Aiger et al. [57] proposed an unsupervised 

method based on phase only transform (PHOT), which can 

persist only irregular patterns to present defects. This novel 

approach is shown to be effective and generic on various 

texture surfaces (i.e., wood, steel, ceramic and silicon wafers). 

Nevertheless, the FT-based approaches are inadequate under 

the circumstances that Fourier frequency components related to 

the background and defect areas are highly mixed together. 

This is because it is difficult to implement non-interference 

each other during processing frequency domain components 

associated with background or defect respectively. 

2) Gabor Filters  

Fourier transform represents an image by obtaining global 

features in the frequency domain, thus most of local descriptive 

information is ignored in the spatial domain. This shortcoming 

is implicitly but markedly made up by Gabor filters in both the 

spatial and frequency domains by modulating a specific 

Gaussian kernel function on a sinusoidal wave with a certain 

frequency [58]. Then localized and oriented frequency analysis 

can be achieved by using a simple 2-D Gabor filter[59]. For the 

targeted task of surface defect detection for flat steels in this 

paper, Gabor function should be chosen carefully because it 

significantly affects spatial localization, orientation selectivity 

and spatial frequency characterization [60, 61]. This point has 
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Fig.7.  An example of using Gabor filters to detect defect edges.

also been emphasized more than once during the Gabor feature 

extraction process when it was used for defect detection of flat 

steel products [50, 62, 63]. It is well recognized that the real and 

imaginary part can be respectively used for image smoothing 

and edge detection for a typical Gabor detector. The parameters 

of Gabor filter are mainly decided by the defect size and 

direction, it is thus hard to obtain desirable results for 

miscellaneous defects with various sizes by a single Gabor 

filter. Accordingly, Choi et al.[64] proposed a two- Gabor-filter 

combinational method enhanced by morphological features to 

separate pinholes on steel slabs. Similarly, Medina et al. [65] 

claimed that the correct defection rate could be increased by 

fusing Gabor features to other classical image features to a 

large extent. It was also drawn in [65] that real-time aspect 

should be attached great importance to on-site application of 

defect detection for industrial manufacturing. The detection 

acceleration method by employing Log-Gabor filter bank 

presented in [66] provides a typical case about this assertion. 

The above methods have proven that Gabor filtering performs 

well on characterizing distinctive texture patterns. Besides, 

Gabor can be combined with statistical methods to get better 

results (like LBP, GLCM, fractal), and Alvaro et al. [67] 

confirmed that the combinational approach based on Gabor 

filter and volumetric fractal dimension possesses promising 

ability of obtaining rich texture features. 

3) Optimized FIR Filters 

The filter optimization process is essentially to effectively 

separate the frequencies of the defect-free texture with low 

signal energy and the defective texture with high signal energy 

[68]. As a typical optimized filter, finite impulse response (FIR) 

filter provides relatively preeminent feature separation between 

the defect-free and the defective regions from the FIR-filtered 

frames [8] . Kumar pointed out in his Ph. D. dissertation [69] 

that FIR filter performs better both on optimization scale and 

computational expense than infinite impulse response (IIR) and 

Gabor filters as FIR filter has more free available turning 

parameters. Further, Kumar applied FIR filters on the fabric 

defect detection and obtained milestone achievement in textile 

industry [70, 71]. Inspired by this trend, Jeon et al. [72] 

proposed a novel sub-optimal FIR filtering scheme that 

adaptively combines optimized FIR filters by considering the 

texture features of images captured from a dual-light 

switching-lighting device, to detect various shapes of defects 

on steel surfaces. This innovative detection method is effective 

to handle non-uniform surfaces and scale-oxidized substances 

caused during the hot-working manufacturing process. In 

addition, FIR filters are very suitable to be embedded in FPGAs, 

which is compliant with the lightweight trend of the 

instrumentation and measurement society. To sum up, 

optimized FIR filtering shows enormous application 

potentiality in the detection of defects for flat steel surfaces. 

4) Wavelet Transform  

Compared with Gabor filters, wavelet transform can not only 

move the time-frequency window, but also automatically adjust 

the window with the change of the frequency in the center of 

the window. Meanwhile, the characteristics of wavelet are 

more in line with human visual mechanism. Consequently, 

wavelet transform can effectively extract information from 

signals and perform multi-scale analysis of functions or signals 

through scaling and shifting operations. Due to the existence of 

pseudo defects caused by water droplets, oxidized scales, 

uneven illumination and so on, the defect detection of steel 

surface becomes increasingly challenging. Five different types 

of wavelets, namely, Haar, Daubechies 2 (DB2), Daubechies 4 

(DB4), biorthogonal spline (Bior), and multiwavelet, have been 

evaluated by Ghorai et al. [1] to extract features of small-size 

image blocks. However, the anti-noise measure resisting the 

uneven illumination is absent in this scheme. Yan et al. [73] 

proposed a novel wavelet-based image filtering algorithm 

based on anisotropic diffusion. The features of anisotropic 

diffusion encouraging the intra-region smoothing adaptively 

and inhibiting the inter-region diffusion permit that wavelet 

anisotropic diffusion method can not only extract defect from 

noisy backgrounds reliably, but also can separate high and low 
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TABLE III 
LIST OF SOME OF TYPICAL SPECTRAL METHODS OF DEFECT DETECTION 

Ref. Year Methods Applications Objects Difficulties Image source Performance 

[31] 2009 

Multifractal 

Dimension and 

Temporal Fourier 

transformation 

Cold-rolled mill Multi-type defects 
Defects with irregular 

shapes 

Database 

(PRI) 

TPR = 0.979 

FPR, FNR, T = NA 

[56] 2013 Fourier transform 
Continuous casting 

slabs 

Longitudinal 

cracks 

Complex texture 

characteristics 
Raw images 

TPR = 0.919 
FPR = 0.0893 

FNR, T = NA 

[50] 2011 
Gabor and 

morphological 
Steel slab Pinhole 

Small size and uneven 

illumination 
Raw images 

TPR = 0.871 

FPR = 0.038 
FNR, T = NA 

[62] 2015 Gabor filtering Thick plates Periodic defects 
Non-uniform 

illumination 
Raw images 

TPR = 1.00 

FPR = 0.0075 

FNR, T = NA 

[63] 2017 Double threshold Steel plates Multi-type defects 

Surface noise and 

uneven defect 

positions 

Raw images 

TPR = 0.88-1.00 

FPR = 0.00-0.15 

FNR, T = NA 

[64] 2017 Double threshold Steel slab Pinhole 

Small size and 

pseudo-noise 

interference 

Raw images 

TPR = 0.962 

FPR= 0.0131 

FNR, T = NA 

[66] 2011 Log Gabor filter bank Flat surfaces 

Products on 

homogeneous flat 

surface 

Complex texture 
characteristics 

Database 
(PUB) 

TPR = 0.998 
FPR, FNR, T = NA 

[72] 2015 
Optimized 
general-finite 

impulse-response filter 

Steel plate Multi-type defects 
Non-uniform 
brightness and various 

shaped defects 

Database 

(PRI) 

TPR = 0.979 
T: 106 ms per frame  

FPR, FNR = NA 

[1] 2012 
Wavelet feature sets 

and VVRKFA 
Hot-rolled steel Multi-type defects 

Large surface, 
variation in 

appearance, and their 

rare occurrences 

Database 

(PRI) 

G-mean: 93.8%, 
F-measure: 90.4% 

T: 86.5 ms per image 

TPR, FPR, FNR = NA 

[73] 2014 

A novel wavelet-based 

image filtering 

algorithm 

Cold-rolled strip Multi-type defects 
The complexity of 
surface texture 

All not given All not given 

[74] 2008 
Undecimated Wavelet 

Transform 
Hot-rolled plates Horizontal crack 

Pseudo-noise 
interference and 

uneven illumination 

Database 

(PRI) 

TPR = 0.902 

FPR, FNR, T = NA 

[75] 2014 
Cascading wavelet 
transforms 

Hot-rolled strip Multi-type defects Local deformation 
Database 

(PUB) 
TPR = 0.986±0.59 
FPR, FNR, T = NA 

[78] 2012 Bandelet-PCNN Strip steel Multi-type defects 

Pseudo-Gibbs 

phenomena around 
singularities 

All not given All not given 

[79] 2015 Shearlet transform 

Continuous casting 

slabs, hot-rolled steels, 
and aluminum sheets 

Multi-type defects 

Complicated 

background, 
pseudo-defects 

interference, 

low contrast and small 
size 

Database 

(PRI) 

TPR = 0.944, 0.956 
and 0.925, for three 

types of flat steel 

FPR, FNR, T = NA 

[80] 2018 RNAMlet 

Continuous casting 

slabs, hot rolled steel 
plates and cold rolled 

steel strips 

Multi-type defects 

Different surface 

appearances and 
different speeds of 

movement 

Database 
(PRI) 

TPR = 0.885, 0.972 

and 0.984, for three 
types of flat steel 

FPR, FNR, T = NA 

Notes: 
Image source. 

PUB: Public, PRI: private 

Performance criteria. 
TPR: True positive rate, FPR: False positive rate, FNR: False negative rate, 

MAE: Mean absolute error, T: Detection time 

frequency components effectively. Similarly, Wu et al. [74] 

proposed an undecimated wavelet transform (UMT) for solving 

the problem of false alarms resulted from oxidized scales and 

water marks with an overall recognition rate of 90.23%. 

Besides the challenge of pseudo defects, some steel surface 

defects produce very subtle intensity transitions. Song et al. [75] 

employed a scattering convolution network (SCN) based on 

wavelet transform to improve the tolerance ability on local and 

linearized deformations. This method has been successfully 

applied on surface defect detection for hot-rolled strips and 

obtained an average correct recognition accuracy of 97.22%. 

5) Multiscale Geometric Analysis  

The singularity of 2-D defect images captured from steel 

production lines is primarily depicted by edge information 

which appears as irregular lines or surfaces. Wavelet transform 

can optimally characterize the point singularity but can hardly 

characterize lines and surface singularities due to the finiteness 

of separable wavelet directions. An appropriate solution to 
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TABLE IV 
STRENGTHS AND WEAKNESSES OF DIFFERENT SPECTRAL METHODS OF DEFECT DETECTION 

Taxonomy Methods Strengths Weaknesses 

Spectral 

Fourier Transform Invariance to translation, expansion and rotation. 

Difficult to realize non-interference when 

dealing with frequency-domain components 

related to background or defect. 

Gabor Filters 
Suitable for high dimensional feature space with low computational 

burden. 

Hard to determine the optimal filter 

parameters and no rotation invariance. 

Optimized FIR 

Filters 

Suitable for defects with subtle intensity variation and more free 

parameters to keep the computational simplicity. 

Limitations to solve the problem of low 

frequency. 

Wavelet Transform 
Suitable for multi-scale image analysis and can compression image 

efficiently with less information loss. 

Easily to be affected by feature correlations 

between the scales. 

Multiscale 

Geometric Analysis 

Suitable for the optimal and sparse representation of high-dimension 

data. Good at image processing of strong noise background. 
Exist redundancy problem. 

Hough Transform Strong anti-interference ability and insensitive to noise. 
Only detects defects of specific shapes (i.e., 

lines, circles and ellipses). 

this problem is to employ multiscale geometric analysis (MGA) 

whose multi-directivity renders protection and detection of 

edge features (especially singular edges) more precisely. 

Generally, MGA methods are separated into adaptive and 

non-adaptive types. The adaptive methods are represented by 

Bandelet [76] and Tetrolet [77]. Zhang et al. [78] have 

proposed an image fusion method based on Bandelet-PCNN 

(Pulse coupled neural networks) model to solve the problem of 

the pseudo-Gibbs phenomena around singularities. For quality 

assurance of con-casting slabs and hot strips, Xu et al. 

successively proposed a Shearlet-based feature extraction 

method (DST-KLPP) [79] and an adaptive MGA method 

(RNAMlet) [80], both of them emphasized much on detection 

rates and computation expenses. When it comes to the typical 

non-adaptive MGA such as Ridgelet [81] and Curvelet [82], Ai 

et al. [56] applied Curvelet enhanced by kernel locality 

preserving projections to track longitudinal cracks on 

con-casting slabs. Nevertheless, how to effectively distinguish 

confused defect edges and active background textures is still an 

open research topic for both engineering and academia. 

6) Hough Transform  

Hough transform (HT) [83] is considered as a powerful tool 

in well-defined line-feature detection. Its applications can be 

found in fingerprint identification [84, 85] and vehicle license 

plate recognition [86]. Interestingly, Sharifzadeh et al. [20] 

applied HT to detect defects of holes, scratches, coil breaks and 

rusts on cold-rolled steel strips. However, it is difficult to raise 

the correct detection rates to more than 90%. Hough line 

detection has the advantage of strong anti-interference ability 

and is also insensitive to noises, incomplete part of edges, and 

other coexisting non-linear structures. However, HT can only 

track the direction of edges, the length information of line 

segment is lost. It is worth noting that the time and space 

complexity should be effectively reduced if using HT for 

surface defect detection of flat steels. 

7) Brief Summary 

Table III and Table IV give a quick glance for these six types 

of spectral methods, the advantages and disadvantages are also 

analyzed briefly. In general, spectral methods are dedicated to  

find a special transform domain where the defect objects can be 

more easily and completely separated from the both the local 

and global backgrounds. 

C. Model-based  

Naturally, statistical-based methods are relatively sensitive 

to noise while spectral-based methods lack local information, 

both of them have bottlenecks on representing miscellaneous 

defects and stochastic background variations appeared on 

textured surfaces. Model-based methods tend to perform better 

for diverse defect detection by projecting original texture 

distribution of image blocks to low-dimensional distribution 

via a structurally special model enhanced by parameter learning. 

Several model-based methods are now briefly discussed below. 

1) Markov Random Field Model  

In 1983, on the basic idea of that a texture has interaction 

among relevant random variables in a stochastic or periodic 

2-D field, Cross et al.[87] first used markov random field (MRF) 

as texture model, the structure of 2-D MRF can well represent 

the spatial correlation of image pixels. Inspired by this concept, 

Gayubo et al. [88] utilized MRF to restore flat steel defects (i.e., 

cracks) and eliminate the spurious features (i.e., pseudo). 

Further, Xu et al. [89] dramatically decreased the detection 

false rate from 18.8% to 3.7% by using the proposed 

context-adaptive hidden Markov tree model (CAHMT) based 

on an assertion that the correlation of wavelet coefficients of 

flat steel surface images at different scales satisfies Markov 

property. The recent literatures exhibit the huge application 

potentiality of MRF on industrial surface defect detection. 

2) Weibull Model 

Some flat steel surface defects that produce subtle intensity 

transitions may be difficult to be detected by using the above 

MRF-based method. A potential solution to handle the 

detection task of such defects is to utilize the relatively 

complete descriptive superiorities on texture contrast, scale, 

and shape of Weibull distribution [90]. Continue this idea, Fofi 

et al. [16] proposed a novel, non-parametric and efficient 

Weibull-based defect detection method by computing two 

parameters of a Weibull fit for the distribution of image 

gradients in local regions. This unsupervised method performs 
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TABLE V 
LIST OF SOME OF TYPICAL MODEL-BASED METHODS OF DEFECT DETECTION 

Ref. Year Methods Applications Objects Difficulties Image source Performance 

[88] 2006 
Markov random field 

model 
Sheet-metal Split defects 

Remaining spurious 

features 
All not given All not given 

[89] 2013 Hidden Markov tree Steel strips Multi-type defects 
Complex texture 
characteristics 

Database 
(PRI) 

TPR = 0.944 

FNR = 0.037 

FPR, T = NA 

[16] 2013 Weibull distribution Steel surface Multi-type defects 
Arbitrary deviations of 
the reference texture 

Database 
(PRI) 

EER: 3.2%, 

AUC = 0.99 
FNR = 0.051 

TPR, FPR, T = NA 

[91] 2017 
Haar-Weibull-Variance 

model 
Steel strips Multi-type defects 

Miscellaneous patterns, 

low contrast and 

Pseudo-noise interference 

Database 

(PRI) 

TPR = 0.962 

T: 52 ms per image 

FPR, FNR, T = NA 

[94] 2013 
Saliency convex active 

contour model 

Silicon Steel 

Strip 

Spot-defect 

Steel-pit-defect 

Micro defects in the 

cluttered background 
All not given All not given 

[95] 2018 Active contour model 
Large steel 

roller 

Speckles 

Chatter marks 

Feed traces 

Large dimension and 
weight 

All not given All not given 

[99] 2018 
Double Low-Rank and 
Sparse Decomposition 

Model 

Hot-rolled strip Multi-type defects 
Noise and uneven 

illumination 

Database 

(PUB) 

AUC: 0.8350, 

MAE: 0.1584, 

T: 171.3 ms per image 
TPR, FPR, FNR = NA 

[26] 2019 Compact model 
Hot-rolled 

plates 
Multi-type defects 

The interference of 
pseduo-defects 

Database 
(PUB) 

FPR=0.088, 

FNR=0.266, 
MAE=0.143 

TPR, T = NA 

[17] 2019 
A unique guidance 

template 
Steel strips Multi-type defects 

Defects with 

miscellaneous patterns 

Database 

(PRI) 

TPR = 0.962 
T: 35 ms per image 

FPR, FNR = NA 

Notes: 
Image source. 
PUB: Public, PRI: private 

Performance criteria. TPR: True positive rate, FPR: False positive rate, 

FNR: False negative rate, EER: Equal error rate, AUC: Area under curve, 
MAE: Mean absolute error, T: Detection time 

TABLE VI 
STRENGTHS AND WEAKNESSES OF DIFFERENT MODEL-BASED METHODS OF DEFECT DETECTION 

Taxonomy Methods Strengths Weaknesses 

Model-based 

Markov Random Field Model 

Can be combined with statistical and spectral 

methods for segmentation applications to 
capture the local texture orientation information. 

Cannot detect small defects. Not suitable for global 

texture analysis. Strong spatial constraint. 

Weibull model 
Has superiorities on describing the contrast, 

scale and shape of textures. 

Hard to detect defects with gradual intensity or with 

low contrast. 

Active contour model 
Can achieve sub-pixel accuracy of object 
boundaries. Has good performance on both 

spot-defect and steel-pit-defect. 

Hard to calculate the convergence position due to 

lacking constraints. 

well on a large industrial optical inspection database, where 

involves some highly challenging flat steel defects. However, it 

is hard for Weibull distribution to handle defects with gradual 

intensity or with low contrast. Hence, Liu et al. [91] developed 

a Haar-Weibull-variance (HWV) model by replacing the 

features of local gradient magnitude by Haar features from 

local patches. This method is reported to have achieved an 

average correct detection rate of 96.2% on a homogeneously 

textured defect dataset gathered from an actual hot-rolling mill. 

3) Active Contour Model  

The basic idea of active contour model (ACM) is to use 

continuous curve to express and locate the edge of object (here 

is, defect) by curve evolution. ACM is popular in image 

s e g m e n t a t i o n  a s  i t  c a n  a c h i e v e  s u b - p i x e l  a c c u r a c y  o f  o b j e c t 

boundaries [92, 93]. Song et al. [94] proposed saliency convex 

active contour model (SCACM) by fusing visual saliency map 

into convex energy minimization function to detect micro 

surface defects on silicon steel strips. The SCACM yielded 

good performance on both spot-defect and steel-pit-defect as 

the fused visual saliency map highlights the potential defects 

and suppresses the clutter background as well. Yang et al. [95] 

developed a ACM-based defect detection method without 

edges through incorporating a variable penalty term and a 

convolution kernel, authors reported that it can effectively 

segment defect features with inhomogeneous boundaries from 

complicated surface textures. The iteration steps and computing 

time increasingly attract the attention of scholars. 
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4) Other Latest Reported Model-based 

There are some latest reported model-based defect detection 

methods. Susan et al. [96] proposed Gaussian mixture entropy 

model for defect detection, which is specialized in identifying 

miscellaneous defects such as holes and stains. Based on 

low-rank representation, Yan et al. [97] utilized smooth-sparse 

decomposition (SSD) model for anomaly detection in images, 

Huangpeng et al. [98] proposed a novel weighted low-rank 

reconstruction model for automatic visual defect detection, and 

Zhou et al. [99] presented a double low-rank and sparse 

decomposition (DLRSD) model to obtain the defective region 

of steel sheet surface. These approaches are reported to perform 

well. Wang et al. [26] constructed a compact model to be 

regarded as a kind of guidance information by mining intrinsic 

image priors, it offers a good generalization ability for different 

detection tasks and is sufficiently robust to noise. Further, 

Wang et al. [17] proposed a guidance template-based defect 

detection method for strip steel surfaces by introducing a 

sorting operation to sort gray levels with each column of test 

image and then subtracts the sorted test image with guidance 

template to locate defects conveniently, It achieved an average 

detection rate of 96.2% on a dataset with 1500 test images 

involving challenges of uneven illumination. Any information 

descriptive models with low computational complexity can be 

considered for the task of surface defect detection for flat steels 

in future. 

5) Brief Summary 

Table V highlights some representatives of model-based 

detection methods, and the strengths and weaknesses are also 

gathered in Table VI. In this branch direction, how to found 

noise robust, theoretically explainable, computationally simple 

models to adaptively absorb sparse features of defects will 

attract increasing attentions from both academia and industry. 

D. Machine Learning 

The essence of machine learning is to analyze and learn data 

then make decisions or predictions accurately for the further 

operation. With the popularity of artificial intelligence in recent 

years, machine learning, a powerful branch of model-based 

methods, have been proposed extensively for defect detection 

of flat steel surface. As shown in Fig. 8, the defect detection 

task is essentially handled as a binary (defective or defect-free) 

classification problem in machine learning methods (or we can 

call them advanced classifiers). And the machine learning 

defect detection methods are reviewed in three categories of 

supervised-, unsupervised- and reinforcement learning. 

Input 

layer Hidden layers

Output 

layer

Image inputs

Defective

Networks

Detection output

Defect-free

 
Fig. 8.  The general flow of machine learning methods. 

1) Supervised Learning 

The goal of supervised learning is to model a conditional 

distribution between input vectors (surface images) and target 

vectors (defect label 0 or 1). Support vector machine (SVM), 

decision trees and neural network are classical examples in this 

category. As a generalized linear classifier for binary 

classification of data, SVM is frequently utilized to identify 

defective and defect-free regions [100, 101]. Ghorai et al. [1] 

hold that the performance of classifiers in defect detection 

depends on the feature and classifier combination. The authors 

fused the classifiers (i.e., SVM and VVRKFA) with different 

feature sets (i.e., Haar, DB2, DN4) to divide the test images into 

defective and normal ones, finding that the performance of 

VVRKFA with one-level Haar features ranks first among all 

the feature-classifier combinations. The neural network can 

learn the pattern from the training dataset, and determine the 

category of the new data according to the previous knowledge. 

Liu et al. [102] used a two-layer feed-forward neural network to 

classify the pixel of test images into defect and defect-free 

regions on the basic idea that the defect detection task is 

actually a binary classification problem. But a great quantity of 

parameters of neural networks lead to huge computational 

complexity. Convolution and subsampling in convolution 

neural network (CNN) effectively reduce the model size by 

tailoring the model parameters. Thus, CNN-based architectures 

are widely applied on automatic feature extraction [103] as well 

as on image defect detection [104-108] in industrial inspection. 

For example, Cha et al. [105] proposed a deep CNN to detect 

cracks on concrete and steel surface without calculating defect 

features. The framework can effectively resist the interferences 

caused by the extensively varying real-world situations. This 

team also designed a structural visual inspection method based 

on faster region-based CNN (faster R-CNN) to ensure quasi 

real-time simultaneous detection of multiple types of defects 

[109]. Moreover, Song et al. [108] realized precise detection of 

weak scratches on metal surface by confusing deep CNN and 

skeleton extraction, the experimental results indicate its strong 

robustness to background noises. In order to enable CNN-based 

detection methods to be applied in real-time industrial scenes, 

an impressive method called you only look once (YOLO) 

network was proposed by addressing the bi-classification task 

as a regression problem. Li et al. [110] improved the YOLO 

network by making it all convolutional and then applied the 

YOLO-variant to detect surface defects of flat steel. And this 

network reached 99% correct detection rate with a speed of 83 

FPS on a dataset of 4655 defect images of cold-rolled steel 

surface. The satisfactory detection performance of supervised 

learning methods is achieved only with a premise of having a 

great quantity of labeled image samples on defect database. 

While collecting and labelling a great number of image samples 

on industrial manufacturing line are quite labor-intensive and 

time-consuming, or even to say, impracticable. 

2) Unsupervised Learning 

Automated defect detection has always been a challenging 

task especially in actual industrial application. It is not always 

easy to gather a large number of labeled image samples, that is, 
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TABLE VII 
LIST OF SOME OF TYPICAL MACHINE LEARNING METHODS OF DEFECT DETECTION 

Ref. Year Methods Applications Objects Difficulties Image source Performance 

[100] 2014 Gabor filtering and SVM Steel plates Seam cracks 
Small size and low 
contrast 

Raw images 

TPR = 0.945 

FNR = 0.003 

FPR, T = NA 

[1] 2012 
wavelet feature sets and 
VVRKFA 

Hot-rolled steel Multi-type defects 
Various appearance 
and rare occurrences 

Database 
(PRI) 

G-mean: 93.8%, 

F-measure: 90.4% 
T: 86.5 ms per image 

TPR, FPR, FNR = NA 

[102] 2005 
Algorithm based on 
feed-forward neural 

network 

Cold-rolled strip Scratches 
Complex texture 

characteristics 
All not given All not given 

[105] 2017 A deep CNN Steel surface Cracks 
Extensively varying 
real-world situations 

Raw images 
TPR = 0.974 
FPR, FNR, T= NA 

[106] 2019 
Classification priority 
network 

Hot-rolled steel plates, 
Hot-rolled steel strips 

Multi-type defects 

The different 

morphological 
characteristics of the 

same type of defects 

Database 
(PRI) 

TPR = 0.94 and 0.96 

respectively 

FPR, FNR, T= NA 

[107] 2019 
CNN and long 
short-term memory 

(LSTM) 

Steel Plates Roll marks 
Low contrast in their 

background 

Database 

(PRI) 

TPR = 0.862 

TPR, FPR, FNR = NA 

[108] 2019 

Deep convolutional 

neural networks 

(DCNNs) 

Metal component 
surfaces 

Weak 
micro-scratch 

Non-uniform gray 

distribution, various 
shapes, low contrast 

in their background 

Database 
(PRI) 

IoU = 0.8125 

TPR, FPR, FNR = NA 

T = NA 

[110] 2018 
Improved YOLO 

detection network 
Cold-rolled strip Multi-type defects 

Diverse and complex 

features 

Database 

(PRI) 

MAP: 97.55%   

Recall rate: 95.86% 

Speed: 83FPS 
TPR, FPR, FNR = NA 

T = NA 

[112] 2017 AnoGAN Multi-type Multi-type defects 
Small labeled 
samples 

Database 
(PRI) 

TPR = 0.8834 
Recall = 0.7277 

AUC = 0.89 

TPR, FPR, FNR = NA 
T = NA 

[18] 2019 
Convolutional 

auto-encoder (CAE) 
Hot-rolled strip Multi-type defects 

Wide variety of 

forms and various 
classes 

Database 

(PUB) 
All not given 

[113] 2018 GAN and autoencoder Multi-type Multi-type defects 

Hard to collect 

samples beforehand 
and manual labelling 

is time-consuming 

Database 
(PRI) 

TPR = 0.985 

T: 80.3 ms per image 

FPR, FNR, T= NA 

[114] 2018 
Convolutional denoising 

autoencoder networks 
Multi-type Multi-type defects 

Collecting and 
labeling large 

amounts of defective 

samples are usually 

harsh and 

impracticable. 

Database 

(PUB) 

Recall = 0.6437 

TPR = 0.638 

F-Measure = 0.6279 

FPR, FNR, T= NA 

[115] 2018 

A Generic 

Deep-Learning-Based 

Approach 

Hot-rolled strip Multi-type defects 

collecting training 

dataset is usually 

costly 

Database 
(PUB) 

TPR = 0.992 

EER = 0.00 

FPR, FNR, T= NA 

Notes: 
Image source. 

PUB: Public, PRI: private 

Performance criteria. TPR: True positive rate, FPR: False positive rate, FNR: 

False negative rate, EER: Equal error rate, AUC: Area under curve, MAE: 

Mean absolute error, IoU: Intersection over union, MAP: Mean average 
precision, T: Detection time 

TABLE VIII 
STRENGTHS AND WEAKNESSES OF DIFFERENT MACHINE LEARNING METHODS OF DEFECT DETECTION 

Taxonomy Methods Strengths Weaknesses 

Machine Learning 

Supervised learning Has a good and reliable effect. 
Dependent on labeled samples, but defective 

samples of flat steel are limited. 

Unsupervised learning Require no labeled samples for training. 
Susceptible to noise and highly influenced by 

initial values. 

Reinforcement learning 
Require only a small number of labeled samples and the 
result is stable. 

Training requires a lot of interaction and reduces 
efficiency. 
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the training images consist of a set of input vectors without any 

corresponding target values. Here, the unsupervised learning is 

dedicated to discover groups of similar examples within the 

input data. In some cases, it is also called clustering.  

CNN can be used not only for supervised learning, but also 

for unsupervised learning. The deep convolutional generative 

adversarial network (DCGAN) [111] is a kind of CNN, which 

build certain constraints on traditional generative adversarial 

networks (GANs) to overcome its drawback of unstable output, 

and it often works in unsupervised learning manner for defect 

detection [112, 113]. Notably, Zhao et al. [113] combined GAN 

and autoencoder (AE) and LBP to detect defects on texture 

surface, which needs only positive samples without any defect 

sample nor manual label. This framework is of better practical 

application value due to its unsupervised natures. Moreover, 

AE-based algorithms also demonstrate strong competitiveness 

in steel surface defect detection, which are reported to be fairly 

noise-robust. Mei et al. [114] utilized convolutional denoising 

AE network to reconstruct image patches, combined with the 

reconstruction residual maps, this scheme can reliably learning 

final detection results, where no manual intervention is needed 

throughout all the detection process. Youkachen et al. [18] 

inventively applied convolutional auto-encoder (CAE) to 

reconstructed the defective test images, then the reconstructed 

images were used to highlight the shape feature by simple 

post-processing algorithms, providing another good application 

case on miscellaneous defect detection through unsupervised 

learning. Although the above unsupervised learning methods 

are able to learn from unlabeled images, they are susceptible to 

noise and initial value. How to consolidate the abovementioned 

impressive results into reliable achievements will become the 

focus of this branch direction. 

3) Reinforcement Learning 

Both supervised learning and unsupervised learning methods 

have obtained a rapid progress on surface defect detection of 

industrial flat steel. Different from these two methods, the 

reinforcement learning methods realize surface defect detection 

with fairly small datasets through a so-called rewards and 

punishment system to optimize inner parameters automatically. 

For example, Ren et al. [115] proposed a general approach 

requiring small training data for automated surface inspection. 

Authors transferred the features from a pretrained deep learning 

network and convolved the trained classifier over the input 

images. In the defect detection tests of flat steel surface, the 

proposed algorithm reduced error escape rates by from 6.00% 

to 19.00% in three defect types than several state-of-the-art 

benchmarks. Tao et al. [116] proposed a novel cascaded AE 

(CASAE) framework to detect some complex defects under 

industrial environment, which converts test images into 

pixel-wise prediction mask based on semantic segmentation. 

The defect regions can be accurately tracked by using a 

compact CNN. Zhou et al. [117] designed a new bilinear model 

of double-visual geometry group 16 (D-VGG16) to extract 

global and local features of surface defects, these features were 

then fed to the gradient-weighted class activation mapping 

(Grad-CAM) to finish defect detection. The proposed method 

can simultaneously realize defect classification and localization 

with small samples in weakly-supervised manner. Moreover, 

He et al. [118] proposed a new method named CAE-SGAN by 

fusing CAE and semi-supervised GAN (SGAN), where CAE 

acts as an advanced classifier to identify detective regions. The 

generalization ability improved by semi-supervised learning 

from SGAN supported that the CAE-SGAN scheme yielded 

competitive performance compared with some other traditional 

detection methods. 

4) Brief Summary 

Supervised learning determines test samples defective or 

non-defective by training samples with labels. Unsupervised 

learning can realize accurate and effective surface defect 

detection through the training of a large number of unlabeled 

samples in many harsh industrial manufacturing scenarios. In 

contrast, reinforcement learning tries to obtain intelligent 

self-optimization through continuously interacting with its 

environment, so as to achieve defect detection by making full 

use of limited labeled and unlabeled samples with low cost. For 

ease read, Table VII lists some typical defect detection methods 

based on machine learning with a short summary closely 

presented in Table VIII. As is stated above, machine learning 

tends to accomplish the defect detection tasks more 

intelligently, such an emerging technique is promising in the 

application of flat steel surface defect detection. 

V. SUMMARY AND DISCUSSION 

In Table I, III, V and VII, some typical defect detection 

methods among the four big families are highlighted. Attention 

is drawn to application scenarios, types of defects, involved 

challenges, source of images under test, reported detection 

performance. In terms of detection performance, on the one 

hand, detection accuracy is an important evaluation criterion. 

While, different references have different standard of detection 

accuracy, such as true positive rate (TPR), false negative rate 

(FNR), false positive rate (FPR), equal error rate (EER), area 

under curve (AUC), mean absolute error (MAE), G-mean, 

F-measure and so on. On the other hand, running time is 

another vital evaluation criterion, as the rapid casting or rolling 

rhythm of flat steel in real-world industrial sites has high-level 

time cost requirement on defect detection.  

Respect to the image source used for study, the Raw images 

represent the real-world images (always with large size e.g., 

4096×1024 pixel), which are acquired by an AVI machine 

running on industrial steel production line for defect detection. 

While the Database includes a number of defective or 

defect-free image block samples (always with small size, e.g., 

256×256 pixel), which are obtained from Raw images after 

some post processes of segmentation and labeling. It is worth 

mentioning that the results of detection accuracy evaluated 

based on Raw images are more reliable than those evaluated 

based on Database, when the corresponding detection methods 

are really applied on AVI system in actual steel manufacturing 

line. And those will be more credible to flat steel manufacturers, 

as all the results of detection accuracy based on Raw images 

should be evaluated from all the detected defects and actual 
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defects (not on Database, but on the real-world steel surface), 

while the actual defects need professional defect inspectors to 

find out one by one from the historical flat steel products, which 

are extremely labor-intensive and time-consuming. That is why 

this kind of studies (e.g. [5]) is quite rare at present. Driven by 

developments of emerging machine learning and improvements 

of hardware computing power, algorithmic research will 

develop towards the urgent needs of engineering applications, 

and more high-quality achievements can be expected to open in 

the near future.  

Here in, this paper has summarized the research efforts made 

over the past two decades about the automated visual defect 

detection of flat steel surface in industrial manufacturing, 

where the largest volume of published reports in this literature 

belongs to the last five years. The research trend has gradually 

shifted from previous theoretical study to on-site application. 

Representative works from statistical, spectral, model-based 

and machine learning aspects are listed for readers to have a 

general overview of the state-of-the-arts. Existing challenges to 

surface defect detection and some potential proposals are 

investigated from a systematic perspective as follows. 

1) How to make better balance of detection accuracy and 

computing efficiency is still relatively open to the automated 

computer-vision-based surface defect detection. But for the 

real-world industrial manufacturing of flat steels, detection 

stability especially robustness to environmental variations is on 

the very top list.  

2) Real-time operation of high-resolution AVI system is 

expecting fast defect detection. As for algorithm itself, fusing 

features extracted by multiple descriptors to support final 

detection decision can yield better results than those produced 

by a single descriptor in the most cases. Intrinsic priors of 

production line are suggested to assist the defect detection. 

Online surface defect detection prefers lightweight arithmetic 

methods to complex learning networks, as our problem is an 

unsupervised and real-time detection task in essence. While 

machine learning or deep network is preeminent alternative for 

complex multi-class classification problem with rich datasets 

(i.e., defect classification). As the defect detection task can be 

treated as a bi-classification problem, it is not surprising that the 

machine learning trend is gradually sinking to the discussed 

defect detection topic. With respect to its resident hardware, the 

concept of edge computing could be employed for terminal 

accelerating, that is, ASICs such as FPGAs are encouraged to 

be placed at the front end of image acquisition where 

pre-processing on raw data can be finished in real time, so as to 

prevent redundant information being spread to the subsequent 

transmission and post-processing.  

3) As the prelude of defect detection, noise smoothing and 

edge enhancing are suggested to be arranged as closer as 

possible to the imaging sensors, incredibly, the most effective 

denoising method for AVI system is to make the images as 

clean as possible by some feasible engineering measures. For 

example, equipping high pressure air-gun removing surface 

water droplets is far more effective than to develop advanced 

water removal algorithms to eliminate false alarm triggered by 

pseudo-defect. Moreover, adaptive and closed-loop controlling 

is strongly recommended for the illumination subsystem.  

4) It is not prudent to compare detection performance of 

different techniques as different experiments select different 

testing methods with different evaluation criteria on distinct 

datasets. More steel surface defect databases, especially raw 

images from real-world industrial production line, are urgently 

expected for enriching diversified and cumulative future 

research ecology, which will be sure to benefit to explore for a 

feasible and comparable standard of performance evaluation 

for distinct defect detection methodologies. 

We have tried to include as many as possible up-to-date 

references following the emerging AVI techniques, it is 

impossible to comprise all the existing publications due to 

space limitations. In addition, the second survey paper focusing 

on surface defect classification techniques about flat steels is 

under way.  
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