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Abstract—Local binary descriptors, such as local binary pat- YNAMIC textures (DTs) are textures with motion [1]
tern (LBP) and its various variants, have been studied extensively and they are usually viewed as videos of moving scene
in texture and dynamic texture analysis due to their outstanding that exhibit certain stationary properties in the time domai

characteristics, such as grayscale invariance, low computational 21 Typical f f DTs include vid £ 1
complexity and good discriminability. Most existing local binary [2]. Typical forms o S Include videos ot flames, sea waves

feature extraction methods extract spatio-temporal features from running river, water, fountains and humans in crowds. Th
three orthogonal planes of a spatio-temporal volume by viewing modeling and classification of DTs have received substanti
a dynamic texture in 3D space. For a given pixel in a video, attention over the past decade. DT classification has ma
only a proportion of its surrounding pixels are incorporated in 55 hjications, including video retrieval [3], activity recognition

the local binary feature extraction process. We argue that the . oo ) . . -
ignored pixels contain discriminative information that should [4], traffic monitoring [S], fire detection [6], [7], facial analysis

be explored. To fully utilize the information conveyed by all [8], crowd management [9], lip reading [10], micro-expressior
the pixels in a local neighborhood, we propose to extract analysis [11], and tracking [12].

local binary features from the spatio-temporal domain with DT classification is more challenging than the static cas
3D filters that are learned in an unsupervised manner so that because DTs vary not only in spatial appearance but als

the discriminative features along both the spatial and temporal . thei izati dd - ti Th t
dimensions are captured simultaneously. The proposed approach In their organization an ynamics over time. € extrac

consists of three components: 3D filtering, binary hashing, and tion of powerful DT features is of great importance to the
joint histogramming. Densely sampled 3D blocks of a dynamic success of DT classification; consequently, most research
texture are first normalized to have zero mean and are then DT classification focuses on feature extraction [8], [13]-[18]
filtered by 3D filters that are learned in advance. To preserve Compared to ordinary static textures, DTs extend the notio

more of the structure information, the filter response vectors are f lf-similarity to th tio-t | d in H )
decomposed into two complementary components, namely, the OF Sell-similarty 10 the spatio-temporal domain. HENce, ¢

signs and the magnitudes, which are further encoded separately thread of research focuses on extending the existing sta
into binary codes. The local mean pixels of the 3D blocks are texture descriptors to the spatio-temporal domain to captul

also converted into binary codes. Finally, three types of binary temporal variations. One influential work was performed by
codes are combined via joint or hybrid histograms for the final Zhao and Pietikainen [8], who extended LBP [19], which is

feature representation. Extensive experiments are conducted on . . - - .
three commonly used dynamic texture databases: UCLA, DynTex widely used in static texture analysis [20], [21], to DT analysis

and YUVL. The proposed method provides comparable results and proposed volume LBP (VLBP) to combine motion anc
to, and even outperforms, many state-of-the-art methods. appearance. Due to the large number of VLBP patterns, t
Index Terms—Dynamic texture, motion, feature extraction researchers further proposed to extract LBP features from thr
local binary pattern orthogonal planes (LBP-TOP) to make the feature extractio
process computationally simple. The key idea of extractin
features from three orthogonal planes in LBP-TOP has bee
widely followed by later researchers [16], [22]-[27] due to
its simplicity and good performance. Typical examples ar
local phase quantization on three orthogonal planes (LPC
X. Zhao is with the College of Computer Science and Electronic EngineeT—OP) [22], multi-scale binarized statistical image features'ow
ing, Hunan University, Changsha 410082, P. R. China, and the Center three orthogonal planes (MBSIF-TOP) [16], aggregated saliel
Machine Vision and Signal Analysis, P.O. Box 4500 FI-90014, University Geatures (ASF-TOP) [24] and LBP-TOP with Michelson con-
Oulu, Finland. (e-mail: s12103017@hnu.edu.cn) d | | | bi
Y. Lin is with the College of Computer Science and Electronic Engineerindf @St [28] (named novel LBP) [25] In summary, local bi-
Hunan University, Changsha 410082, P. R. China. (e-mail: yplin@hnu.edu.dtqry features, such as LBP and its 3D extension LBP-TOI

L. Liu is with the College of System Engineering,_ National Universitystand out due to their outstanding characteristics, includin
of Defense Technology, Changsha 410073, P. R. China, and the Center for

Machine Vision and Signal Analysis, P.O. Box 4500 FI-90014, University @OOd representation power, Inval’.lanc'e to_monOth!C graY'leV‘
Ouluy, Finland. (e-mail: li.liu@oulu.fi) changes €.g, those caused by illumination variations), and

o Hpegkilg O'i gggothgl s;coeonltir E’;iv’\gf‘sci{“”%fvgm agﬁ'] | 6i}ig”a'(eAnr]‘;‘i'l'_c0mputational simplicity. However, the popular LBP-TOP anc
gam’]e.,_"ei'kk"a@oulu‘ﬁ) ’ Y ’ ' its variants €.g, LPQ-TOP, MBSIF-TOP, novel LBP and ASF-

W. Zheng is with the Key Laboratory of Child Development and Learning OP) have the following two shortcomings: (1) They are
Science of Ministry of Education, School of Biological Sciences and Medicpjgndcrafted and require strong prior knowledge to design al
Engineering, Southeast University, Nanjing 210096, P. R. China. (e-matiFIey do not adapt well to new data [29]_ (2) They extract loca

wenming zheng@seu.edu.cn) h 8 -
The asterisk indicates the corresponding author. binary features from three orthogonal planes only, ignorin

I. INTRODUCTION



some pixels in the local neighborhood. To the best of our knowledge, whether using 3D filtering
Features learned from data have recently shown superiafth local binary encoding is beneficial for DT classification
ity to handcrafted features [16], [17], [27], [29]-[34]. Thehas not been explored. Although the techniques used in tl
popularity of handcrafted features appears to be overtak@mposed method are simple, our work fills this gap and thu
by learning-based methods, especially by deep convolutiorah be used as a baseline for similar future studies. Compar
neural networks (CNNs). However, due to the disadvantagegh the existing TOP-based local binary feature extractiol
of CNNs, such as high computational complexity, the requireethods, the proposed approach has three benefits: (1) As
ment for substantial training data and the lack of generfiters operate in the spatial and temporal dimensions at tf
invariance, traditional descriptors such as LBP and LBP-TGame time, the motion and spatial appearance are captul
are still irreplaceable. A recent thorough experimental stugymultaneously; (2) Only one set of filters, instead of three set
[20] demonstrated that advanced LBP and LBP-TOP variamtaist be learned; (3) Considerable improvement is obtaine
still perform on par or better than recent deeply learned fedue to the use of a simple filter learning technique.
tures in many practical scenarios, especially for problems withThe remainder of this paper is organized as follows. Relate
limited training data, such as the micro-expression recogniti@rork is introduced in Section Il. Details of the proposed B3DF
problem. To the best of our knowledge, no large-scale DAre given in Section Ill. Experimental results and comparisor
database exists for now, which limits the full utilization ofare presented in Section IV. Finally, the conclusions ar
deep CNN techniques. Fortunately, with the advent of modepresented in Section V.
deep learning techniques, research on local descriptors has
seen a renaissance, with the development of learnable local 1. RELATED WORK

feature descriptors [16], [17], [26], [27], [29]-[32], [35], [36] Since DT classification has been studied for many year
being an area of particular interest. Notable examples inclug@nty of methods have been reported in the literature. Ac
binarized statistical image features (BSIF) [31], simultaneogsrding to whether the underlying dynamic system is modele
local binary feature learning and encoding (SLBFLE) [36}hose methods can be roughly categorized into generati
MBSIF-TOP [16], and orthogonal tensor dictionary learninghethods and discriminative methods. In addition, we separat
(OTDL) [17]. On the other hand, although recent learningy categorize deep-learning-based DT classification metho
based local binary feature extraction methods, such as MBS|kto a single class. The proposed approach belongs to t
TOP [16] and MPCAF-TOP [27], have achieved encouragingiscriminative category; therefore, in the following part of this

DT classification performance and outperformed LBP-TORBection,we focus on the recent studies in this category that
they also extract features from three orthogonal planes of R{ost relevant to our work.

videos. The multiscale 2D filters used in MBSIF-TOP [16] and
MPCAF-TOP [27] are learned separately from images on thrge

i Generative Methods
orthogonal planes. In these two methods, only a proportion ofTh hods in thi . h d
the surrounding pixels of a given pixel are utilized for feature. e methods In this category attempt to estimate the unde

extraction, which may result in information loss. lying system that generates DTs from a number of trainin
Therefore, in this paper, we question the dominant roBTS' Thgr], the estimated sy§tem parameters are used
that three-orthogonal-planes-based methaelg, (LBP-TOP, DT Cla55|f|cf’;\t|on and synthesis. Two representative mode
MBSIF-TOP, and novel LBP) play in the field of DT classi-&'® the spatlo-tempolral autoregre_sswe (STAR) model [1], [2
fication. Instead of extracting binary features for only thre@g]’l[:j'o] 4a1nd 4t£1e Snea_r d);]namlcal sys:]em (LDSh) crjnoﬁel
orthogonal planes, we develop an alternative feature repres '-.[ ] [410 ]'. espite the success these methods ha
tation based on the point distribution of all pixels in a loc chieved, they are |mpract|cal for t.he'followmg reasons [45]
3D neighborhood. To this end, we propose to use learned The model-estlmatlon process is time consuming; (2) Th
filters to extract local DT features, which are further encod@&sumpt'_on_ of'well-segmented DTs does .not always hold,'ar
via binary encoding. Specifically, we propose a binarizddg) The similarity measure for two models is not easy to Qeflne
3D feature (B3DF) extraction method that comprises thr&ecently, Baktashmptlagbt al. [46] .assumed t-hat a video
components: (1) 3D filtering, (2) binary hashing, and (3 generateq by a linear combination of stationary source
joint histogramming. Densely sampled 3D blocks of a D nd ponstaﬂonary sources. Then,they proposed dlscrlmlnat.r
are first normalized to have zero mean and are then filtel%ﬁmmear stationary subspace a”a'YS'S to separate the stati
by 3D filters that are learned in advance. To preserve mdte/ parft OE?_ DIT fr?m Fhe BOZSt?t'OTa% pa(;t an((jj gsDeqrth‘
of the structure information, the filter response vectors ap%rmer or classification. Duboiet al. | ) ] adopte 1
decomposed into two complementary components, namely, velet transform to decompose a DT into Iocal.c_)smlllatmg
signs and the magnitudes, which are further separately encoljg§nomena and nonlocal wavefronts for DT classification.
into binary codes. The local mean pixels of the 3D blocks are =~
also encoded into binary codes. Finally, three types of bindy Discriminative Methods
codes are combined via joint or hybrid histograms for the final Because there are many approaches in this category, f
feature representation. As for filter learning, four widely usedarity, we further group the methods into four subcategorie
unsupervised filter learning techniques (principal componeatcording to the techniques used: optical-flow-based methoc
analysis (PCA), independent component analysis (ICA), spafsactal-analysis-based methods, LBP-based methods, and 3
filtering (SF) [37] and k-means clustering [38]) are considerefiltering-based methods. As the proposed method utilizes 3



filtering and binary encoding, we emphasize the introductialictionary (the kernelized version was named KGDL) fron
of the last two subcategories. LBP-TOP features. Hongt al. [24] argued that LBP-TOP
Optical flow was used in early studies to model motion patlisregarded the distinct characteristics of each frame, so th
terns in DTs [48], [49]. For example, Let al. [48] proposed applied k-means clustering to LBP-TOP features to aggrega
to characterize DTs through spatio-temporal multiresolutidhe salient features (ASF-TOP) for DT classification. 2D filte
histograms based on velocity and acceleration fields. Olearning has also been utilized for feature extraction from thre
drawback of methods based on optical flow estimation is thatthogonal planes. Arashloo and Kittler [16] first learned thre
the assumed properties of local smoothness and brightnests of multiscale 2D filters via ICA and then used those filter
consistency are generally difficult to justify [50]. On theo extract multiscale features for DT representation (MBSIF
basis of the observation that DTs have self-similarities acroB®P). Zhaoet al. [27] used PCA to learn filters in a manner
multiple scales (this property is referred to as fractal structusemilar to that of Arashloo and Kittler, resulting in a DT
[51]), Xu et al. [14] proposed the dynamic fractal spectrumepresentation named MPCAF-TOP.
(DFS) for DT description. Later, they extended DFS and These LBP-based methods have three drawbacks: (1) M
proposed two new methods: 3D oriented transform featwien information is not modeled if the LBP features are
(3D-OTF) [52] and wavelet domain multiple fractal spectrextracted from each frame individually; (2) Methods similar to
(WMFS) [15]. One advantage of fractal-analysis-based met#iLBP or LBP-TOP may not make full use of all the pixels in a
ods is their robustness to environmental changes; howewuecal volume; and (3) Various learning techniques are applie
when the scenes in DTs are complex, the local stochastic seither to optimize the LBP code structure or to learn 2D filter:
similarities are weakened, and the performance is poor. instead of learning features by viewing a local volume as
LBP was applied to extract features from each frame ofvehole.
DT video [53], [54]. Ghanem and Ahuja [S3] proposed to learn 3D filtering has also been utilized for DT classification. For
feature-specific weights for LBP histograms and two othexample, Rivera and Chae [59] proposed to use 3D Gaussic
types of features through maximum margin distance learnitige compass masks to build a directional transitional numbe
(MMDL). The final similarity between two DTs was definedgraph (DNG) for DT representation. Similar works include
as the weighted sum of their three feature-specific distancpg0] and [61]. Note that these methods used predefined filter
Renet al. [54] argued that the performance of LBP for DTTo the best of our knowledge, 3D filter learning has not bee
classification was limited by the reliability issues of LBRexplored for DT classification. We also place the two sparse
histograms and thus proposed to apply PCA on patchwise LB&ding-based dictionary learning methods proposed by Qu:
histograms to learn more reliable features for DT classificatiogt al. [17], [30] in this subcategory. However, it is unclear
Zhao and Pietikainen [8] extended the original LBP tovhy and how they manually chose 27 and 25 dictionary atorr
a spatio-temporal descriptor.€., VLBP), in which several from the two dictionaries, respectively. Hadji and Wildes [62]
pixels in a local volume were sampled and thresholded by theitoposed the spatio-temporal oriented energy network (SOl
center pixel and then encoded into a binary string. VLBP h&#T), which uses 3D Gaussiari3order derivative filters for
a dimensionality issue, but it is effective for DT classificatiorconvolution and is thus learning-free.
Later, Renet al. [55] proposed the maximal joint mutual
information criterion to select discriminative VLBP patterns ,
rather than directly using the predefined structures. Tiwari afrg Deep Learning Methods
Tyagi [56] proposed a completed version of VLBP (CVLBP) Deep learning has been used for various computer visic
by incorporating VLBP with both the magnitude informatiortasks, and good performance has been achieved. Here, |
and the center pixel information. Zhaai al. [18] extended briefly introduce some works using deep learning for DT
the local binary count (LBC) pattern to the spatio-temporalassification. Tayloret al. [63] proposed a convolutional
domain for DT classification, resulting in a descriptor nameghted restricted Boltzmann machine to learn spatio-tempor
volume LBC (VLBC). Given the same number of sampléeatures. Yaret al.[64] proposed to use cascaded autoencode
pixels, the feature dimensionality of VLBC is much smalleto model videos. Wang and Hu [65] mapped low-level feature
than that of VLBP. They also proposed a completed versiom high-level features through a deep neural network.eQi
of VLBC (CVLBC) to enhance performance. al. [66] adopted a well-trained 2D CNN to transfer image
Another important extension of LBP to the spatio-tempor&atures for DT representation. Arashlebal. [26] viewed a
domain, LBP-TOP, was proposed by Zhao and Pietikainen [BJT video as three image sequences and used three multisc
in 2007. Since then, many TOP-based methods [16], [22]-[28]al-layer CNNs (PCANet-TOP, using pre-learned 2D PC/
[27] have been reported in the literature. Raletual. [22] filters) to extract features from each image sequence. Similarl
applied local phase quantization on three orthogonal plantsdrearczyk and Whelan [67] trained three CNNs to proces
for DT description. Cheret al. [23] applied the Weber local the three image sequences. The final output of these netwol
descriptor [57] in a similar way for DT segmentation. Tiwarivas a global score vector consisting of probabilities. In con
and Tyagi [25] viewed a DT as three image sequences anast to methods using 2D filters, Trahal.[68] trained a 3D
combined LBP with Michelson contrast [28] and center pixéLNN (called C3D) for spatio-temporal feature learning. A 3D
information in each image sequence. Then, the concatena@®NIN [68], [69] generally requires a large dataset for training
feature was used for DT classification. Haramdial. [58] existing DT databases contain a limited number of video:
applied sparse coding on Grassmann manifolds to learnvhich are insufficient to train such a network. Therefore



A 3D Block of Size T1—Tm Let m; = ézz‘l:l Tjj- We haveX = [:Bl,icg, cee ,(BN} and
A Video 3x3x3 notnl mo= [my,ma,- - ,my|T (m; is z,, in Fig. 1(a)), where
— moenld gz, € RPandm, € R (1 < n < N) are, respectively,
o I : § the nth ZMV and its corresponding mean pixel, and =
(2) —onlon e |2 (X5 x (Y= [5])x (T~ 5]) is the total number of 3D
BT P P o — o B blocks in the DT video. As the size of the zero-mean 3D blocl
o 2| @5 | @0 —— is the same as that of a 3D filter, the convolution of the zerc
* T = £ 2, @7 |@s | @ @~ Tm mean 3D block with the 3D filter is equivalent to the scalal

—————————————————————— —————————  product of their corresponding vectorized versions. Thys,
Three Orthogonal | ——t— & . is filtered with theL learned 3D filters via Eqn. (1), resulting
Planes 2 in L filter responses,, = [rn1,7n2, -+ ,mnr]? € RE.
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' @ [@1i]@ Now, we need to encode, in an appropriate way. In many
existing works [8], [16], [19], [27], [56], [70], [71], the binary
encoding scheme has shown to be an effective way to enco
Fig. 1. lllustration of how a zero-mean vector (ZMV) is extext from a 3D Ioca! _features for both static and dynamic texture descriptior
block of size3 x 3 x 3 (top). How LBP-TOP processes the same 3D blociddditionally, many TOP-based methods [16], [22], [24], [25],
is also shown for comparison (bottom). [27] that we target also use bhinary encoding. Therefore
traditional descriptors such as LBP and LBP-TOP are stif make use of the.effectlve binary encoding scheme ar
irreplaceable provide a fair comparison between our method and TOP-bas
' methods, we adopt the binary encoding scheme to encpde

into a binary string, generating a B3D& code by
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* z. and 14 represent the same pixel. T8 |T17|T26

I1l. THE PROPOSEDMETHOD

In this section, we present the derivation of the pro- L
posed B3DF descriptor, consisting of B30#%; B3DF M and B3DF_Sr 1 = Z2l‘1s(rnl), (2)
B3DF_C, given the learned 3D filters. Then, these codes are 1=1
used to build hybrid histograms for DT representation. Finally,here the notation “S” means the codes are built from signs
we briefly introduce how the 3D filters are learned. and s(z) returns 1 ifz > 0, otherwise 0.
After the encoding process, we havé B3DF_S codes
A. B3DF for the DT. To transform those codes into a compact D’

First, we demonstrate how the proposed method locallgpresentation, the statistical distribution of the codeg’(a
processes a video and compare it with that of LBP-TORimensional histogram, denoted &) is generated and can
Given a pixel in a video, its neighborhood is regarded & used for DT classification.

a whole, and all the pixels in the neighborhood (including 2) B3DF_M & B3DF_C: In conventional binary encoding
itself) are converted into a zero-mean vector (ZMV) for furthdsased methodse(g, [8], [19]), only the sign component is
processing. Fig. 1 illustrates how B3DF and LBP-TOP processed for feature encoding. However, Gebal. [70] showed
a3 x 3 x 3 block in a video, respectively. Clearly, all 27 pixelghat using only the sign component is infeasible because it
in the block are used by our method (Fig. 1(a)). However, onggnsitive to noise and different local structures may sometim
19 pixels are used by LBP-TOP and many other TOP-baskel characterized by the same binary code, which would redu
methods (Fig. 1(b)). We argue that the ignored 8 pixels contdfre discriminative capacity of the descriptor. Additionally,
discriminative information and should be exploited to build they also proved that the magnitude component and cent
powerful descriptor, which is the main motivation to desigpixels also contain discriminative information. As a result,
our B3DF. this work has been followed in other papers [18], [56], [71]

1) B3DF.S: AssumeW = [w;,ws, - ,wy] are L vec- for both static and dynamic texture classification, resulting
torized 3D filters (how they are learned will be introduced i significant performance improvement. Moreover, Zheio
Section 11I-C), wherew; € R? (1 <1< L,d = k?) is theith al. [71] replaced the local center pixel with its local average
vectorized 3D filter. In this section, we describe how thése gray level to make the feature more robust to noise. W
filters are used to extract the B3D& features from DTs. have a component similar to the local average gray leve

Here, we view a given DT as a 3D volume of siXe<Y x T i.e, the local mean pixel, which was previously used fol
in 3D space, whereX x Y is the spatial size and’ is the data normalization. Motivated by these studies, we adopt tf
temporal size. Then, we densely sample 3D blocks of sizencept of completed modeling to build our completed B3DF
k x k x k from the 3D volume (no padding is applied forin which the magnitude component and the mean pixels a
border pixels). As shown in Fig. 1(a), whete = 3, the utilized for performance enhancement.
raw pixel intensities of ak x k x k cubic neighborhood B3DF_M As shown by Eqgn. (2), the B3DB feature
around a pixel are taken and reordered to produce a ZMjcodes only the sign information. To make use of the
namely,z;, in a d-dimensional feature spacee., x; € R%. magnitudes{|rnl|}f:1, we encode them into a binary code



A Video

L
B3DF_Mpy = 27" S(|rni| = pm), (4)
1=1
where the notation A" means the codes are built from
magnitudes andi(z) is defined in Eqgn. (2). Similar to the
B3DF_S codes, we build a”-dimensional histogram of these
B3DF_M codes and denote it ay,.

B3DF_C In [18], [56], the local center pixels are threshold-
ed against the global mean pixel of a DT to obtain a binar
code, which is beneficial for DT classification. In this paper
the local center pixel is not treated specially; thus, we thresho
the local mean pixels to generate binary codes. As noted
[71], using the average local gray level is superior to usin
the center pixel directly; thus, we use the average value of ¢
the mean pixels in a DT as the threshold

Ty Ty =00 Ty
Ly Ty -+ Ty

spoxtd ueowr pue SAN7Z Su1ORIIXG

my Ty Ty +++ Ty
Mean Pixels ZMVs 1 X
lFilt(‘,ring with W He =75 Zlm"’ ®)
[ Ty Ty -e- Ty ] As we need to compute one. for each DT, it is also DT-
specific. Then, we have
7’1 2) 7’22 7"\ )
B3DF_Cy = s(my, — ic), (6)
oo r S where the notation_C” means that the codes are built from
| e T T N [ local mean pixels.
Filter responses =
5 B. Hybrid Histograms for DT representation
—— ) — g The feature extraction process is illustrated in Fig. 2. A
- - - = : X : . .
- a» a» - shown in the figure, we obtain three different binary code
? ? ? (B3DF_S, B3DF_M and B3DF_C) after the code gener-
° ° ° ation stage. We have already extracted two 1D histogrdigs (
° ° ° and H,,) from the former two types of codes. However, the
- o= - three types of codes should be combined to make use of t
o = = different discriminative information they convey. A 3D joint
e N &= histogram was used to integrate the three different types
B3DF_C B3DF_S B3DF_M information in [18]. If we used the same method here, we
. would obtain a22t*!-dimensional feature vector, which is

not practical for real-world applications. Rather than building
a 3D joint histogram, we build two 2D joint histograms of
2L+1 bins,

O1)SIJR)S WRIS0)STH

(TR R Hscl(i,j) = ) I{B3DF_S =i\ B3DF_C = j},
z,y,t

Hye(i,j) = >  I{B3DF_M =i A B3DF_C = j},

Fig. 2. lllustration of the feature extraction process of pheposed method.

@)

named B3DEM, where a threshold is used to binarizg;|.
For the binarization in a given DT, the threshold is set to the

average value of all the magnitudes in the DT as where i is an integer betweef and 2“ — 1; j is 0 or 1;
the symbolA means é4nd”; and B3DF_S, B3DF_M and

z,y,t

1 ML B3DF_C are the codes at locatiofx, v, t).
Hm = N7 ZZ |7l ®3) The spatial and temporal dimensions of a DT can affec
n=li=1 the computation of the similarities among different DTs.

where|z| is the absolute value of. As u,, is related only to For example, suppose there are two DTs belonging to tt
the magnitudes in one DT.¢., one,, is computed for each same class, one of sizé) x 50 x 50 and the other of
DT), it is DT-specific. size 150 x 150 x 150. Although they are captured from the
After computing.,,,, the magnitudeq|r,,;|}£ , are bina- same scene, the Chi-square statistic of their correspondi
rized and then encoded by means of binary encoding througtograms could be large, which may cause misclassificatio



Therefore, we need to normalize the aforementioned AB ( ¢
and H,;) and 2D Hgc and H,s¢) histograms to generate (&
coherent representations. Specifically, the sum of all the b

in a histogram is first calculated; then, each bin is divided b
the sum as ;

N Hip(G)
Hip(j) = > Hip(j')’ (8)
Hyp(i,j) = el

Zi',j/ HQD(i/yj/).
For the ease of computing the dissimilarity of two DTsfig- 3. DT examples from the UCLA (top), DynTex (middle) and YU
we further vectorizeH s and Hysc. Then, we concatenate (POtom) databases.
Hsc and Hy o as another type of DT descriptor (denoted agvo-step normalization is applied: B; = F;/||F,||» and 2)
Hgsye) to combine all three types of features. The dimensiah() = F() /||F(®)||,. Finally, W is obtained by optimizing
is 2172, Moreover, we also consider the concatenatiod/gf the objectivemin Zi]ilHF(i) |, in an iterative manner. The
and H); (denoted adigs,,) for DT classification. work in [37] e%lains the theory.

K-means clusteringWe follow the work in [38] with
C. 3D Filter Learning one difference: only zero-mean normalization is applied fo

The proposed method has one prerequisite: a set of §Bl@ Preprocessing. The vectorized filters W) are first
filters must be learned in advance from training data. Whéﬂndor(rgy initialized. We denote the feature matrix BS
choosing a filter learning technique, the fact that the numb@pd F;~ is the jth feature value of sampler;, where
of videos in most DT databases is limited must be considerdd.< J < L and1 < i < M. Then, W is obtained
As a result, we find four representative unsupervised filt8y |terat|vgly running the foIIoijng three-step process: 1
learning techniques (PCA, ICA, sparse filtering and k-meaps?) — wjx; i j=arg ’lmax|wl il 2)W = XFT+W,
clustering) that work well with small datasets. To the best 0 otherwise
of our knowledge, these four filter learning methods weNd 3)w; = w;/[|w;|l2, Vj.
developed to learn 2D filters and have not been utilized to
learn 3D filters. We believe that applying these filter learning IV. EXPERIMENTS
methods to learn 3D filters for DT classification and comparing |, thjs section, we present a detailed experimental evaluati

their performance is meaningful for future research in thg ine proposed approach for DT classification. We use th
field pf DT analysis.' We will brigfly introduce the four filter oarest neighbor (NN) classifier or the nearest class cent
learning processes in the following. _ (NCC) classifier with Chi-square distance to evaluate th

Training Data We follow the sampling scheme in [17] t0performance of the proposed method. We believe that a mo
obtain the data for filter learning. Quagt al. [17] randomly  aqvanced classifier such as SVM could further improve th
sampled 2000 3D patches from each DT class in the trainipgssification performance. However, we deliberately use tr
dataset. Note that data in the test dataset are not usedN@[ or NCC classifier to emphasize the contribution of the
dictionary learning. Therefore, suppose there@relasses in yroposed B3DF descriptors. The classification accuracies

the training dataset. We randomly samplé = 2000C' 3D o,y method are compared with those of the state-of-the-z
blocks of sizek x k x k from the training dataset for filter approaches.

learning. As a result)/ ZMVs are obtained. These ZMVs are
formed into a matrixX = [x1, 22, -+ ,xy] € R™>M for 3D _ . _
filter learning. A. Experimental Setup and Implementation Details
PCA The L vectorized filters are the first eigenvectors 1) DT Data Three DT databases are adopteds., the
(sorted in descending order with respect to their correspondid@LA database [2], the DynTex database [72] and the YUVL
eigenvalues) of the covariance mat®X?”. For more details, database [50]. Frames from several typical DTs (flower, tree
please refer to [26] or [27]. flame, water,etc) are shown in Fig. 3. Because few DT
ICA we first need to compute a whitening matrik databases exist, these three databases have been refined
consisting of the firstZ rows of D=2E~! for dimension recompiled by many researchers to generate additional datas
reduction and data whitening, whel® and E are obtained for evaluation under various protocols. Details about thes
through eigendecompositioiX(X” = EDE~!). Then, an datasets and evaluation protocols will be described later. Wh
orthogonal matriXU can be estimated from the whitened datavaluating our method, all the DT videos are converted t
ZX via ICA. Finally, the L vectorized filters are obtained bygrayscale videos.
W = (UZ)". More details can be found in [31] and [16]. UCLA database:The UCLA database contains 200 DT
Sparse filtering The L vectorized filters W) are first videos from 50 classes, with four videos in each class. Eac
randomly initialized. SupposEé’) = w; Tz, is thejth feature video consists of 75 frames of siz60 x 110. In this paper, we
value of samplex;, wherel < j < Landl < i < M. Then,a use a preprocessed versiasf this database, in which all the




videos are cropped to frames of si#&x 48 such that the key only one video is included in each class, the work in [8]
dynamic features are captured. Following [18], we use fiygoposed to crop each video into 10 subvideos of differer
popular evaluation protocols, in which the videos in UCLAizes. Specifically, each video is cropped at the point whel
are regrouped. The details of the five protocols are presented= 170 (horizontal direction)y = 130 (vertical direction)
below. andt = 100 (time direction). Together with another two

Protocol 150-class leave-one-out classification: Each timgubvideos obtained by cutting at = 100, we obtain 10
one of the 200 DT videos is used for testing and the remainisgbvideos for each DT video. For classification, a leave-on
199 are used for training. group-ouf scheme is used with the NN classifier and the NCC

Protocol 2 50-class fourfold cross validation: For eacltlassifier. When the NCC classifier is used, the features of
class, three of the four videos are used for training, and tAdraining DT videos in each class are averaged as the cla
remaining one is used for testing. To ensure that each agnter, and a test video is classified according its similarity t
the four videos is used as a test video one time, four sgiite class center.
schemes are predefirfednd this experiment is repeated four DynTex++ This dataset [53] is recompiled from 345 videos
times. The average accuracy of the four experiments is tbhethe DynTex database. Those videos are preprocessed ¢
final performance indicator. cropped into videos of siz&) x 50 x 50. The processed videos

Protocol 39-class breakdown: In protocols 1 and 2, somare grouped into 36 categories, each with 100 videos. For tl
videos from different classes can be semantically categorizeadaluation, we follow the work in [53]: 50% of the videos
into the same class. Thus, in this protocol, all 200 videds each class are randomly chosen for training, and the re
are regrouped into nine classes, which are smoke (4), faee used for testing. The test videos are classified with tt
(8), boiling water (8), water (12), flowers (12), sea (12NN classifier. This experiment is repeated 10 times, and tf
waterfall (16), fountains (20), and plant (108), where thelassification rates are averaged as the final result.
number in parentheses denotes the number of videos in eacAlpha This dataset contains 60 videos from the DynTe»
class. For DT classification, 50% of the videos in each cladatabase that are categorized into 3 classes: sea, grass,
are randomly selected for training, and the rest are used foges.
testing. To assess the statistical significance, we repeated thBeta This dataset consists of 162 videos, which belong t
experiment over 20 random partitions of the training and tes0 classes: sea, vegetation, trees, flags, calm water, fountai
sets. smoke, escalator, traffic, and rotation.

Protocol 4 8-class breakdown: As more than one-half of GammaThis dataset is composed of 275 videos from the
the 200 videos belong to the plant class in protocol 3, ti®ynTex database. The videos belong to 10 classes: flowe
8-class breakdown is obtained by removing the plant clag®a, naked trees, foliage, escalator, calm water, flags, gra
The experiment is performed in a similar way as the 9-clagaffic, and fountains.
breakdown. We use the same data split scheme and repeat th®etails about the compilations of the Alpha, Beta and Gam
experiment 20 times. ma datasets are available on the homepadgehis database.

Protocol 5shift-invariant evaluation: To test the translatiomll the videos in the three datasets contain 250 frames ¢
invariance, each DT video is clipped into two non-overlappingze 352 x 288. For the evaluation, we use the leave-one
left and right halves to remove the effect of identical vieweut classification scheme with the NCC classifier and the NI
points. There are two settings for this protocol: using 3@assifier.
classes [73] and using 50 classes [61]. We choose the latter iyyvL database: The YUVL database® contains 610
this paper. Moreover, as the method used to crop the videosieos of various resolution, temporal extents and frame rate
unknown, we simply cut each video in the middle, resulting imhe authors [50] provided two ways to partition the videos
a left half and a right half of equal size. In the evaluation, twpr) basic-level (denoted as YUVL1) and (2) subordinate-leve
experiments are conducted, one using the left-half data f@lenoted as YUVL2). Another compilation (named YUVL3)
training and the other using the right-half data for trainingvas introduced in [62].

In each experiment, the remaining data are used for testingyyvL1 According to the space time orientations present ir
Finally, the two classification rates are averaged as the finahiven pattern, all 610 videos are grouped into five classe

performance indicator. heterogeneous and isotropic, unconstrained, underconstrain
Additionally, the NN classifier is used in all five evaluatioryominant, and multi-dominant.
protocols. YUVL2 Videos belonging to the two classes unconstraine

DynTex databaseThe DynTex database is a large datasgind multi-dominant in YUVL1 are discarded. Each of the
that contains more than 650 high-quality videos. Usually, onfgmaining three classes are further divided into two subclas
a portion of the dataset is chosen for DT classification. Fiv& resulting in six classes: flicker, aperture problem, sing|
compilations of this dataset have been widely used in thgiented, non-single oriented, wavy fluid, and stochastic.

literature. YUVL3 Videos of the two omitted classes in YUVL2 are
DynTex-35This dataset is an old version of the DynTexncluded, resulting in an 8-class dataset.

database, consisting of 35 videos. Each video belongs to a
unique class and contains 250 frames of sigeé x 300. As 2Videos of the same size belong to a group.

Shttp://dyntex.univ-Ir.fr
Ihttp://www.bernardghanem.com/datasets “4http://vision.eecs.yorku.ca/research/spacetime-texture-data/



According to the existing work [62], which conducted 98 85 —e—poA
experiments on the YUVL database, the leave-one-out clas- ~B-ICA
sification scheme with the NN classifier is adopted. 80 ISPGVSG
2) Parameter Setting The proposed method has four key . Krmeans
parametersi.e., the number of 3D blocks for filter learning 9 S75(

(M), the 3D block size ), the number of filters k), and the 92 e

filter learning method (PCA, ICA, sparse filtering or k-means). © T 70t

We use the same sampling scheme as that in [17]: 2000 3C 5 90 S

blocks from each of th€ DT classes in the training dataset 8 Sest

are randomly sampled, resulting i = 2000C 3D blocks in § 88 E

total. Fork and L, we empirically choosé < {3,5,7,9,11} o 3 60

and L € {6,8,10,12,14} to evaluate the proposed method. 86 ~@-PCA

To identify good choices ok, L and filter learning method, :!SCP/;SG 551

we evaluate the proposed method with various parameter —A— K-means

settings with one protocol from each of the UCLA and DynTex 82 ‘ | | 50 ‘ ‘ ‘
databases. 6 8 10 12 14 6 8 10 12 14
3) Efficient Implementation As shown in Fig. 2, we must # of filters # of filters
traverse each pixel in a given DT to obtain the ZMVs and mean (a) (b)

pixels. This traversing process can be very time consuming

and may make the proposed method impractical for sor@%‘
real-world applications. However, Fig. 2 is drawn only for

4. Performance of B3DFS with k = 7 and varyingL on (a) the UCLA
ass breakdown dataset and (b) the DynTex Gamma dataset.

illustrative purposes; we implement the proposed method inFirst, we consider the choice @f, the number of 3D filters,
a very efficient way. Specifically, all the mean pixels arwhile keeping the 3D block size constant@ak 7 x 7 (i.e,,
obtained by filtering a DT with an average filter of sizék = 7). Fig. 4 presents the classification accuracy aveor

k x k x k, and Egn. (1) is equivalent to filtering the DTall four filter learning methods. From Fig. 4, we make the fol-
with the mean-removed filters. Here, we briefly prove thi®wing observations. Generally, the classification performanc

result. Supposeao; is the mean-removed version af; and

increases with increasing. The value of L has a greater

m_w; = éZlewzi; then, we can filter the original 3D blockimpact on the DynTex Gamma dataset than on the UCL/

(x,, + my,) with w; as

W[ (@, +mp) = Z?:l[(wlj —m_w;)(@n; + mn)]
d d
= Zj:lwljxnj +mn Zj:l Wi ©)
- m_mlz;lzlxnj - ngjzlm_ml.
Becausew z,, = Z?:l W Ty, Z?Zl m_m; = Z?:l Wi

and Z?Zl z,; = 0, Egn. (9) is the same as} (z,, +m,,) =
w] x,. Thus, Eqn. (1) is equivalent to filtering the DT wit

the mean-removed filters. Additionally, Eqns. (2)—(6) conta
mainly element-wise operations and summations of matrix 97
elements, which can be conducted directly on 3D matrices.
Therefore, we implement the proposed method efficiently o
through 3D filtering with mean-removed 3D filters, thereby

8-class breakdown dataset, except when the sparse filteri
method is used. When using sparse filters, the classificatic
rate on both datasets increases rapidly. Overall, PCA, IC
and sparse filtering achieve the best performance lvith 14,
whereas k-means clustering performs best vith- 12. Note
that we do not present results fér > 14 because a larger
L produces longer feature vectors, which make the propos
method impractical for real-world applications.
Then, we fixL = 10 and perform experiments with varying

e to study how the 3D block size affects the classificatior
merformance of B3DFS. Fig. 5 presents the results. From

80

75

avoiding the time-consuming ZMV extraction process. The & g.! =70
computational complexities of the inefficient implementation £ 2
(i.e., traversing each pixel in a DT) and the efficient imple- é oal % 6
mentation are compared in Section IV-D. B ki
o3| % 60
B. Experimental Test o o
In this section, we study how the choices bf(the 3D Y e ] ive
block size), L (the number of 3D filters needed) and the —4-Sparse —4—Sparse
filter learning method affect the DT classification performance. g [ZA=means) ‘ 5o | A= Komeans] ‘
Specifically, we choose the UCLA 8-class breakdown dataset 3 5 7 9 M 3 5 7 g M
(protocol 4) and the DynTex Gamma dataset for the parametel Value of k Value of k
evaluation. The reason for choosing these two datasets is that, @) (®)

according to previous works, each is relatively challenging
the corresponding database.

iflg. 5. Performance of B3DFS with L = 10 and varyingk on (a) the
UCLA 8-class breakdown dataset and (b) the DynTex Gamma dataset.



TABLE |
PERFORMANCE COMPARISON OF THE PROPOSED FEATURES ON THE
UCLA 8-CLASS BREAKDOWN ANDDYNTEX GAMMA DATASETS

TABLE Il
PERFORMANCE COMPARISON OFBB3DF WITH OTHER METHODS ON THE
UCLA DATABASE UNDER FOUR DIFFERENT EVALUATION PROTOCOLS
(THE HIGHEST CLASSIFICATION RATES UNDER EACH PROTOCOL ARE

Filter Feature Classification Rate(%) HIGHLIGHTED IN BOLD)
Type Type UCLA Prot. 4 [DynTex Gamma
B3DF_S 95.43 69.32 Method Classification Rate(%)
PCA |B3DF_SM 97.39 70.08 Prot. 1| Prot. 2| Prot. 3| Prot. 4] Prot. 5
B3DF_SMC 97.50 71.21 AR-LDS [40] 89.50 - N - -
B3DF_S 96.30 81.44 KDT-MD [41] - 89.50 -
ICA B3DF_SM 98.15 69.32 BoS [13] - - 70.00
B3DF_SMC 98.15 72.73 DL-PEGASOS [53] 99.00 | 95.60| - -
B3DF_S 94.78 76.89 HEM [43] - 96.45 | 96.63 56.40
Sparse |B3DF_SM 97.93 65.15 L2 Bhattacharyya [50] 81.00 - - 42.30
B3DF_SMC 98.37 70.83 DFS [14] - 89.50 | - - -
B3DF_S 95.43 62.88 3D-OTF [52] 99.25 | 96.32 | 95.80 | 67.40
K-means B3DF_SM 96.96 61.36 WMFS [15] - 96.95 | 97.18 | 61.20
B3DF_SMC 97.72 67.05 DNG [59] - 98.10 | 97.00| -
OTDL [17] 98.50 | 97.50 | 97.00 | 68.60
Fig. 5, we can observe the following. Generallyhas a much EKI?]LI [30|]f (wre [65 - gg-gg 85-65 -
Igh-level teature - . .
stronger effect on the DynTex Gamma dataset than on the VLBP [8] 8950 | 96.30 | 91.96
UCLA 8-class dataset. On the DynTex Gamma dataset, the cvLBP [56] - 93.00 | 96.90 | 95.65
classification performance first increases with increasiagd CVLBC [18] 99.50 | 99.50| 99.20 | 99.02
then decreases for all four filter learning methods. However LBP-TOP [8] ' 94.50 96.00| 94.34
- T ' MBSIF-TOP [16] 99.50 | 99.50 | 98.75 | 97.80
on the UCLA 8-class breakdown dataset, the effect dé Novel LBP [25] 95.00 | 95.00 | 98.35 | 97.50
different. For the UCLA DT textures, in the case of sparse MPCAF-TOP [27] 99.50 | 99.50 | 99.15 | 98.26
_filtering: the clas_,sification performancg decreasgs rapidly with gﬁg‘fg;&itﬁ[g]ﬂ i gg:gg 0835 99.02| -
increasingt. While for the other three filter learning methods, B3DF s 99.00 | 99.00 | 97.95 | 96.30 | 46.00
the classification performance fluctuates with increasing B3DF_SM 98.50 | 98.50| 99.05| 98.15 | 67.25
B3DF_SMC 99.50 | 99.50 | 98.85 | 98.15 | 66.25

although the performance fluctuation is modest.

To choose an appropriatd., k) pair, we should consider and B3DE S using ICA filters is significantly better than all
Fig. 4 and Fig. 5 as a whole. According to Fig. 4, we shoulghe other features. After a comprehensive consideration of tt
learn 14 PCA filters, 14 ICA filters, 14 sparse filters, and 12 kesults in Table I, we believe that B3DF using ICA filters is
means filters. For value df, a good trade-off can be achievedhe best choice. Therefore, we learn 14 ICA filters of size
by setting the value ok according to Fig. 5(b) because they x 7 x 7 for feature extractionife., the parameters of the
fluctuation range in Fig. 5(b) is larger than that in Fig. 5(aproposed method are fixed to using ICA with = 14 and
As a result, the(L, k) pairs for PCA, ICA, sparse filtering k = 7). As an example, Fig. 6 illustrates the 14 3D ICA
and k-means clustering afe4, 7), (14,7), (14,9) and(12,5), filters learned from the UCLA 50-class breakdown dataset.
respectively.

After determiningL and k for each filter type, we as- C. Comparative Evaluation
sess the performance of different filter learning methods|n this section, we compare the proposed method wit
and different feature combinations. The results are given y@rious existing methods, especially those that extract featur
Table I, from which we can observe the following. Firstfrom three orthogonal planes. The parameter settings f
on the UCLA 8-class breakdown dataset, B3BMC shows our method were determined in the previous section. Unles
better performance than B3DBM, which in turn outperforms otherwise stated, the classification accuracies of the compar
B3DF_S, regardless of how the filters are learned. Fowfethods are quoted directly from the original papers.
types of B3DESMC features provide similar results (thel) Results on the UCLA databaséd he results of the proposed
difference is less than 1%). However, the situation differs fohethod and those of 22 published approaches (includir
the DynTex Gamma dataset. Except when using PCA filteigcent state-of-the-art methods) are presented in Table
B3DF_SM gives worse results than B3DE and B3DESMC,  Notably, most of the results in Table Il were obtained usin

— —— an NN classifier, with several exceptions: DL-PEGASOS [53
u\ . i =. ?# used MMDL+NN; high-level feature [65] and EKDL [30]
d F]
i

L
1
=
E
ud

used a kernel SVM; and DT-GoogleNet [67] used a softma
classifier. Additionally, the results of VLBP and LBP-TOP

-
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-
-
L
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= m— ' rpor under protocols 2 and 4 are from [56] while those unde
.- “ i ' ﬁ £ protocol 3 are from [25]

- — ’ E E ’ . . .
- h l ﬂ i From Table I, we make the following observations. First,
"'_ : S FW A in comparison with 22 DT classification methods in the
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Fig. 6. ICA filters learned from the UCLA 50-class breakdowiadat. Each
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column shows 7 slices from a 3D filter of sizex 7 x 7.

literature, the proposed B3DBMC achieves state-of-the-art
performance on protocols 1 and 2 and produces high classi
cation rates very close to the best results on protocols 3, 4 a
5. The overall best results under protocols 1-4 are produced!
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TABLE Il
PERFORMANCE COMPARISON OBB3DF WITH OTHER METHODS ON THEDYNTEX DATABASE (THE HIGHEST CLASSIFICATION RATES UNDER EACH
PROTOCOL ARE HIGHLIGHTED IN BOLD

Classification Rate(%)
Method DynTex-35 | DynTex++ Alpha Beta Gamma
NCC| NN | NN/SVM | NCC| NN | NCC| NN | NCC| NN

DL-PEGASOS [53] - - 63.70° - - - - - -
HEM [43] - 198.60 - - - - - -
DFS [14] 97.63| - 89.90° |83.60| - |65.20| - |60.80
3D-OTF [52] 96.70| - 89.175 - - - - -
WMFS [15] 96.50| - 88.80°
DNG [59] - - 90.20V
KGDL [58] - - 92.80° - - - - -
2D+T [47] - - - 85.00 - |67.00] - |63.00
OTDL [17] 97.80| 99.00| 94.7° |86.60| - |69.00] - |64.20
EKDL [30] - - 93.40° - - - - -
High-level feature [65] - - 69.00°
PHA+LBP [54] - - 91.90Y
VLBP [8] 81.14| - 87.35V
CVLBP [56] 85.14| - -
CVLBC [18] - |9886| 91.31V - - - - - -
LBP-TOP [8] 97.14| - 89.50V - |86.67| - |8086| - |81.44
LPQ-TOP [22] - - 95.00V - - - - - -
MBSIF-TOP [16] - |9861| 9717 - |90.00f - |90.70| - |91.30
ASF-TOP [24] - | 97.14| 95.40Y - |91e67| - |86.42| - |89.39
Novel LBP [25] - 19857 96.28V - - - - - -
MPCAF-TOP [27] 96.73| 99.59| 96.52V | 86.67| 96.67| 71.60| 91.36| 67.42| 89.02
B3DF_S 97.71| 100 | 94.80Y |90.00| 96.67| 74.07 | 88.27| 81.44| 90.53
B3DF_SM 98.00| 99.71| 95.90V | 86.67| 96.67| 68.52| 90.12| 69.32| 89.39
B3DF_SMC 96.57| 99.71| 95.58V | 86.67| 95.00| 72.22| 90.12| 72.73| 90.91
C3D [68] - - - 100 | 100 | 95.68] 99.38] 96.21] 96.97
SOE-NET [62] 93.10| 97.70| 94.40° | 96.70| 98.30| 86.40| 96.90| 80.30| 93.60
(Note: the superscript "S” stands for SVM, and "N” stands for
NN.)

the CVLBC method, which is learning-free. However, the pograrison of the proposed method and 23 published approact
performance of CVLBC on the DynTex++ dataset, as shows shown in Table Ill. Some methods were not originally
in Table 1ll, demonstrates its limited generalization capabilitgvaluated on this database, and their results were report
since it does not involve a learning procedure. The OTDhy other researchers. For the DynTex-35 dataset, the resu
method, which has a very complex learning process, perforofsVLBP and LBP-TOP are from [56] and [14], respectively.
best under the very challenging protocol 4, outperforming o&or the DynTex++ dataset, DL-PEGASOS used MMDL+NN.
method by a modest 1.35%. The results of LBP-TOP on DynTex-35 and DynTex++ are

Second, among the methods with a learning process, fiem [16], and those of WMFS are from [17]. The VLBP
cluding the proposed method, MBSIF-TOP [16], PCANetesults are obtained by us using VLBP. For the Alpha, Beta
TOP [26], and MPCAF-TOP [27] generally outperform thos@nd Gamma datasets, the results of DFS are from [17], ar
methods without a learning process, such as LBP-TOP [pse of LBP-TOP are from [24]. Except for the DynTex++

and novel LBP [25]. This result again shows the benefit &lataset, the results of MPCAF-TOP are provided by us. A
learning. C3D [68] requires color videos as inputs, we evaluate it onl

on the Alpha, Beta and Gamma datasets. Specifically, we fir

esize the videos to frames of sizé2 x 112 and then use
proposed method, MBSIF-TOP [16] and MPCAF-TOP [27} - o ovork pretrained on the Sports-1M dataset [7

the proposed method performs second best, only sligh dr feature extraction, resulting in a 4096-dimensional featur
worse than MPCAF-TOP. However, our method outperforrrc/séctor Please refer to [68] for details. In contrast to the Chi
MPCAF-TOP on datasets of large videds( DynTex-35, ' '

i . i square distance we use, the similarity between two C3D [6¢
DynTex-Alpha, DynTex-Beta, and DynTex-Gamma), as ShOV\fgatures is the Euclidean distance and that between two SO

in Table 1ll. Moreover, MPCAF-TOP learns 2D filters fromNH]ET [62] features is the Bhattacharyya coefficient. However

densely sampled 2D patches, the number of which is mut%e features are classified by the same classifiersthe NCC

larger than that of the 3D blocks we require. Taking protoc% assifier and NN classifier
2 as an example, MPCAF-TOP uses approximately 7.5 millioh '

2D patches at each scale (5 scales in total) for filter learning,From Table 111, we can make the following observations
whereas our method needs only 0.1 million 3D blocks. Despi¢ comparison with 14 existing methods on the DynTex
the slight performance advantage (less than 0.3%) of MPCAg5 gataset, the proposed method achieves the state-of-t
TOP over our method, we believe the proposed method is M@i¢ performance with either the NN or NCC classifier, out:
practical than MPCAF-TOP. performing even the learning-free network-based approac
2) Results on the DynTex databas&he performance com- (i.e., SOE-NET [62]) with notable improvement. The learning-

Third, among the three learning-based methads, the
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based methods, such as OTDL [17], MPCAF-TOP [27] and TABLE IV

B3DF SM genera”y Outperform the Iearning-free methods PERFORMANCE COMPARISON OFB3DF WITH OTHER METHODS ON THE
. . ' "YUVL DATABASE (THE HIGHEST CLASSIFICATION RATES UNDER EACH
including LBP-TOP [8] and novel LBP [25].

PROTOCOL ARE HIGHLIGHTED IN BOLD
On the DynTex++ dataset, the proposed B3BM outper-

forms all the methods (including SOE-NET [62] and OTDL Method Yu?/IEiSiﬁ\c(éSi\(/)EzRath@{s
[17]) that were evaluateq with the SVM clr?\;sifier an(_j.performs C30 68] 8800 8980 8550
the fourth best when using the NN classifier. Specifically, the SOE-NET [62]| 95.60 | 91.70 | 91.00
learning-based MBSIF-TOP [16] and MPCAF-TOP [27] out- ggg?gM gi.ig gg.g% gg.;g
perform the proposed method by 1.27% and 0.62%, respective- B3DE SMC 2067 | 8527 | 8213

ly, the novel LBP method outperforms the proposed method by
0.38%. We believe the reason for this performance differeniegarn from these data, the method uses a complex handcraf
may be that only 40 3D blocks, on average, are sampled fronultiscale two-path network, which may be the reason fo
each DT video because there are 50 DT videos per classitinhigh classification rates. On the other hand, the propost
the DynTex++ dataset used for filter learning. Overall, th@ethod, a handcrafted method with a simple learning proces
learning-based methods provide better performance than firevides performance comparable to that of the two network
learning-free methods. based methods. The comparison on this database shows t

On the Alpha, Beta and Gamma datasets, only six existingder some circumstance, a simple learning-based method ¢
approaches have been evaluated with the NCC classifier. Withtentially outperform a well-trained network-based method

the exceptions of C3D [68] and SOE-NET [62], our proposeﬂ) Results of training networks from scratch As shown

B3DF_S outperforms the learning-based methods (OTDL [1 ove, network-based methods( DT-GoogleNet, C3D and

and MPCAF-TOP [27]) and learning-free methods (2D+T [47§0E-NET) are either trained on external data or carefull
and DFS [14]), with substantial improvements, demonstratifgndcrafted. To study whether good DT classification resul
the superiority of the proposed method. When using the NMip pe achieved by training networks from scratch on a D
classifier, C3D and SOE-NET again show better performan@gtabase, we train a few networks on the DynTex++ datas
than the other methods. Our approach has similar performaggs choose this dataset for two reasons: 1) It has 3600 D
to that of the best non-network-based methods. Moreovgfgeos, whereas the others have only a few hundred; and
B3DF_S performs better than the other features. We belieY@e amounts of training and testing data are equal, whic
that including BSDEM or B3DF_C would model more in- is different from dataset using the leave-one-out schem:
traclass variation and thus degrade the performance becagggardless, the size of the dataset being used for training
the dynamic scenes in the Alpha, Beta and Gamma datasg{Sorder of magnitude smaller than what is typically used fo
are very complex. Now, we compare the proposed methggining CNNs on video recognition tasks (e.g., UCF101 [75
with the two network-based approaches (C3D requires trainifg action recognition) and such experiments often pretrain o
and SOE-NET is training-free). C3D performs the best of,en larger dataset®.g, Sports-1M [74]). Specifically, we

all three datasets, with a large improvement over our methgdin 2 3D CNN and an optical-flow-based two-stream CNN
and SOE-NET. On the Alpha and Beta datasets, SOE-NEge architectures of which are presented in Fig. 7. As show
performs much better than our method. However, our BSBF i, Fig. 8, a convolutional autoencoder is also designed fc
sightly outperforms SOE-NET by 1.14% when using th@omparison with other methods using unsupervised learnin
NCC classifier on the Gamma dataset. Therefore, in somBgcause the training dataset contains only 1800 DT video

situations, our simple learning-based method is comparabl@ three networks are designed to be shallow. During tt
to the learning-free network-based SOE-NET. On the other

hand, the proposed method still has some advantages in terms 3D CNN Two—-Stream
of the practicality of B3DF, SOE-NET and C3D, especially Filters: 32@3%3%3 Filters: 32@3%3
in resource-restricted scenarios, because B3DF requires much Stride: 1 Stride: 1
less training data and computational resources. Conv1|Padding: 0 Padding: 0

3) Results on the YUVL databaseAs this database has Rectifier: RELU Rectifier: RELU
not been widely adopted for performance evaluation, only C3D Pooling: Max Pooling: Max
and SOE-NET have been evaluated on it (the results of C3D Filters: 64@3%3+3 Filters: 64@3+%3
were reported in [62]). The performance comparison on the Stride: 1 Stride: 1
YUVL database is reported in Table IV. From Table IV, we Conv2 Padding:0 Padding::0
can observe the following: 1) SOE-NET achieves the best geci%flér: RELU Rectifier: RELU

ooling: Max Pooling: Max

performance on all three datasets; 2) The proposed BSDF
outperforms C3D on the YUVL1 and YUVL3 datasets while FC Nodes: 1024 Nodes: 1024
C3D outperforms B3DFES on the YUVL2 dataset; and 3) Rectifier: RELU Rectifier:RELU

Including magnitude and center pixel information slightly

Sof tmax|Nodes: 36 | | Nodes: 36

degrades the performance of the proposed method. The reason
C3D does not produce better results may be that it is trained . .

. . ig. 7. Network Architectures for 3D CNN (left) and two-smed NN (right,
with .eXtemal data; thus, the method does not learn from t image stream and the optical flow stream share the same architectur
data in the YUVL database. Although SOE-NET also does nobtnv means convolution.




Encoder

Decoder

1z

TABLE V

. COMPUTATION TIME (IN SECONDS FOR3D FILTER LEARNING UNDER
gii‘i?3§5332@3*3*3 Filters: 32034343 VARIOUS PARAMETER SETTINGS
Conv1|Padding: 2 Stg;‘?e: 2 ConvTl Leaming Method | k=3 | k=5 | k=7 | k=9 | k=11
Rectifier: RELU Padding:2 PCA 0.10| 1.01| 2.88| 5.64] 10.72
Pooling: Max Rectifier: RELU ICA 8.86|13.72| 17.56| 20.98| 23.73
Sparse filtering | 31.47| 51.68| 59.07| 73.71| 84.03
gii;;3£§:164@3*3*3 Filters: 16@3#3%3 K-means clustering21.00| 55.25| 124.16| 293.92| 496.17
Conv2 |Padding:0 Stride: 3 ConvT2 has more data for training. Regardless, the two-stream CN
A Padding:1 . . . . .
Rectifier: RELU Rectifier: RELU is still considerably outperformed by most methods (includin
Pooling: Max the proposed method), as shown in Table Ill. Therefore, t
Filters: 1@2%2%2 some e>.<tent, tr.aunlng a convolut|.0nal neural network from
Stride: 2 scratch is unsuitable for tasks with small datasets, such
Padding:0 ConvI3 DT classification.
Rectifier: Tanh

D. Computational Efficiency

The computation time of the proposed method consists ¢
two parts: the time for 3D filter learning and that for feature
training process, we adopt the stochastic gradient descegiraction. To measure the two components of the computati
optimizer with a learning rate and momentum of 0.01 and O.ime, we run the proposed method in MATLAB on a servet
respectively. For the optical stream of the two-stream CNNith four AMD Opteron 6128 CPUs and 128 GB RAM. Our

the vertical and horizontal optical flow maps are stacked as hg@gram is the only workload on the system when measurin
input image. For the convolutional autoencoder, the outpuie efficiency.

of Conv2 are vectorized and then classified based on theirro obtain the computation time for 3D filter learninky,is
Euclidean distances. fixed to 14, and the other parameters are varied. The trainir
Because 10 random Sp“ts are app“ed for the DynTex-dﬁta ar6105 3D blocks Sampled from the 50-class breakdowr
dataset, we train 10 models for each network and average tHéffLA database. To obtain stable results, we repeat the filts
classification rates. Each model is trained for 100 epochs, d&@Ming process 50 times and use the average time as the fi
the corresponding average classification rates are preser@@@putation time. A comparison of the computation time o
in Fig. 9. We observe the following. For the 3D CNN, thdhe four learning methods is presented in Table V. PCA is mor
performance first increases as the number of epochs incregfisient than the three other filter learning methods, which a
and then becomes stable after thet/8%poch, providing contain an iterative process. ICA requires less time than spar
a classification rate of approximately 65%. The results afif€ring and k-means clustering to learn the filters.
similar for the two-stream CNN, except for the much higher For the computation time of feature extraction, we apply th
classification rate of approximately 86%. The performand€A filters (L = 14) to extract features from each of the 200
of the autoencoder first increases to its peak (65.52%) RI Vvideos in the UCLA database. To obtain stable results
the 5% epoch and then decreases. Overall, the two-stredi§¢ time for processing each video is averaged as the fin
CNN significantly outperforms the other two networks, likelomputation time. We compare the original implementatiol
because the two-stream CNN uses images as input and tfiQ¥olving 3D block extraction) with the efficient imple-
mentation (using 3D convolution) in Table VI. Additionally,
the computation time of MBSIF-TOP and MPCAF-TOP is
included for comparison. Clearly, the efficient implementatior
significantly accelerates the feature extraction process. C
even an old server, our method requires only approximate

Fig. 8. Network Architectures for the convolutional autazeder. ConvT
means transposed convolution.

90 T T T T T T T T T

9 2.8 seconds to extract the features from a video in the UCL,
2 database, demonstrating that it is practical for real-worl
=
2 TABLE VI
g COMPUTATION TIME (IN SECONDS) FOR FEATURE EXTRACTION USING
2 ICA FILTERS
©
o
Feature Type | k=3 | k=5| k=7 | k=9 | k=11
T _|Hs 6.76| 7.59] 9.54| 12.35] 16.44
——3DCNN ;E, S Hsum 6.84|7.61| 9.62|12.53|16.85
10F —+— Two-Stream | 6 ~|Hsuc 6.86| 7.63| 9.67|12.60| 16.89
~ Autoencoder £ _[Hs 0.59] 1.28] 2.75] 6.89 | 11.46
0 1 Il 1 1 Il Il 1 1 Il @ —
0 10 20 30 40 50 60 70 80 9 100 ggHSM 0.66] 1.34| 2.81| 6.9511.52
Epoch 5= Hsnme 0.67| 1.37| 2.84| 7.00 | 11.56
MBSIF-TOP [16] 24.63
Fig. 9. Average classification rates of each network at eadatep MPCAF-TOP [27] 10.44




applications. On the other hand, MBSIF-TOP and MPCAHi5]
TOP, respectively, require 24.63 seconds and 10.44 seconds,
and are clearly more time consuming. [16]

V. CONCLUSION

In this paper, we consider DTs in 3D space and propose%]
encode their 3D filter responses through binary encoding. In
this way, only one set of 3D filters is needed, and motion feB#!
tures are simultaneously combined with appearance features.
These 3D filters are efficiently learned from randomly samplgtb]
3D blocks. After comparing four unsupervised filter learning
methods, we find that ICA is most suitable for the task of
DT classification. Additionally, our efficient implementatiorn20]
of the proposed method can substantially accelerate the fea-
ture extraction process. Compared with existing approach(fﬁ]
especially TOP-based ones, our method generally provides
better performance on various databases, demonstrating[

its
effectiveness for DT classification. 22
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