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Deep Video Super-Resolution Using
HR Optical Flow Estimation

Longguang Wang , Yulan Guo , Member, IEEE, Li Liu , Senior Member, IEEE,
Zaiping Lin, Xinpu Deng, and Wei An

Abstract— Video super-resolution (SR) aims at generating a
sequence of high-resolution (HR) frames with plausible and
temporally consistent details from their low-resolution (LR)
counterparts. The key challenge for video SR lies in the effective
exploitation of temporal dependency between consecutive frames.
Existing deep learning based methods commonly estimate optical
flows between LR frames to provide temporal dependency.
However, the resolution conflict between LR optical flows and
HR outputs hinders the recovery of fine details. In this paper,
we propose an end-to-end video SR network to super-resolve
both optical flows and images. Optical flow SR from LR frames
provides accurate temporal dependency and ultimately improves
video SR performance. Specifically, we first propose an optical
flow reconstruction network (OFRnet) to infer HR optical flows in
a coarse-to-fine manner. Then, motion compensation is performed
using HR optical flows to encode temporal dependency. Finally,
compensated LR inputs are fed to a super-resolution network
(SRnet) to generate SR results. Extensive experiments have been
conducted to demonstrate the effectiveness of HR optical flows
for SR performance improvement. Comparative results on the
Vid4 and DAVIS-10 datasets show that our network achieves the
state-of-the-art performance.

Index Terms— Video super-resolution, optical flow estimation,
temporal consistency, scale-recurrent architecture.

I. INTRODUCTION

SUPER-RESOLUTION (SR) aims at generating high-
resolution (HR) images from their low-resolution (LR)

counterparts. As a typical low-level computer vision problem,
SR has been investigated for decades [1]–[3]. Recently, con-
verting LR videos into HR ones, namely video SR, is under
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great demand due to the prevalence of high-definition displays.
Compared to a single image, adjacent frames in a video clip
provide additional information for SR. Therefore, exploiting
temporal dependency between consecutive frames plays an
important role in video SR.

To exploit temporal dependency between consecutive
frames, traditional video SR (or multi-image SR) methods
detect recurrent patches across images using patch simi-
larities [4], [5]. However, these methods can only employ
pixel-level dependency and their computational cost is high.
To employ sub-pixel dependency, several methods have been
proposed to use sub-pixel motion information through optical
flow estimation [6]–[8]. These methods formulate the video
SR task as an optimization problem and estimate HR images,
optical flows and blur kernels alternately. Since a large number
of iterations are required to reach convergence, these methods
also suffer from high computational costs.

Motivated by the success of deep learning in single image
SR [9]–[11], numerous deep learning based video SR methods
have been proposed recently [12]–[14]. These methods first
estimate optical flows from LR frames for motion compensa-
tion, and then learn a direct mapping from compensated LR
frames to the HR output. Motion compensation encodes tem-
poral dependency in compensated LR frames and facilitates
these methods to exploit temporal information from consec-
utive frames. However, the accuracy of temporal dependency
provided by LR optical flows is still low for video SR [15],
especially for scenarios with large upscaling factors.

Since video SR aims at generating high-quality videos
with plausible and temporally consistent details, both temporal
details and spatial details are important for video SR. Although
existing deep learning based video SR methods [12]–[14]
can successfully hallucinate spatial details from consecutive
LR frames, the restoration of temporal details is still under
investigated. To address this limitation, we use a convolutional
neural network (CNN) to recover HR temporal details in LR
frames for video SR.

In this paper, we propose an end-to-end network to Super-
resolve Optical Flows for Video SR (namely, SOF-VSR).
Our SOF-VSR network can recover temporal details through
optical flow SR, which improves both the accuracy and consis-
tency of video SR. Specifically, we first propose an optical flow
reconstruction net (OFRnet) to reconstruct HR optical flows
in a coarse-to-fine manner. Different from previous methods
[12], [14], [16] that use optical flows to align LR frames,
our OFRnet learns to infer HR optical flows to align latent
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HR frames. These HR optical flows are then used to perform
motion compensation on LR frames. Meanwhile, a space-
to-depth transformation is used to bridge the resolution gap
between HR optical flows and LR frames. Finally, these
compensated LR frames are fed to a super-resolution net
(SRnet) to generate an HR frame. Ablation study is per-
formed to test the effectiveness of HR optical flows for SR
performance improvement. Comparative results show that our
SOF-VSR network achieves the state-of-the-art performance
on the Vid4 and DAVIS-10 datasets.

The major contributions of our work can be summarized as
follows:

• We incorporate the SR of both optical flows and images
into a unified SOF-VSR network. The SR of optical flows
contributes to the SR of images. Consequently, better
performance can be achieved by our SOF-VSR network.

• We propose an OFRnet to infer HR optical flows from
LR frames in a coarse-to-fine manner. It is demonstrated
that OFRnet can recover accurate temporal details for SR
performance improvement.

• Our SOF-VSR network achieves the state-of-the-art per-
formance as compared to recent video SR methods.

This work is an extension of our previous conference ver-
sion [17] with four notable improvements. First, we introduce
a more lightweight and compact architecture for SOF-VSR
in this paper. Specifically, techniques including channel split,
channel shuffle and depth-wise convolution [18] are employed
to update our building blocks, and the OFRnet is rebuilt using
a scale-recurrent network. Our lightweight SOF-VSR network
achieves comparable performance to the original one [17] with
parameters being reduced by over 30%. Second, we have
included additional analyses on the design of our network,
including ablation studies on HR optical flows, scale-recurrent
architecture and building block. Third, we have conducted
additional experiments on different upscaling factors and per-
formed additional evaluation on computational complexity.
Fourth, additional experiments have been provided to further
test the video SR performance through a face recognition task.

The rest of this paper is organized as follows. In Section II,
we briefly review the related works. In Section III, we describe
the proposed network in details. In Section IV, experimental
results are presented. Finally, we conclude this paper in
Section V.

II. RELATED WORK

In this section, we briefly review several methods that are
closely related to our work.

A. Single Image SR

Interpolation-based approaches (e.g., bilinear, bicubic and
Lanczos [19]) are initially used to increase the size of
a single image. However, these methods cannot recover
high-frequency details [20]. Later, numerous reconstruction-
based approaches have been proposed for single image
SR [2], [21], [22]. These methods formulate the single image
SR task as an optimization problem and introduce different
regularization techniques to reconstruct HR images. However,

these methods require a large number of iterations and thus
suffer from a very high computational cost. To learn a direct
mapping between LR and HR images, exemplars are collected
from the input image [3], [23] and external datasets [24], [25].
These exemplar-based methods usually use machine learning
approaches (e.g., Markov random field) to achieve promising
performance [26]. For comprehensive reviews on traditional
single image SR methods, we refer the readers to [20], [26].

Recently, deep learning has been extensively investigated
for SR. Dong et al. [9] proposed the pioneering work to
use deep learning for single image SR. They used a three-
layer CNN (namely, SRCNN) to approximate the non-linear
mapping from an LR image to its corresponding HR image.
Kim et al. [27] proposed a very deep super-resolution net-
work (i.e., VDSR) with 20 convolutional layers. The deep
architecture of VDSR improves the approximating capacity of
CNN to achieve better performance. To achieve a compromise
between model size and SR performance, Tai et al. [28] devel-
oped a deep recursive residual network (DRRN) to deepen
the network without obvious increase in model parameters.
Shi et al. [29] proposed an efficient sub-pixel convolutional
neural network (ESPCN) to increase the resolution of an LR
image at the end of the network. Its computational complexity
is significantly reduced. More recently, Zhang et al. [30]
proposed a residual dense network (RDN) to facilitate effective
feature learning using a contiguous memory mechanism.

B. Video SR

1) Traditional Video SR: Since the seminal work proposed
by Tsai and Huang [31], significant progresses have been
achieved in multi-image SR and video SR. Early meth-
ods [32], [33] focus on videos with only affine transforms
exist between adjacent frames, which is usually not the real
case. To handle complex motion patterns in video clips,
Protter et al. [4] generalized the non-local means frame-
work for video SR. They performed adaptive fusion of
multiple frames using patch-wise spatio-temporal similarities.
Takeda et al. [5] further introduced a 3D kernel regression to
exploit patch-wise spatio-temporal neighborhood relationship.
However, HR images produced by these two methods are
usually over-smoothed. To exploit pixel-wise correspondences,
optical flow estimation was used in [6]–[8]. These methods
formulate the video SR task as an optimization problem and
use iterative frameworks to estimate HR images, optical flows
and blur kernels alternately. However, these methods are time-
consuming.

2) Deep Video SR With Separated Motion Compensa-
tion: Inspired by the success of SRCNN in single image
SR, deep learning has been investigated for video SR.
Kappelar et al. [13] proposed a two-step framework to
perform video SR. Specifically, optical flow estimation is
first performed for motion compensation. Then, the compen-
sated frames are concatenated and fed to a CNN to recon-
struct an HR frame. Following the same two-step framework
as [13], Liao et al. [12] estimated multiple optical flows
using different parameter settings. These optical flows are then
used for motion compensation to generate an ensemble of
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Fig. 1. An overview of our SOF-VSR network. Our network is fully convolutional and can be trained in an end-to-end manner.

SR-drafts. Finally, a CNN is employed to recover high-
frequency details from the ensemble. The two-step framework
separates motion estimation and compensation from the CNN
network. Therefore, it is difficult for these methods to obtain
an overall optimal solution.

3) Deep Video SR With Integrated Motion Compensation:
Recently, Caballero et al. [14] proposed the first end-to-end
CNN (namely, VESPCN) for video SR to integrate both
motion estimation and compensation. Their VESPCN network
comprises a motion estimation module and a spatio-temporal
ESPCN module [29]. Since then, end-to-end framework with
integrated motion compensation dominates the research of
video SR. Tao et al. [16] used the motion estimation module in
VESPCN and then designed a new layer to achieve both sub-
pixel motion compensation (SPMC) and resolution enhance-
ment. They also proposed an encode-decoder network with
LSTM to learn temporal contexts. Liu et al. [34] customized
ESPCN [29] to simultaneously reconstruct HR frames using
different numbers of LR frames. A temporal adaptive network
(namely, TDVSR) is then introduced to aggregate multiple HR
estimates with learned dynamic weights. Sajjadi et al. [35]
proposed a frame-recurrent architecture (namely, FRVSR) to
use previously inferred HR estimates for the SR of subsequent
frames. This recurrent architecture can assimilate previous
inferred HR frames without increasing computational costs.

4) Deep Video SR Without Explicit Motion Compensation:
Huang et al. [36] proposed a bidirectional recurrent CNN
to avoid explicit motion estimation and compensation. This
recurrent-like architecture can capture long-term contextual
information within temporal sequences. However, this method
fails to handle large displacements and other complicated
motions. Jo et al. [37] introduced a CNN to generate dynamic
upsampling filters for video SR. These dynamic upsampling
filters are computed using local spatio-temporal neighborhood
to avoid explicit motion compensation.

Since temporal dependency between consecutive frames is
important for video SR, existing deep learning based video
SR methods focus on explicit or implicit exploitation of
temporal dependency. However, these methods model temporal
dependency in LR space, their limited accuracy in dependency
hinders the restoration of fine details. Different from previous

works, we propose an end-to-end video SR network to recover
both temporal details and spatial details. Specifically, we first
super-resolve optical flows to recover temporal details. These
HR optical flows provide accurate temporal dependency and
contribute to the restoration of spatial details. It is demon-
strated that optical flow SR facilitates our network to achieve
the state-of-the-art performance.

III. METHODOLOGY

In this section, we introduce our SOF-VSR network in
details. We first give an overview of our SOF-VSR network,
and then describe the OFRnet, the motion compensation
module and the SRnet of our network. Finally, we present
the loss function for the training of our network.

A. Overview

Given T consecutive LR frames (I L
t−N , . . . , I L

t , . . . , I L
t+N )

of a video clip as the input of SOF-VSR, our task is to
super-resolve the central frame. Here, T = 2N + 1. Follow-
ing [34], we convert input LR frames into YCbCr color space
and only process the luminance channel. Input LR frames are
first fed to OFRnet to infer HR optical flows. Specifically, our
OFRnet takes the central LR frame I L

t and one neighboring
frame I L

i as input to generate an HR optical flow F H
i→t . Then,

a space-to-depth transformation [35] is employed to shuffle the
HR optical flows into LR grids, resulting in LR flow cubes.
Next, motion compensation is performed to generate a draft
cube using these flow cubes. Finally, the draft cube is fed to
SRnet to infer the HR frame. The overview of our network is
shown in Fig. 1. For simplicity, we only show the architecture
with T = 3.

B. Optical Flow Reconstruction Net (OFRnet)

It has already been demonstrated by deep learning based
SR methods (e.g., SRCNN [9], VDSR [27] and RDN [30])
that CNN is able to learn the non-linear mapping between LR
and HR images. Recent CNN-based optical flow estimation
methods (e.g., FlowNet [38], PWCNet [39] and LiteFlowNet
[40]) have also shown the potential for motion estimation.
Therefore, we incorporate these two tasks into a unified
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Fig. 2. The architecture of our OFRnet. Our OFRnet works in a coarse-to-fine manner. At each level, the output of its previous level is used to generate a
residual optical flow.

OFRnet to infer HR optical flows directly from LR images.
Specifically, our OFRnet takes a pair of LR frames I L

i and I L
j

as inputs, and reconstruct an optical flow F H
i→ j between their

corresponding HR frames I H
i and I H

j :

F H
i→ j = NetO F R(I L

i , I L
j ; �O F R), (1)

where F H
i→ j represents the HR optical flow and �O F R denotes

the set of parameters.
Multi-scale mechanism has been demonstrated to

be effective in optical flow estimation [40], [41],
stereo matching [42], [43] and many other vision tasks [44].
To reduce model size and training difficulty, a scale-recurrent
architecture with shared parameters across scales is used
in SRN-DeblurNet [44]. Inspired by this, we introduce
a scale-recurrent network for optical flow reconstruction,
as illustrated in Fig. 2. For the first two levels, we use a
recurrent module to estimate optical flows for inputs with
different scales. For level 3, we first use the recurrent structure
to generate deep representations, and then introduce an SR
module to recover HR optical flows from the LR feature
representations. The scale-recurrent architecture enables
OFRnet to handle complex motion patterns (especially large
displacements) while being lightweight and compact.

Level 1: The pair of input LR images I L
i and I L

j are first
downsampled by a factor of 2 to produce I L D

i and I L D
j .

Meanwhile, an initial flow map F0
i→ j with all elements of 0

is generated. The initial flow map F0
i→ j is concatenated with

I L D
i and I L D

j and then fed to a feature extraction layer with
320 kernels of size 3 ×3. Then, three efficient residual blocks
are used to generate deep features. Channel split, channel
shuffle and depth-wise convolution techniques [18] are used
in these residual blocks to improve the efficiency. Next, these
features are fed to a flow estimation layer with 2 kernels
of size 3 × 3 to generate optical flow F L D

i→ j at this level.
All convolutional layers are followed by a leaky rectified linear

unit (ReLU) except the middle layer in each residual block and
the last flow estimation layer.

Level 2: Once the optical flow F L D
i→ j is obtained from

level 1, it is upscaled by a factor of 2 using bilinear interpola-
tion. Note that, the magnitude of optical flow is also doubled
with the resolution. The upscaled flow F L DU

i→ j is then used to
warp I L

i , resulting in I L
i→ j . Next, I L

i→ j , I L
j and F L DU

i→ j are
concatenated and fed to the recurrent module (which is the
same as the one used in level 1) to generate optical flow F L

i→ j
at this level.

Level 3: Since the output optical flow F L
i→ j of level 2 has

the same size as the LR input I L
j , level 3 works as an SR mod-

ule to reconstruct HR optical flows. Similar to level 2, I L
i→ j ,

I L
j and F L

i→ j are first concatenated and fed to the recurrent
module (which is the same as the one used in levels 1 and
2) to extract features. These features are then fed to three
additional residual blocks to generate deep representations.
Next, the resulting feature representations are fed to a sub-
pixel layer [29] for resolution enhancement. Finally, a flow
estimation layer is used to generate the final HR optical flow
F H

i→ j .
Although numerous networks for SR [11], [29], [45] and

optical flow estimation [38]–[40] can be found in literature,
our OFRnet is, to the best of our knowledge, the first unified
network to integrate these two tasks. Specifically, our OFRnet
learns to infer HR optical flows between latent HR images
from LR inputs. Though some existing video SR methods
can also obtain optical flows of full resolution by performing
interpolation on LR inputs [46] or LR optical flows [35],
their flow estimation is still performed in LR space since
interpolation does not introduce additional information for SR
[29]. Note that, inferring HR optical flows from LR images is
quite challenging, our OFRnet has demonstrated the potential
of CNN to address this challenge. It is further demonstrated
in Sec. IV-C that our SOF-VSR network is benefited from HR
optical flows in terms of both accuracy and consistency.
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Fig. 3. An illustration of space-to-depth transformation. The space-to-depth
transformation folds an HR optical flow in LR space to generate an LR flow
cube.

C. Motion Compensation Module

Once HR optical flows are produced by OFRnet, space-
to-depth transformation is used to bridge the resolution gap
between HR optical flows and LR frames. As shown in Fig. 3,
regular LR grids are extracted from the HR flow and placed
into the channel dimension to derive a flow cube with the same
resolution as LR frames:

[
F H

i→ j

]s H×sW×2 →
[

F H
i→ j

]H×W×2s2

, (2)

where H and W represent the size of the LR frame, s is the
upscaling factor. Note that, the magnitude of optical flow is
divided by a scalar s during the transformation to match the
spatial resolution of LR frames.

Then, slices are extracted from the LR flow cube to warp
the LR frame I L R

i , resulting in multiple warped drafts:

C L
i→ j = W(I L

i ,
[

F H
i→ j

]H×W×2s2

), (3)

where W(·) denotes the warping operation using bilinear
interpolation and C L

i→ j ∈ RH×W×s2
represents the concate-

nation of multiple warped drafts. Note that, although motion
compensation is performed on LR frames, accurate temporal
dependency can be encoded in compensated frames since HR
optical flows are employed.

D. Super-Resolution Net (SRnet)

Our SOF-VSR takes T consecutive LR frames
(I L

t−N , . . . , I L
t , . . . , I L

t+N ) as inputs to super-resolve the
central frame. After motion compensation, multiple drafts are
produced for each neighboring frame. As shown in Fig. 1, all
the drafts are concatenated with the central LR frame and fed
to SRnet to infer the HR frame:

I S R
0 = NetS R(C L ; �S R), (4)

where I S R
0 is the SR result of the central frame and �S R

is the set of parameters. C L ∈ RH×W×(2Ns2+1) represents the
concatenation of all drafts after motion compensation, namely,
draft cube.

As shown in Fig. 4, the draft cube is first passed to a feature
extraction layer with 320 kernels of size 3 × 3 for feature
extraction. The output features are then fed to 8 efficient

Fig. 4. The architecture of our SRnet.

residual blocks to generate deep features. Once features are
generated by these residual blocks, they are fed to a sub-pixel
layer for resolution enhancement. Finally, a 3×3 convolutional
layer is used to generate the HR frame. Since our SOF-VSR
network only works on the luminance channel, the number of
kernels in the last layer is set to 1.

E. Loss Function

We design two loss terms LSR and LOFR for SRnet and
OFRnet, respectively. For the training of SRnet, we use the
mean square error (MSE) loss:

LSR =
∥∥∥I S R

0 − I H
0

∥∥∥2

2
. (5)

For the training of OFRnet, intermediate supervision is used
at each level of the pyramid:

LOFR =
∑

i∈[−N, N], i �=0

Llevel3,i +λ2Llevel2,i +λ1Llevel1,i

2N
, (6)

where⎧⎪⎨
⎪⎩

Llevel3,i =
∥∥W(I H

i , F H
i→0)− I H

0

∥∥
1+λ3

∥∥∇F H
i→0

∥∥
1

Llevel2,i =
∥∥W(I L

i , F L
i→0)− I L

0

∥∥
1+λ3

∥∥∇F L
i→0

∥∥
1

Llevel1,i =
∥∥W(I L D

i , F L D
i→0)− I L D

0

∥∥
1+λ3

∥∥∇F L D
i→0

∥∥
1 ,

(7)

∥∥∇F H
i→0

∥∥
1,

∥∥∇F L
i→0

∥∥
1 and

∥∥∇F L D
i→0

∥∥
1 are L1 regularization

terms to constrain the smoothness of the optical flows at
different scales. We empirically set λ2 = 0.2 and λ1 = 0.1 to
make our OFRnet focus on the last level. We also set λ3 = 0.1
as the regularization coefficient.

Finally, the total loss for joint training is defined as
L = LSR + λ4LOFR, where λ4 is empirically set to 0.01 to
balance these two loss terms.

IV. EXPERIMENTS

In this section, we first introduce the datasets and imple-
mentation details. Next, ablation study is performed on the
Vid4 dataset to test our network. Our SOF-VSR is then
compared to the state-of-the-art methods on the Vid4 and
DAVIS-10 datasets. Finally, face recognition task is used to
further demonstrate the effectiveness of our network for high-
level vision tasks.

A. Datasets

For training, we collected 145 1080P HD video clips from
the CDVL Database1. These video clips cover diverse natural
and urban scenes. Similar to [37], we used 4 video clips

1www.cdvl.org
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TABLE I

COMPARATIVE RESULTS ACHIEVED BY OUR NETWORK AND ITS VARIANTS ON THE VID4 DATASET FOR 4× SR. FLOPS
IS COMPUTED BASED ON HR FRAMES WITH A RESOLUTION OF 720p (1280×720)

including Coastguard, Foreman, Garden, and Husky from the
Derf’s collection2 for validation. For fair comparison to the
state-of-the-arts, we used the widely used Vid4 benchmark
dataset to test our method. We also used a subset of the DAVIS
dataset [47] with 10 video clips for further comparison, which
will be referred to as DAVIS-10 in this paper. Note that, each
video clip in the test dataset contains 31 consecutive frames,
the same as in [12].

B. Implementation Details

Following [12], [16], we downsampled the original video
clips to the size of 540 × 960 as the HR groundtruth using
Matlab function imresi ze in bicubic mode. These HR videos
were further downsampled to generate LR video clips with
different upscaling factors. During the training phase, we
randomly extracted T consecutive frames from an LR video
clip, and randomly cropped a 32 × 32 patch as the input.
Meanwhile, its corresponding patch in the HR video clip was
cropped as the groundtruth. Data augmentation was performed
through rotation and reflection to improve the generalization
capability of our network.

For evaluation, we used peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) to test the accuracy
of each individual frame. The overall PSNR/SSIM values
were then calculated by aggregating PSNRs/SSIMs over all
frames in a video clip. To test the consistency performance,
we used the temporal motion-based video integrity evaluation
index (T-MOVIE) [48]. Moreover, MOVIE [48] was used to
test the overall quality of a video. This metric is correlated
to human perception and has been widely applied in video
quality assessment. All metrics are computed in the luminance
channel. Following [49], borders of 6 + s are cropped for fair
comparison.

Our SOF-VSR was implemented in PyTorch on a PC with
an Nvidia GTX 1080Ti GPU. We used the Adam solver [50]
with β1 = 0.9, β2 = 0.999 and a batch size of 32 for training.
The initial learning rate was set to 1×10−3 and divided by
10 after every 80K iterations. The training was stopped after
200K iterations since more iterations do not provide further
consistent improvement.

2media.xiph.org/video/derf/

C. Analysis of the Network Architecture

In this section, we present ablation experiments on the
Vid4 dataset to analyze the architecture of our SOF-VSR net-
work. All variants in the experiment were retrained following
the configuration of the original SOF-VSR network.

1) Motion Compensation: To handle complex motion pat-
terns in video sequences, optical flows are used for motion
compensation in our network. To test the effectiveness of
motion compensation for video SR, we removed the whole
OFRnet module and fed LR frames directly to our SRnet. Note
that, replicated LR frames were used to match the dimension
of the draft cube C L . Results achieved on the Vid4 dataset are
listed in Table I.

It can be observed that the performance of our SOF-VSR
significantly benefits from motion compensation. If OFR-
net is removed, the PSNR/SSIM values are decreased from
26.00/0.772 to 25.70/0.753. Besides, the consistency perfor-
mance is also degraded, with T-MOVIE value being increased
from 19.35 to 20.03. That is because, it is difficult for SRnet
to learn the non-linear mapping between LR and HR images
under complex motion patterns.

2) LR Flow vs. HR Flow: Optical flow SR provides accurate
temporal dependency for video SR. To test the effectiveness
of HR optical flows, we replaced the sub-pixel convolution
at level 3 in our OFRnet with a normal convolution. Then,
the resulting LR optical flows were directly used for motion
compensation and subsequent processing. To match the dimen-
sion of the draft cube, compensated LR frames were also
replicated before feeding to SRnet.

It can be observed from Table I that if LR optical flows were
generated for motion compensation, the PSNR/SSIM values
are increased to 25.85/0.765. However, the performance is
still inferior to our SOF-VSR using HR optical flows. That
is because, HR optical flows provide more accurate temporal
dependency for performance improvement.

3) Upsampled Flow vs. Super-Resolved Flow: Optical flow
sup-resolution can also be simply achieved by interpola-
tion. However, our OFRnet can recover more accurate opti-
cal flow details. To demonstrate this, we replaced the sub-
pixel convolution at level 3 in our OFRnet with a normal
convolution, and upsampled the resulting LR optical flows
using bilinear interpolation. Then, we used the modules in
our original network for subsequent processing. From the
comparative results shown in Table I, we can see that if bilinear
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TABLE II

AVERAGE EPE RESULTS ACHIEVED ON THE TRAINING SETS OF SINTEL,
MIDDLEBURY, KITTI 2012 AND KITTI 2015 FOR 4× SR.

BEST RESULTS ARE SHOWN IN BOLDFACE

interpolation is used to upsample LR optical flows, no sig-
nificant improvement can be observed (25.85/0.765 vs.
25.83/0.766). That is because, the upsampling operator can-
not recover temporal dependency reliably. If optical flow
SR is performed, the PSNR/SSIM values are increased to
26.00/0.772. That is because, optical flow SR can recover
finer temporal details and facilitate our SOF-VSR network to
achieve better video SR performance.

We further compare the super-resolved optical flows and
upsampled optical flows to the groundtruth on the Sintel [51],
Middlebury [52], KITTI 2012 [53] and KITTI 2015 [54]
datasets. We also include two dedicated optical flow esti-
mation methods for comparison, including FlowNet [38] and
SpyNet [41]. Note that, the optical flows estimated from LR
frames are upsampled for fair evaluation. We use the average
end-point error (EPE) for quantitative comparison, and present
the results in Table II.

It can be observed that super-resolved optical flows sig-
nificantly outperform upsampled ones, with EPE results being
reduced by over 0.3. Note that, FlowNet (30.58M) and SpyNet
(1.14M) are trained on a much larger dataset (i.e. the Flying
Chairs dataset with 22872 image pairs) in a supervised manner.
Therefore, they achieve better performance than our OFRnet
(0.41M) in terms of EPE. Since groundtruth optical flows are
unavailable for the Vid4 dataset, we warped frames using the
generated flows and then calculated root mean square error
(RMSE) for quantitative evaluation. From Table III we can
also see that images warped using super-resolved optical flows
have lower RMSE values (3.26 vs. 3.46) and higher PSNR
values (30.05 vs. 29.51).

Visual comparison of optical flow estimation results
achieved on the Sintel and Middlebury datasets is shown
in Figs. 5 and 6, respectively. It can be observed that upsam-
pled optical flows produce distorted and blurred edges (e.g.,
the hand in Fig. 5 and the bush in Fig. 6) with notable artifacts.
In contrast, more clear edges can be observed in super-resolved
optical flows, with finer details being recovered. Moreover, our
OFRnet produces visually comparable flow estimation results
to SpyNet. This has clearly demonstrated the effectiveness
of our OFRnet in recovering temporal details. Error maps
achieved on two scenes of the Vid4 dataset are further shown
in Fig. 7. It can be observed that super-resolved optical flows
produce fewer erroneous pixels, i.e, finer temporal details are
recovered.

TABLE III

AVERAGE RMSE AND PSNR RESULTS ACHIEVED ON THE VID4
DATASET FOR 4× SR. BEST RESULTS ARE SHOWN IN BOLDFACE

In summary, the superior performance achieved on the Sin-
tel, Middlebury, KITTI 2012, KITTI 2015 and Vid4 datasets
demonstrates that finer temporal details can be recovered in
super-resolved optical flows than upsampled ones. Note that,
the task of our work is not to design a superior optical
flow estimation network. Instead, we focus on the design of
a lightweight sub-network, which is sufficiently effective to
provide fine temporal details for the improvement of overall
video SR performance.

4) SISR Before Optical Flow Estimation: To obtain HR
optical flows from LR inputs, an alternative is to perform
single image super-resolution (SISR) on separated LR frames
first and then estimate HR optical flows from these SR results.
To test the performance of this option, we designed a variant
to perform SISR before optical flow estimation. Specifically,
input LR frames were first super-resolved separately before
being fed to the OFRnet for HR optical flow estimation. Note
that, the sub-pixel convolution in level 3 of the OFRnet was
replaced with a normal convolution. Next, SISR results were
compensated and passed to the SRnet for fusion. It can be
observed from Table I that this variant does not introduce
significant performance improvement against our SOF-VSR
in terms of PSNR and SSIM. Meanwhile, this variant requires
much higher computational cost than our SOF-VSR, with
FLOPs being increased from 108.90G to 1.12T. Since SISR
is first used to enhance the resolution of LR inputs, optical
flow estimation and fusion of multiple frames are performed
on HR images. Therefore, the computational complexity is
significantly increased. In contrast, our SOF-VSR directly
infers HR optical flows from LR inputs and fuses multiple
frames in LR space. Therefore, our network has a much lower
computational cost and is more suitable for applications on
mobile computing devices.

5) Scale-Recurrent vs. Scale-Cascaded Architectures: Since
the task of each level in our OFRnet is similar, we employ a
scale-recurrent architecture in our OFRnet to reduce model
size. To demonstrate its effectiveness, we replaced the scale-
recurrent architecture with a scale-cascaded one by using
independent networks at 3 levels. Results achieved on the
Vid4 dataset are presented in Table I.

Our SOF-VSR achieves comparable performance to the
scale-cascaded architecture with the overall model size being
reduced from 1.33M to 1.00M. Since the tasks of different
levels are similar, the scale-cascaded architecture contains
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Fig. 5. Visual comparison of optical flow estimation results achieved on the Sintel dataset for 4× SR. The super-resolved optical flows recover finer
correspondences with more clear edges and fewer artifacts than the upsampled optical flows.

Fig. 6. Visual comparison of optical flow estimation results achieved on the Middlebury dataset for 4× SR. The super-resolved optical flows recover finer
correspondences with more clear edges and fewer artifacts than the upsampled optical flows.

Fig. 7. Visual comparison of error maps (difference between the warped
image and the reference image) achieved on the Vid4 dataset for 4× SR. The
results generated with super-resolved optical flows achieve higher accuracy.

redundant parameters. In contrast, using a scale-recurrent
structure, our SOF-VSR is more lightweight and compact
while achieving comparable performance.

6) Efficient Residual Block vs. Vanilla Residual Block:
Efficient residual block is used in our SOF-VSR network to
reduce model size and computational complexity. To demon-
strate its effectiveness, we designed a variant by replacing
efficient residual blocks with vanilla ones. Comparative results
are listed in Table I.

Fig. 8. Consistency and accuracy performance achieved on the Vid4 dataset
for 4× SR. Solid and hollow circles represent methods developed for the BI
and BD degradation models, respectively. A lower T-MOVIE value represents
a better consistency performance, while a higher PSNR value represents a
better accuracy performance. The size of a circle represents the number of
parameters.

It can be observed that the variant with vanilla residual
blocks achieves slightly better performance than our SOF-
VSR. However, its model size and FLOPs are increased from
1.00M to 1.56M and from 108.90G to 143.14G, respectively.
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TABLE IV

COMPARATIVE RESULTS ACHIEVED ON THE VID4 DATASET. NOTE THAT, THE FIRST AND LAST TWO FRAMES ARE NOT USED IN OUR EVALUATION.
FLOPS IS COMPUTED BASED ON HR FRAMES WITH A RESOLUTION OF 720p (1280×720). RESULTS MARKED WITH * ARE DIRECTLY COPIED

FROM THE CORRESPONDING PAPERS. BEST RESULTS ARE SHOWN IN BOLDFACE

Using efficient residual blocks, our SOF-VSR is more light-
weight and compact without obvious performance drop. There-
fore, our SOF-VSR network is more suitable for applications
on mobile computing devices.

D. Comparison to the State-of-the-Art

We compared our SOF-VSR to 4 single image SR
methods including Bicubic, Deeply Recursive Convolutional
Network (DRCN) [10], Laplacian Pyramid Super-Resolution
Network (LapSRN) [11], and Cascading Residual Network
(CARN) [55] and 6 video SR methods including Video
Super-Resolution Network (VSRnet) [13], VESCPN [14],
TDVSR [34], TDVSR-L [56], SPMC [16], and FRVSR [35]
on the Vid4 and DAVIS-10 datasets. For DRCN, LapSRN,
CARN, VSRnet, and SPMC, we used the codes provided by
the authors to produce their results. For TDVSR, we used
the super-resolved images provided by the authors. For
VESCPN, TDVSR-L and FRVSR, the results reported in
their papers are used. Here, we only report the performance
of FRVSR-3-64 since its network size is comparable to ours.
For each test video clip with 31 frames, the first and last two
frames are not used for performance evaluation.

Note that, the methods selected for comparison are trained
on two different degradation models. Specifically, the degra-
dation model used in DRCN, LapSRN, CARN, VSRnet,
VESCPN, TDVSR and TDVSR-L is bicubic downsampling
(denoted as BI), which is implemented using Matlab function
imresi ze. For SPMC and FRVSR, HR images are first blurred
using a Gaussian kernel and then downsampled by selecting
every sth pixel (denoted as BD). Consequently, we retrained
our SOF-VSR network on the BD degradation model (denoted
as SOF-VSR-BD) to achieve fair comparison with SPMC
and FRVSR. In this work, a Gaussian kernel with a standard
deviation σ = 1.6 is used, which is the same as the one used
in SPMC, but slightly larger than the one used in FRVSR
(σ =1.5).

1) Evaluation on the Vid4 Dataset:

a) Quantitative evaluation: Quantitative results achieved
on the Vid4 dataset are shown in Table IV. For the BI degra-
dation model, our SOF-VSR achieves the best performance
for 2× and 3× SR. For 4× SR, our SOF-VSR outperforms
TDVSR-L in terms of PSNR, SSIM and MOVIE with halved
parameters and FLOPs. Compared to the conference version,
our SOF-VSR achieves comparable performance with much
fewer parameters (1.0M vs. 1.5M). Moreover, our network
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Fig. 9. Visual comparison of 4× SR results on Calendar and City. Bicubic, LapSRN [11], CARN [55], VSRnet [13], TDVSR [34], and SOF-VSR are based
on the BI degradation model, while SPMC [16] and SOF-VSR-BD are based on the BD degradation model. Blue boxes represent corresponding temporal
profiles.

outperforms other methods in terms of T-MOVIE and MOVIE.
That means our results are temporally more consistent. That
is because, more accurate temporal dependency details can be
provided by HR optical flows and therefore improved accuracy
and consistency performance can be achieved.

For the BD degradation model, our SOF-VSR-BD net-
work outperforms SPMC, with PSNR, SSIM and T-MOVIE
values being improved by a notable margin. Although
FRVSR-3-64 achieves a higher SSIM value, our SOF-VSR-
BD method still achieves comparable performance in terms
of other metrics with halved parameters. Compared to our
conference version, our SOF-VSR-BD achieves comparable
performance with parameters being reduced by over 30%.

We further show the trade-off between accuracy and con-
sistency of different methods in Fig. 8. It can be observed
that our SOF-VSR and SOF-VSR-BD networks achieve better
PSNR and T-MOVIE performance on the Vid4 dataset, while
being lightweight and compact.

b) Qualitative evaluation: Several qualitative results on
two scenarios of the Vid4 dataset are shown in Fig. 9.
We can see from the zoom-in regions that our SOF-VSR
and SOF-VSR-BD networks recover finer details, such as the
word “MAREE” and the stripes of the building. Moreover,
it can be observed from the temporal profiles that the word
“MAREE” can hardly be recognized in the SR results achieved
by Bicubic, DRCN, LapSRN, CARN, VSRnet and TDVSR.
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Fig. 10. Visual comparison of 4× SR results on Boxing and Demolition. Bicubic, DRCN [10], LapSRN [11], CARN [55], VSRnet [13], and SOF-VSR are
based on the BI degradation model, while SPMC [16] and SOF-VSR-BD are based on the BD degradation model.

Although finer results are produced by SPMC, the word is still
distorted and blurred. In contrast, smooth and clear patterns
with fewer artifacts can be observed in the temporal profiles
of our results. In summary, our network produces temporally
more consistent results and better perceptual quality.

2) Evaluation on the DAVIS-10 Dataset:

a) Quantitative evaluation: Quantitative results achieved
on the DAVIS-10 dataset are shown in Table V. For the BI
degradation model, our SOF-VSR network achieves the state-
of-the-art performance in terms of PSNR and SSIM. Although
suffering from a slight PSNR performance drop as compared
to the conference version for 4× SR, our network achieves
better performance in terms of other metrics with much fewer
parameters (1.0M vs. 1.5M). In terms of T-MOVIE, our
network achieves comparable or better performance than other
approaches. In summary, our SOF-VSR network produces SR
results with the best overall video quality in terms of MOVIE.

For the BD degradation model, our SOF-VSR-BD net-
work outperforms SPMC in terms of all metrics. Specifically,
the PSNR/T-MOVIE values achieved by our network are
better than SPMC by 1.26/3.15. That is, better accuracy and
consistency performance is achieved by our network. Since the
DAVIS-10 dataset comprises scenes with fast moving objects,

complex motion patterns (especially large displacements) lead
to performance deterioration of existing video SR methods.
In contrast, more accurate temporal dependency is provided by
HR optical flows in our network. Therefore, complex motion
patterns can be handled more robustly and better performance
can be achieved.

b) Qualitative evaluation: Qualitative comparison on two
scenarios of the DAVIS-10 dataset is shown in Fig. 10.
Compared to other methods, our SOF-VSR and SOF-VSR-
BD networks recover more accurate details and achieve better
visual quality, such as the pattern on the shorts and the word
“PEUA”. Specifically, the patterns on the shorts recovered by
Bicubic and VSRnet are obviously blurred. Although finer
details can be recovered by DRCN, LapSRN and SPMC, their
resulting patterns are still distorted. In contrast, our networks
produce more clear details with fewer artifacts.

E. High-Level Vision Tasks

Rich details in a video clip are beneficial to high-level
vision tasks such as face recognition and digit recognition [57].
Here, we further compare our network to LapSRN, CARN,
and SPMC by integrating a video SR module into the face
recognition task.
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TABLE V

COMPARISON OF ACCURACY AND CONSISTENCY PERFORMANCE ACHIEVED ON THE DAVIS-10 DATASET. NOTE THAT, THE FIRST
AND LAST TWO FRAMES ARE NOT USED IN OUR EVALUATION. FLOPS IS COMPUTED BASED ON HR FRAMES

WITH A RESOLUTION OF 720p (1280×720). BEST RESULTS ARE SHOWN IN BOLDFACE

TABLE VI

NETWORK ARCHITECTURE OF THE CLASSIFIER
USED FOR FACE RECOGNITION

1) Data Preparation: Following [56], we form a subset of
the YouTube Face dataset [58] by choosing 167 subject classes
that contain more than three video sequences. For each class,
we randomly select one video for test and the rest for training.
We first cropped face regions and resized them to the size
of 60×60 to generate the HR data. Then, these HR data were
downsampled to 15×15 to form the LR data. For each test
video, we splitted it into clips of 50 frames. In total, we have
about 600 clips.

2) Classifier: We used a customized AlexNet in [59] as the
classifier, whose architecture details are shown in Table VI.
The classification network takes a 60×60 facial image as input
and predicts the class of the subject.

TABLE VII

FACE RECOGNITION PERFORMANCE ACHIEVED BY DIFFERENT SR
METHODS ON A SUBSET OF THE YOUTUBE FACE DATASET UNDER

4× SR SCENARIO. BEST RESULTS ARE SHOWN IN BOLDFACE

3) Implementation Details: During test, we first super-
resolved each LR test clip using a specific SR method and
then fed the SR results to the classifier. Note that, we did
not fine-tune these SR methods on the Youtube Face dataset.
The prediction probabilities were aggregated over all frames
in each video clip. The top-1 and top-5 accuracy metrics were
used for quantitative evaluation and the comparative results
are shown in Table VII.

It can be observed that our SOF-VSR network achieves
the highest top-1 and top-5 accuracy on both BI and BD
degradation models. Specifically, our network outperforms
CARN by 1.2%/1.7% in terms of top-1/top-5 accuracy. That is
because, our SOF-VSR network can recover richer details such
that better face recognition performance can be achieved.
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V. CONCLUSION

In this paper, we have proposed an end-to-end deep network
for video SR. Our OFRnet first super-resolves optical flows to
provide accurate temporal dependency. Motion compensation
is then performed based on HR optical flows. Finally, SRnet
is used to infer SR results from these compensated LR
frames. Extensive experimental results show that our SOF-
VSR network can recover accurate temporal details for the
improvement of both SR accuracy and consistency. Compar-
ison to existing video SR methods has also demonstrated the
state-of-the-art performance of our SOF-VSR network.
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