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ABSTRACT
Local Binary Pattern (LBP) and its variants are effective and pop-
ular descriptors for texture classification. Most LBP like descrip-
tors have disadvantages including sensitiveness to noise and inabil-
ity to capture long distance texture information. In this paper we
propose a simple, efficient, yet robust multi-resolution descriptor to
texture classification — Binary Rotation Invariant and Noise Tol-
erant (BRINT). The proposed descriptor is very fast to build, very
compact while remaining robust to illumination variations, rotation
changes and noise.

We develop a novel and simple strategy — averaging before bi-
narization — to compute a local binary descriptor based on the con-
ventional LBP approach. Points are sampled in a circular neigh-
borhood, but keeping the number of bins in a single-scale LBP his-
togram constant and small by averaging over several contiguous pix-
els in the circle. There is no need for pre-training, no texton dictio-
nary, and no tuning of parameters to deal with different datasets.
Experiments on the Outex test suite demonstrate that the proposed
approach is very robust to noise and significantly outperforms the
state-of-the-art in terms of classifying noise corrupted textures.

Index Terms— Texture descriptors, rotation invariance, local
binary pattern (LBP), noise robust, feature extraction, texture analy-
sis

1. INTRODUCTION

Texture is a fundamental characteristic of the appearance of virtually
all natural surfaces and is ubiquitous in natural images. Recently
there has been a significant focus of attention on the design of local
texture descriptors capable of achieving local invariance [1]. Among
local texture descriptors, LBP [1, 2] has emerged as one of the most
prominent and has attracted increasing attention in the field of image
processing and computer vision due to its outstanding advantages: 1.
ease of implementation, 2. no need for pre-training, 3. invariance to
monotonic illumination changes, and 4. low computational com-
plexity, making LBP a preferred choice for many applications. Al-
though originally proposed for texture analysis, the LBP method has
been successfully applied to many diverse areas of image processing:
dynamic texture recognition, remote sensing, fingerprint matching,
visual inspection, image retrieval, biomedical image analysis, face
image analysis, motion analysis, and environment modeling (see a
comprehensive bibliography of LBP methodology online).1

Although significant progress has been made, most LBP vari-
ants still have prominent limitations, mostly the sensitivity to noise

∗This work has been supported by the National Natural Science Founda-
tion of China under contract No. 61202336 and the Doctoral Fund of Min-
istry of Education of China under contract No. 20124307120025.

1A comprehensive bibliography of LBP methodology can be found at
http://www.cse.oulu.fi/MVG/LBP Bibliography/.

[3], and the limiting of LBP variants to three scales, failing to cap-
ture long range texture information [3, 4]. Although some efforts
have been made to include complementary filtering techniques [3,5],
these increase the computational complexity, running counter to the
goal of LBP method.

In this paper, we propose a novel, computationally simple ap-
proach, the Binary Rotation Invariant and Noise Tolerant (BRINT)
descriptor, which has the following outstanding advantages: It is
highly discriminative, has low computational complexity, is highly
robust to noise and rotation, and allows for compactly encoding a
number of scales and arbitrarily large circular neighborhoods. At
the feature extraction stage there is no pre-learning process and no
additional parameters to be learned.

2. BRINT: A BINARY ROTATION INVARIANT AND NOISE
TOLERANT DESCRIPTOR

2.1. Motivation

Although the original LBP approach is attractive for its conceptual
simplicity and efficient computation, a straightforward application
of the original LBPr,p histogram features is limited: (1) As shown in
Table 1, the original LBP operator produces rather long histograms
(2p distinct values), overwhelmingly large even for small neighbor-
hoods, leading to poor discriminant power and large storage require-
ments. (2) The LBP operator captures only the very local struc-
ture of the texture, appropriate for micro-textures but not for macro-
textures. Because the LBP dimensionality becomes intractable as the
sampling radius increases, it is difficult to collect information from
a larger area. (3) The original LBP codes are sensitive to image ro-
tation. (4) LBP codes can be highly sensitive to noise: the slightest
fluctuation above or below the value of the central pixel is treated
the same way as a major contrast. The rotation invariant descrip-
tor LBPri

r,p has received very limited attention, having shortcomings
(1,2,4) listed above and in fact providing poor results for rotation
invariant texture classification [6].

The LBPriu2
r,p descriptor has avoided disadvantages (1,2), which

can be seen from Table 1. However despite its clear advantages of
dimensionality, gray scale and rotation invariance, and suitability for
multi-resolution analysis, it suffers in terms of reliability and robust-
ness as it only uses the uniform patterns and has minimal tolerance
to noise.

The CLBP C ∗ CLBP Sriu2
r,p ∗ CLBP Mriu2

r,p , abbreviated as
CLBP CSM, has been shown to perform better than LBPriu2

r,p [7],
due to the joint behavior of the three complementary LBP-like codes
CLBP C, CLBP S and CLBP M, although this concatenation leads
to a feature vector relatively high dimensionality (Table 1). In stan-
dard CLBP CSM applications, typically three scales are considered,
with a corresponding dimensionality of 2200. The CLBC CSM
approach presented in [8], utilizes five scales to extract texture
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Fig. 1. Central pixel and its p circularly and evenly spaced neighbors on circle of
radius r.

Table 1. Number of patterns of different descriptors. The notation CLBP CSM is the
abbreviation for CLBP C*Sriu2

r,p (*Mriu2
r,p ). The sampling schemes for scales 4 and 5

have been implemented by Zhao et al. [8] in their CLBC CSM approach.
Scale (r, p) LBPr,p LBPri

r,p LBPriu2
r,p CLBP CSM

Scale 1 (1, 8) 256 36 10 200
Scale 2 (2, 16) 65536 4116 18 648
Scale 3 (3, 24) 16777216 699252 26 1352
Scale 4 (4, 32) 232 huge 34 2312
Scale 5 (5, 40) 240 huge 42 3528

Scale 1-5 infeasible infeasible 106 8040

feature, leading to an even higher dimensionality of 7530. For a
multi-resolution analysis, with non-local features based on a larger
number of scales, the increased dimensionality leads to challenges
in storage and reliable classifier learning.

All of the discussed descriptors share one or more weaknesses
of noise sensitivity, high dimensionality, and/or information insuffi-
ciency. Though all of the LBP-based approaches are computational
simple at the feature extraction step, except for LBPriu2

r,p the other de-
scriptors are all computationally expensive at the classification stage
due to the high dimensionality of the histogram feature vector.

2.2. BRINT: Proposed Approach

Our concern with the reduced approaches of LBPriu2 and CLBP CSM
lies with the use of only the uniform LBP patterns, which appear
to lack texture discriminability. Instead, the LBPri, although hav-
ing large dimensionality, possesses meaningful texture features and
strikes us as a more promising starting point.

The dimensionality of LBPr,p and LBPri
r,p grow rapidly with

p, so some technique of feature selection can be employed, by re-
grouping LBP patterns based on the observation that the occurrence
probability of different LBP patterns may vary significantly. Exist-
ing strategies include two main approaches: (i) Select the most fre-
quently occurred LBP patterns in a texture image and discard those
occurring rarely [3,9]. These methods require an extra learning pro-
cess at the feature extraction stage which introduces an extra compu-
tational burden. (ii) Reclassify the nonuniform LBP patterns based
on some criterion [8, 10, 11]. These approaches increase classifica-
tion performance only marginally and remain noise sensitive.

2.3. BRINT S descriptor

The construction of the local BRINT S descriptor is illustrated in
Fig. 2. Similar to the sampling scheme in the original LBP approach,
we sample pixels around a central pixel xc, however on any circle of
radius r we restrict the number of points sampled to be a multiple
of eight, thus p = 8q for positive integer q. So the neighbors of xc

sampled on radius r are xr,8q = [xr,8q,0, · · · , xr,8q,8q−1]
T .

In contrast to original LBP, we transform the neighbor vector
xr,8q by local averaging along an arc,

yr,q,i =
1

q

q−1∑
k=0

xr,8q,(qi+k), i = 0, . . . , 7, (1)

as illustrated in Fig. 2, such that the number of neighbors in y
r,q

is
always eight.
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Fig. 2. Illustration of the proposed BNT S descriptor: Rather than directly subtracting
the gray value xc of the center pixel from the precise gray value of each neighboring
pixel xr,8q,i, i = 0, . . . , 8q − 1, the proposed approach introduces an Average-
Before-Quantization idea, first transforming the original neighborhood into a new one
yr,8q,i, i = 0, . . . , 7, and then thresholding yr,8q,i, i = 0, . . . , 7 at the gray value
of the center pixel to generate a binary pattern.
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Fig. 3. Comparison of the classification accuracies of the proposed BRINT S descrip-
tor and the conventional LBPri descriptor, using all the three benchmark test suites from
the Outex database designated by Ojala et al. [1]. The experimental setup is kept consis-
tent with those in [1]. The results firmly indicate that the proposed BRINT S descriptor
significantly outperforms the conventional LBPri descriptor.

Given y
r,q

= [yr,q,0, · · · , yr,q,7]T , we can trivially compute a
binary pattern with respect to the center pixel, as in LBP:

BNT Sr,q =

7∑
n=0

s(yr,q,n − xc)2
n (2)

where BNT S represents “Binary Noise Tolerant Sign”. One can
easily see that for any parameter pair (r, q) there are 28 = 256
BNT Sr,q binary patterns in total. Furthermore, the transformation
from xr,8q to y

r,q
makes the pattern more robust to noise.

As rotation invariance is one of our stated objectives, and to
avoid the limitations [3] of uniform patterns, we follow the inspi-
ration of LBPri

r,q , grouping equal versions of binary representations
under rotations, assigning code numbers to the resulting groups. For-
mally, then, BRINT Sr,q is defined as

BRINT Sr,q = min{ROR(BNT Sr,q, i)|i = 0, · · · , 7}, (3)

where rotation function ROR(•, •) is the same as in [1], reducing
the number of histogram bins, for one scale, from 256 to 36. The
motivation, then, for fixing the number of points in y

r,q
to a constant

8 was to limit the growth in histogram bins with scale.
In terms of parameter q, which controls the number of contigu-

ous neighbors in a circle being sampled and averaged, we adopt a
sampling scheme (r, p) ∈ {(1, 8), (2, 24), (3, 24), · · · , (r, 24)} as
a reasonable starting point for realizing the operators, but there is no
guarantee that they produce the optimal operator for a given task.
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Fig. 3 validates the basic behavior of BRINT Sr,q as a function
of the number of scales by contrasting its classification performance
with that of the conventional LBPri

r,p descriptor. The classification
results show a significant jump in classification performance on the
three Outex databases, outperforming the best results reported by
Ojala et al. [1].

In terms of computation cost, the proposed BRINT S descrip-
tor does not imply an increase in complexity over the traditional
LBPriu2. In particular, BRINT S always deals with local binary
patterns based on 8 points, whereas for LBPriu2 the mapping from
LBP to LBPriu2 requires a large lookup table having 2p elements.

2.4. BRINT M descriptor

Motivated by the striking classification results achieved by BRINT S
and considering the better performance of the CLBP CSM feature
over the single feature LBPriu2 proposed by Guo et al. [7], we would
like to further capitalize on the CLBP M descriptor by proposing
BRINT M.

Given a central pixel xc and its p neighboring pixels xr,p,0, · · · ,
xr,p,p−1, as before in Fig. 2, we first compute the absolute value
of the local differences between the center pixel xc and its neigh-
bors: ∆r,8q,i = |xr,8q,i − xc|, i = 0, · · · , 8q − 1. Follow-
ing the work in [7], ∆r,8q is the magnitude component of the lo-
cal difference. Similar to (2), ∆r,8q is transformed intozr,q,i =
1
q

∑q−1
k=0 ∆r,8q,(qi+k), i = 0, . . . , 7. We compute a binary pattern

BNT M (Binary Noise Tolerant Magnitude) based on z via

BNT Mr,q =

7∑
n=0

s(zr,q,n − µl
r,q)2

n, (4)

where µl is the local thresholding value. Note that the CLBP M de-
scriptor defined in [7] uses the global threshold, whereas in the orig-
inal LBP operator the thresholding value is the center pixel value,
which clearly varies from pixel to pixel. Therefore, instead of using
a constant global threshold, we propose to use a locally varying one:

µl
r,q =

1

8

7∑
n=0

zr,q,n. (5)

With BNT M defined, BRINT M is defined as

BRINT Mr,q = min{ROR(BNT Mr,q, i)|i = 0, . . . , 7}. (6)

Finally, consistent with CLBP, we also represent the center pixel
in one of two bins:

BRINT Cr = s(xc − µI,r) (7)

where µI,r is the mean of the whole image excluding boundary pix-
els:

µI,r =
1

(M − 2r)(N − 2r)

M−r∑
i=r+1

N−r∑
j=r+1

x(i, j). (8)

2.5. MultiResolution BRINT and Classification

The proposed BRINT descriptors were, so far, extracted from a
single resolution with a circularly symmetric neighbor set of 8q
pixels placed on a circle of radius r. Given that one goal of our
approach is to cope with a large number of different scales, by al-
tering r we can realize operators for different spatial resolutions,
ideally representing a textured patch by concatenating binary his-
tograms from multiple resolutions into a single histogram, clearly
requiring that the histogram feature produced at each resolution
be of low dimension. Since BRINT CSM, the joint histogram of

Table 2. Summary of texture datasets used in our experiments. Scale and affine
variations does not exist in the three datasets.

Texture
Dataset

Image
Rotation

Illumination
Variation

Texture
Classes

Sample
Size (pixels)

Samples
per Class

Training Samples
per Class

Test Samples
per Class

Samples
in Total

Outex TC10
√

24 128 × 128 180 20 160 4320
Outex TC12 000

√ √
24 128 × 128 200 20 180 4800

Outex TC12 001
√ √

24 128 × 128 200 20 180 4800

Table 3. Sampling scheme, Notations and comparisons of number of bins in the
histogram feature from Single Scale (SS).

Method Parameter SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9
BRINT1 S (r, p) = (r, 8q) (1, 8) (2, 16) (3, 24) (4, 32) (5, 40) (6, 48) (7, 56) (8, 64) (9, 72)

(BRINT1 M) bins 36 36 36 36 36 36 36 36 36
BRINT S (r, p) = (r, 8q) (1, 8) (2, 24) (3, 24) (4, 24) (5, 24) (6, 24) (7, 24) (8, 24) (9, 24)

(BRINT M) bins 36 36 36 36 36 36 36 36 36
CLBP Sriu2 (r, p) (1, 8) (2, 16) (3, 24) (4, 24) (5, 24) (6, 24) (7, 24) (8, 24) (9, 24)

(CLBP Mriu2) bins 10 18 26 26 26 26 26 26 26
CLBP Sri (r, p) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8)

(CLBP Mri) bins 36 36 36 36 36 36 36 36 36

BRINT C, BRINT S and BRINT M, has a very high dimension-
ality of 36 ∗ 36 ∗ 2 = 2592, in order to reduce the number of
bins needed we adopt the BRINT CSr,q CMr,q descriptor, mean-
ing the joint histogram BRINT C ∗ BRINT Sr,q concatenated with
BRINT C ∗ BRINT Mr,q , producing a histogram of much lower
dimensionality: 36 ∗ 2 + 36 ∗ 2 = 144. As a point of comparison,
in the experimental results we will also evaluate BRINT Sr,q Mr,q ,
having a dimensionality of 36 + 36 = 72.

The actual classification is performed via the simple Nearest
Neighbor Classifier (NNC): The Nearest Neighbor Classifier (NNC)
applied to the normalized BRINT histogram feature vectors hi and
hj , using the χ2 distance metric as in [7, 12, 13].

3. EXPERIMENTAL EVALUATION

3.1. Image Data and Experimental Set up

For our experimental evaluation we have used the three benchmark
test suites of Ojala et al. [1]. There are 24 different homogeneous
texture classes selected from the Outex texture database [14], with
each class having only one sample of size 538 × 746-pixels. The
24 different texture samples are imaged under different lighting and
rotations conditions. Three experimental test suites Outex TC10,
Outex TC12 000 and Outex TC12 001, summarized in Table 2,
were developed by Ojala et al. [1] as benchmark datasets for rotation
and illumination invariant texture classification. For all the three test
suites, the classifier is trained with 20 reference images of the “inca”
illumination condition and angle 0◦, totaling 480 samples.

The difference among these three test suites is in the testing set.
For Outex TC10, the remaining 3840 samples with “inca” illumi-
nation, are used for testing the classifier. For Outex TC12 000 and
Outex TC12 001, the classifier is tested with all 4320 images from
fluorescent and sunlight lighting, respectively. Clearly, Outex TC10
is the easier of the three, since training and testing data have the same
lighting.

For the experiments on all three Outex databases, we first test the
classification performance of the proposed approach on the original
database and then assess the robustness of the proposed method un-
der noisy conditions, where the original texture images are corrupted
by zero-mean additive Gaussian noise with different Signal-to-Noise
Ratios (SNRs).

3.2. Methods in Comparison and Implementation Details

We will be performing a comparative evaluation of our proposed
approach against five methods:

(1) CLBP CSri CMri: The CLBPri parallel to our pro-
posed BRINT CS CM feature. (2) CLBP CSriu2 CMriu2: The
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Table 4. Comparing the classification accuracies (%) of the proposed BRINT CS CM
descriptor with two conventional CLBP descriptors. The highest classification accura-
cies are highlighted in bold for each test suite.

Single Scale Multiple Scales
Methods SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 MS2 MS3 MS4 MS5 MS6 MS7 MS8 MS9

Outex TC10
BRINT CS CM 91.87 96.43 96.04 94.04 95.16 94.51 91.61 92.16 93.78 96.95 98.52 99.04 99.32 99.32 99.30 99.40 99.35

CLBP CSri CMri 91.87 95.34 89.14 84.95 80.89 78.10 73.83 70.44 67.92 96.28 95.21 93.44 91.56 90.60 89.14 88.07 87.58

CLBP CSriu2 CMriu2 95.68 98.23 98.72 98.96 98.05 97.58 97.71 96.77 96.30 98.41 99.30 99.43 99.45 99.51 99.53 99.48 99.48

Outex TC12 000
BRINT CS CM 86.46 93.38 94.47 91.06 92.15 89.86 89.65 89.38 90.72 94.24 96.23 97.04 97.18 97.22 97.43 97.64 97.69
CLBP CSri CMri 86.46 92.62 88.56 81.27 79.86 77.62 73.36 69.63 67.94 93.17 94.56 93.29 91.25 88.82 87.55 86.92 86.41

CLBP CSriu2 CMriu2 89.81 94.31 94.88 93.98 90.56 87.85 88.26 88.29 87.71 95.63 96.81 96.67 96.23 95.95 96.00 96.00 95.97

Outex TC12 001
BRINT CS CM 88.50 93.98 94.40 90.81 92.27 90.42 88.80 89.70 90.97 94.35 96.34 97.29 97.41 97.85 97.99 98.29 98.56
CLBP CSri CMri 88.50 93.01 87.82 81.78 79.26 76.48 73.12 69.21 68.75 93.26 93.63 92.04 90.88 89.47 88.43 87.29 86.78

CLBP CSriu2 CMriu2 91.44 94.47 93.19 92.41 88.98 85.83 86.90 88.01 86.90 95.12 95.63 95.35 94.58 94.40 94.19 94.21 93.91

Table 5. Comparing the classification scores (%) achieved by the proposed approach
with those achieved by recent state-of-the-art texture classification methods on the three
Outex test suites. Scores are as originally reported, except those marked (⋄) which are
taken from the work by Guo et al. [7].

Outex Database
Classifier Method TC10 TC12 000 TC12 001
NNC Ours: BRINT CS CM (MS9) 99.35 97.69 98.56

NNC

CLBP CSM [7] 99.14 95.18 95.55
CLBC CSM [8] 98.96 95.37 94.72

LBPriu2
P,R /VARP,R [1] 97.7 87.3 86.4

LBPVu2
P,RGMP/2-1

PD2 [12] 97.63 95.06 93.88

dis(S+M)riN,R [9] 97.0 96.5
VZ-MR8 [15] 93.59(⋄) 92.55(⋄) 92.82(⋄)
VZ-Patch [16] 92.00(⋄) 91.41(⋄) 92.06(⋄)

SVM DLBP+NGF [3] 99.1 93.2 90.4

CLBPriu2 parallel to our proposed BRINT CS CM feature. (3)
DLBP+NGF [3]: The fused features of the DLBP features and the
normalized Gabor filter response average magnitudes (NGF). It is
worth mentioning that the DLBP approach needs pretraining and the
dimensionality of the DLBP feature varies with the training image.
(4) CLBP [7]: The recommended fused descriptor CLBP CSM is
used, however only a 3-scale CLBP CSM is implemented due to the
high dimensionality limitation mentioned in Table 1. (5) LBP [1]:
The traditional rotation invariant uniform feature proposed by Ojala
et al. [1]. We use a 3-scale descriptor as recommended by the
authors.

Each texture sample is preprocessed by normalizing to zero
mean and unit standard deviation. The SNRs tested in this paper are
100, 30, 15, 10, 5 and 3, corresponding to 20db, 14.78db, 11.76db,
10db, 7db and 4.77db respectively.

3.3. Results

Fig. 4 plots the classification performance of different BRINT com-
bination schemes as a function of number of scales. There is a trend
of increasing classification performance as the number of scales in-
creases. It is apparent that the BRINT CS CM feature performs the
best, therefore the BRINT CS CM descriptor will be our proposed
choice and will be further evaluated.

Table 6. BRINT performance as a function of noise, compared to CLBP and the
method of Ojala et al. [1]. For each test Gaussian noise was added, and the highest
classification accuracy highlighted in bold. The noise robustness of BRINT is quite
striking.

Classification Accuracies (%)
Databases Features SNR=100 SNR=30 SNR=15 SNR=10 SNR=5 SNR=3

Outex TC10
BRINT CS CM (MS9, NNC) 97.76 96.48 95.47 92.97 88.31 71.51

CLBP CSriu2 CMriu2 (MS9, NNC) 99.30 98.12 94.58 86.07 51.22 28.65

LBPriu2 (MS3, NNC) [1] 95.03 86.93 67.24 49.79 24.06 12.97

Outex TC12 000
BRINT CS CM (MS9, NNC) 95.95 93.59 91.32 90.49 83.68 69.70

CLBP CSriu2 CMriu2 (MS9, NNC) 96.16 93.54 88.73 83.52 52.22 29.35

LBPriu2 (MS3, NNC) [1] 91.30 82.55 60.25 47.31 24.07 13.63

Outex TC12 001
BRINT CS CM (MS9, NNC) 96.92 95.14 93.66 92.29 84.77 71.02

CLBP CSriu2 CMriu2 (MS9, NNC) 95.95 93.66 88.36 81.71 53.43 26.81

LBPriu2 (NNC) [1] 90.72 79.17 60.74 45.81 25.02 12.55

Table 4 compares the classification performance of the proposed
BRINT CS CM descriptor with those of CLBP on the three Ou-
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Fig. 4. Classification rates as a function of number of scales, with the same experimen-
tal setup as in Fig. 3, using a NNC classifier. Of the combinations tried, BRINT CS CM
performs the best.

tex databases. We observe that BRINT performs significantly and
consistently better than both ri and riu2 forms of CLBP, both in
single-scale and multiple-scale cases. The striking performance
of BRINT CS CM clearly demonstrates that the concatenated
marginal distributions of the proposed basic BRINT C, BRINT S
and BRINT M codes and the novel “averaging before binarization”
scheme turns out to be a very powerful representation of image
texture. The use of multiple scales offers significant improvements
over single-scale analysis, consistent with earlier results in Fig. 4,
showing that the approach is making effective use of interactions
between the center pixel and more distant pixels. To the best of our
knowledge, the proposed approach produced classification scores
which we believe to be the best reported for Outex TC12 000 and
Outex TC12 001. Keeping in mind the variations in illumination
and rotation present in the Outex databases, the results in Table 4
firmly demonstrate the illumination and rotation invariance property
of the proposed BRINT CS CM approach.

Table 5 compares the best classification scores achieved by the
proposed BRINT CS CM method using nine scales (MS9) in com-
parison with state-of-the-art texture classification methods on all
three Outex test suites. Despite not being customized to the separate
test suites, our multi-scale BRINT descriptor produces what we
believe to be the best reported results on all three suites. We would
also point out that except for the proposed BRINT, CLBP CSM [7]
and CLBC CSM [8] approaches, the remaining descriptors listed
in Table 5 require an extra learning process to obtain the texton
dictionary, requiring additional parameters or computational burden.

The preceding discussion allows us to assert that the proposed
multi-scale BRINT approach outperforms the conventional multi-
scale CLBP approach on the Outex test suites. We now wish to
examine the robustness of our method against noise to test appli-
cability to real-world applications, thus the original texture images
have been subject to added Gaussian noise.

Table 6 quite clearly shows the noise-robustness offered by the
BRINT approach: similar classification rates are seen in the near-
absence of noise (SNR=100), however the degree to which BRINT
outperforms LBP and CLBP becomes more and more striking as
SNR is reduced, with classification rates more than 40% higher over
CLBP and LBP at very low SNR.

4. CONCLUSIONS

In this paper we have presented BRINT, a theoretically and computa-
tionally simple, noise tolerant approach to texture classification. The
method is efficient, robust to additive noise, illumination and rotation
invariant, avoiding the drawbacks associated with uniform patterns,
and capable of encoding a large number of scales. The proposed
approach produces consistently good classification results on all of
the datasets, most significantly outperforming the state-of-the-art in
cases of high noise.
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