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Semi-supervised Natural Face De-occlusion
Jiancheng Cai, Hu Han, Member, IEEE, Jiyun Cui, Jie Chen, Member, IEEE,

Li Liu, Senior Member, IEEE, and S. Kevin Zhou, Fellow, IEEE

Abstract—Occlusions are often present in face images in
the wild, e.g., under video surveillance and forensic scenarios.
Existing face de-occlusion methods are limited as they require
the knowledge of an occlusion mask. To overcome this limitation,
we propose in this paper a new generative adversarial network
(named OA-GAN) for natural face de-occlusion without an
occlusion mask, enabled by learning in a semi-supervised fashion
using (i) paired images with known masks of artificial occlusions
and (ii) natural images without occlusion masks. The generator
of our approach first predicts an occlusion mask, which is used
for filtering the feature maps of the input image as a semantic
cue for de-occlusion. The filtered feature maps are then used for
face completion to recover a non-occluded face image. The initial
occlusion mask prediction might not be accurate enough, but it
gradually converges to the accurate one because of the adversarial
loss we use to perceive which regions in a face image need to
be recovered. The discriminator of our approach consists of an
adversarial loss, distinguishing the recovered face images from
natural face images, and an attribute preserving loss, ensuring
that the face image after de-occlusion can retain the attributes
of the input face image. Experimental evaluations on the widely
used CelebA dataset and a dataset with natural occlusions we
collected show that the proposed approach can outperform the
state of the art methods in natural face de-occlusion.

Index Terms—Natural face de-occlusion, occlusion-aware, gen-
erative adversarial networks, alternating training.

I. INTRODUCTION

OCCLUSIONS often exist in face images of scenarios
such as video surveillance and forensics. The problem

of face image de-occlusion is an essential and challenging task
for face recognition, attribute learning, face parsing, emotion
recognition, etc.

The early methods for image de-occlusion or completion
are usually exemplar or inpainting based approaches. These
approaches can only recover the missing image regions accord-
ing to the registered or other non-occluded texture information
and cannot solve the occluded scenarios with little texture
information left. For face de-occlusion, optimization based
methods were proposed in [2][3] which can only deal with
occlusions of limited size. Recently, deep learning based
methods [4][5][1] were proposed for face de-occlusion, and
reported much better results than the traditional approaches.
However, these approaches required paired images (i.e., a face
image with artificial occlusion and the corresponding non-
occluded face image) for training; such paired images may
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(a) Existing methods: Require a given synthetic occlusion 

mask as input

(b) Our method: Do NOT require any occlusion mask as input

 (The task is more challenging)
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Figure 1. (a) Existing methods require a given mask, and filling the mask
with Gaussian noise. (b) Our method jointly predicts the occlusion area and
recovers the image. While existing methods, e.g., GFC [1], require a given
mask for face de-occlusion, the proposed approach can jointly predict the
occlusion regions and recover the image.

not be available in real scenarios. In addition, these approaches
can only deal with artificial occlusions, i.e., by Gaussian block
[1] (see Figure. 1 (a)) or an image of object (e.g., glasses,
scarf, cup, etc.), but not the natural occlusions in the wild.
Moreover, the existing approaches require a given occlusion
mask in order to perform de-occlusion.

In this paper, we propose an Occlusion-Aware Generat-
ive Adversarial Network (OA-GAN), to perform weekly-
supervised natural face de-occlusion using unpaired natural
face images, i.e., the ground-truth non-occluded face image of
an occluded face image is not available in training. In addition,
the proposed de-occlusion approach does NOT require a given
mask of the occlusion.

Our OA-GAN can simultaneously predict the occluded
region and recover a non-occluded face image (as shown in
Figure 1 (b)). As shown in Figure 3, OA-GAN is composed of
a generator and a discriminator. The generator consists of an
occlusion-aware module and a face completion module. Given
a face image with occlusion, the occlusion-aware module of
the generator first predicts a mask of the occlusion, which is
input to the face completion module of the generator together
with the occluded face image for face de-occlusion. The
discriminator contains an adversarial loss for discriminating
between real face images without occlusions and the recovered
face images by de-occlusion, and an attribute preserving loss
ensuring the de-occluded face images retaining the same
attributes of input face images. We also design an alternating
training method in order to obtain better network convergence.

The main contributions of this work are as follows.
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(i) We propose a novel semi-supervised approach for natural
face de-occlusion without using either paired face images or
manual occlusion masks.

(ii) The proposed approach uses a two-stage generator with
new encoder-decoder architectures to perform face occlusion
detection and de-occlusion.

(iii) The network can be optimized end-to-end by using an
alternate training strategy, achieving better network conver-
gence.

(iv) The proposed approach outperforms the state-of-the-art
baselines in natural face de-occlusion in both user study and
face identification experiments.

II. RELATED WORK

A. Image Completion and Deocclusion

Image completion is to recover the missing content given
an image with partial occlusion or corruption. Early image
completion methods usually make use of the information of
the surrounding pixels around the occluded region to recover
the missing part. Ballester et al. [6] proposed to perform joint
interpolation of the image gray-levels and gradient directions
to fill the corrupted regions. Bertalmio et al. [7] proposed a
variational approach which is based on joint interpolation from
the image gradient and the corresponding gray values to the
filling-in areas of missing data in a still image. However, these
methods may not work well when the missing area in an image
is large or has a significant variance in pixel values. Bertalmio
et al. [8] automatically filled manually selected regions with
information surrounding them based on the fact that isophote
lines arriving at the regions’ boundaries are completed inside.
Criminisi et al. [9] proposed a patch-based method to search
relevant patches from the non-corrupted region of the image
and used them to gradually fill the corrupted regions from
outside to inside. While such an algorithm provides better
results than previous methods, the patch search process can be
very slow. In order to solve this issue, Telea [10] proposed a
fast patch search algorithm; however, this method still cannot
perform image completion in real-time. Then, Barnes et al.
[11] found approximate nearest-neighbor matches between
image patches to speed up completing the missing regions. In
general, the patch-based methods rely on the local information
and ignore the holistic context information which is also
crucial to image completion.

Recently, convolutional neural networks (CNN) based meth-
ods were studied for image completion utilizing the whole
image’s context information. The essence of this kind of
method is to predict the missing part by using all the in-
formation of the uncorrupted area. Pathak et al. [4] proposed
the Context Encoders which can understand the content of
the entire image and produce a plausible hypothesis for the
missing regions. The proposed network used an encoder-
decoder architecture with reconstruction loss and adversarial
loss. Yu et al. [5] proposed a contextural attention deep gener-
ative model-based approach to synthesize the missing regions
from coarse to fine, which can explicitly utilize surrounding
image features as references. However, the method in [5]
requires huge computational resources due to its two-stage

process for feature encoding. To solve this problem, Sagong
et al. [12] proposed a parallel extended-decoder path and
modified contextual attention module for semantic inpainting.
These methods focused on image completion with regular
shapes(e.g., rectangle mask), which may different from the
case in real applications. In order to overcome this shortcom-
ing, Liu et al. [13] used partial convolution and mask-updating
jointly to recover arbitrarily shaped area where the convolution
is masked and renormalized to be conditioned on only valid
pixels. Besides, Zeng et al. [14] proposed a pyramid-context
encoder to use the information on different scales to improve
the image completion results.

Face completion differs from general image completion in
that the structures and the shapes of different persons’ faces
are very similar, but the individual faces’ textures are different
from each other. Therefore, the face topological structure
should be retained during face completion. Zhang et al. [15]
proposed to perform face completion by moving meshy shelter
on the face, which is effective for repairing a small area of
corruption. To handle a large area of occlusion, Li et al. [1]
proposed a face completion GAN, in which a face parsing loss
was introduced to maintain the face topological structure, and
both global and local discriminators were used to ensure the
quality of the completed face image. This approach reported
promising results on the CelebA [16] dataset; however, its
effectiveness in repairing low-resolution face images with
occlusion is not known, while low-resolution and occlusion
may simultaneously present in face images in practice.

Cai et al. [17] proposed a multi-task learning approach,
named FCSR-GAN, to leverage contextual information across
different tasks to perform joint face completion and super-
resolution. While FCSR-GAN [17] can deal with both face
occlusion and low-resolution, it requires paired face images,
i.e., low-resolution occluded face images and their mated
ground-truth high-resolution face images. In addition, FCSR-
GAN requires manual occlusion mask in order to perform
face de-occlusion. By contrast, the proposed approach can
perform face de-occlusion without requiring manual occlusion
mask, and can achieve natural face de-occlusion when there
is no paired naturally occluded face image and mated ground-
truth face image for training. The face completion module
of this work differs from the face completion module (GFC
[1] or Pconv [13]) of FCSR-GAN in that: (a) although the
face completion modules of both methods share a common
encoder-decoder structure, as shown in Table I below, our face
completion module consists of different layers; and (b) the face
occlusion-aware module in this work is new, which can predict
occlusion efficiently and accurately. By contrast, FCSR-GAN
does not contain such an occlusion-aware module, and thus
cannot be used to predict the face occlusion area.

B. Face Occlusion Detection

Face occlusion detection aims to detect the facial region
that is occluded by other objects. Martinez [18] divided the
face images into k local regions and designed a probabilistic
method to analyze the occlusions in each region. JunOh et
al. [19] also divided the face image into a finite number of
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Figure 2. (a) Paired training data {xi, yi}i, in which xi is the face image with artificial occlusion and yi is its corresponding non-occluded face image. (b)
Unpaired training data {X,Y } used in the expression conversion task, in which X consists of face images with neutral expression and Y consists of face
images with smile expression; there is NO requirement that each natural face image must have a corresponding smile face image of the same subject. (c)
Unpaired training data {X,Y } in our natural face de-occlusion task, in which X contains face images with natural occlusions and Y contains non-occluded
face images but from different subjects than the subjects in X .

disjoint local patches and then determined whether each patch
belongs to the occluded area or not using a PCA model. Min
et al. [20] focused on scarf and sunglass detection by dividing
face image into two equal components and used Gabor features
and PCA and SVM models to determine the occluded area. Li
et al. [21] employed a PG-Unit to tell if every divided facial
region occluded or not and then reweighted the local facial
regions for better facial expression recognition.

The face occlusion detection in our OA-GAN is different
from the above approaches in two aspects. Firstly, all the above
methods divided the face image into several local regions
and processed each region separately, which may handle
occlusions with regular shape, but may not work well for
occlusions with irregular shapes. The occlusion-aware module
in our OA-GAN can obtain pixel-level occlusion masks, which
can handle face occlusions with arbitrary shapes. Secondly, our
method works in a semi-supervised learning and way without
using manual occlusion masks, and thus is useful for practical
applications.

C. Face Attribute Conversion

Face attribute conversion is to convert the original attributes
of the face into other attributes while maintaining the subject
identity. The existing methods of face attribute conversion
mainly utilize GAN to build face attribute conversion frame-
works. Cycle-GAN [22] and Dual-GAN [23] used a weakly su-
pervised method which treats the conversion of two attributes
as a conversion between two sets and then used a discriminator
for distinguishing face images from the two sets. GANimation
[24] and Self-regularization [25] used the attention mechanism
so that the network can accurately locate the facial regions to
be modified and achieved promising face attribute conversion
results. He et al. [26] proposed an AttGAN using attribute
classification constraint to edit facial attributes. However, this

method can only edit face attributes in a small area, and it is
difficult to complete the face image with large occlusion.

In this paper, we focus on recovering non-occluded face
images from face images with natural occlusions. Similar to
the face attribute conversion, we also use a semi-supervised
approach to build our face recovery network. In the network
structure, proposed method is similar to the GANimation [24]
and Self-regularization [25], both can predict the mask and
generate image. While GANimation and Self-regularization
use two-pathway generator, proposed method uses two-stage
generator. We will discuss the difference of the two generator
in the next Section. In addition, compared to these face
attribute conversion methods, we introduce image comletion
loss aiming for better face completion.

III. PROPOSED APPROACH

Our goal of this work is to learn a face de-occlusion model
in a semi-supervised fashion. Specifically, we aim to tackle a
more challenging face de-occlusion problem that deals with
real world occlusions without the knowledge of the ground
truth non-occluded face images and the occlusion masks.

Let {X,Y } denote the training set which contains face
images from two domains, i.e., X denoting the natural face
images with occlusion xi, and Y denoting the natural face
images without occlusion yj . However, for any face image
with natural occlusion xi in X , there is NO ground-truth face
image yi in Y that corresponds to xi. In other words, the
training face images are unpaired in terms of occlusion and
non-occlusion. Our goal is to learn a mapping between X
and Y , i.e., G : X → Y , so that for any xi, we can obtain
ŷi = G(xi), where ŷi belongs to domain Y (a recovered face
image without occlusion).

Such an image de-occlusion task is more challenging than
conventional face image de-occlusion, where paired face im-
ages are available for training. It is also more challenging
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Figure 3. Overview of our occlusion-aware GAN (OA-GAN) for semi-supervised face de-occlusion without using either natural paired training images or
occlusion masks.

Table I
THE ARCHITECTURE OF THE GENERATOR IN OUR OA-GAN.

module type patch size / stride padding output size

Face occlusion-
aware module

Conv. + IN + ReLU 7×7 / 1 3 64×128×128
2×

[Conv. + IN + ReLU] 4×4 / 2 1 256×32×32

3×
Residual Block 3×3 / 1 1 256×32×32

2×
[Deconv. + IN + ReLU]

(intermediate face feature)
4×4 / 2 1 64×128×128

Conv. Sigmoid
(mask) 7×7 / 1 3 1×128×128

Face completion
module

3×
[Conv. + IN + ReLU] 4×4 / 2 1 512×16×16

3×
[Deconv. + IN + ReLU] 4×4 / 2 1 64×128×128

Conv. + Tanh 7×7 / 1 3 3×128×128

than face expression conversion, which is actually an image
style change. The reasons why natural face de-occlusion is
more challenging are as follows. (i) While face de-occlusion
methods [1] require given occlusion mask to handle artificial
occlusions and focus on de-occlusion of artificial occlusion (as
shown in Figure 2 (a)), our face de-occlusion method does not
require a given occlusion mask, and can deal with natural face
occlusions without having the ground-truth non-occluded face
images for training; (ii) Although the expression conversion
method GANimation [24] does not require paired data for
training, the expression conversion task allows changes of the
whole face area as long as the subject identity is retained and
the face image looks realistic. Face de-occlusion is a more
challenging task, because it requires the facial area without
occlusions remain unchanged after de-occlusion; (iii) While
the expression conversion method [24] takes the cycle structure
to convert the different expression, our face de-occlusion
method does not rely on the cycle structure to convert the
occluded face images to non-occluded face images; (iv) The
amount of annotations used in our method (as shown in Figure
2 (c)) is less than that in [24] (as shown in Figure 2 (b)). For

Table II
THE ARCHITECTURE OF THE DISCRIMINATOR IN OUR OA-GAN.

type patch size / stride padding output size
Conv. + LeakyReLU 4×4 / 2 1 64×64×64

5×
[Conv. + LeakyReLU] 4×4 / 2 1 2048×2×2

Conv. (adv) 3×3 / 1 1 1×2×2
Conv. (attr) 2×2 / 1 0 10×1×1

[24], every face image in X has detailed action unit labeling.
However, for our method, we only know whether the face
images in X is occluded or not. So, the expression conversion
method is difficult than the existing face de-occlusion method,
and our face de-occlusion method is more difficult than the
expression conversion method (as shown in Figure 2).

To this end, we propose an OA-GAN (as shown in Figure
3) to perform face image de-occlusion without having paired
natural occluded and non-occluded face images. As shown in
Figure 3, our OA-GAN consists of a generator and a discrim-
inator. The generator jointly performs occlusion prediction and
de-occlusion. The discriminator follows an auxiliary classifier
GAN structure. To obtain better network convergence, we
propose a novel training method that alternately feeds paired
face images with synthetic occlusions and natural unpaired
face images into the generator for semi-supervised learning.

A. Generator

The generator of OA-GAN consists of a face occlusion-
aware module and a face completion module, which aims at
detecting and restoring the occlusions, respectively. The face
occlusion-aware module has an encoder-decoder architecture
consisting of six residual blocks [27], with instance normaliz-
ation [28] and ReLU layers after every convolution and decon-
volution layers in our generator, and uses a convolution layer
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with a sigmoid activation function to regress the occlusion
mask. The regressed occlusion mask is a 0-1 filter (0 for
occlusion and 1 otherwise) which can be used to keep the
texture of non-occluded regions unchanged.

Featnon occ =M � Feat, (1)

where � represents the element-wise multiplication, M rep-
resents the mask. Featnon occ represents the occlusion-free
feature map which is fed into the face completion module.
Feat represents the intermediate face feature of the encoder-
decoder network in the occlusion-aware module. The face
completion module also follows an encoder-decoder architec-
ture which takes the non-occluded feature map (defined by
Equation (1)) as input and generates the texture of occluded
regions. Similarly, Instance Normalization and ReLU layers
are followed by every convolution and deconvolution layer in
face completion module. The detailed generator architecture
is shown in Table I.

The output of the face completion module is a synthetic
face image including the restored occluded area and the non-
occluded area from the input face image. In other words, we
only need to restore the occluded area, but keep the non-
occluded area unchanged. The final recovered face image is
computed as:

xfinal =M � x + (1−M)� xsynth, (2)

where x, xfinal and xsynth represent the original occluded
face image, the final de-occluded face image and the synthes-
ized face image by our face completion module, respectively.

We should point out that the generator in our approach
is essentially different from the generators using in existing
methods like GANimation [24] and Self-regularization [25].
GANimation [24] and Self-regularization [25] used a two-
path network structure, with one path for mask prediction,
and the other path to perform the transformation between two
domains. However, the predicted mask is mainly used as a
post-processing manner (see Figure 4 (a)). Compared with the
two-path generator, the generator of our OA-GAN, particularly
the face completion module, can leverage the contextual
information from the occlusion-aware module (see Figure 4
(b)) to achieve better face completion results. Specifically,
the first stage of the generator (occlusion prediction) will
be optimized based on no only the final supervision signal
but also the state of the second stage of the generator (face
completion). Therefore, the two stages can adapt to each other
smoothly. The output of the occlusion-aware module consists
of a predicted occlusion mask and an intermediate face feature
map. The output by this module is then used as the input of the
face completion module, which leads to better non-occluded
face image generation results compared to existing methods.

B. Discriminator

The discriminator of OA-GAN plays an auxiliary role in net-
work training. The discriminator is used to determine whether
the recovered face is real or fake and whether the recovered
face can maintain the attributes contained the original input
face image. In our experiments, the supervisory signal of

(a) GANimation and 

Self-regularization

Mask

predict 

module

Image

transfer

module

Transferred

image

Predicted 

mask

(b) OA-GAN

Face

completion

module

Occlusion

aware

module

Predicted 

mask

Middle

feature

Input image

Generator

Synthetic 

image

Discriminator

Figure 4. Different network structures between (a) the generator used in
GANimation [24] and Self-regularization [25] and (b) the generator of our
OA-GAN.

attributions can offset the influence of unbalanced data. For ex-
ample, in the CelebA dataset, there are significantly less senior
people than young people, less bearded people than people
with a beard. We use a total of 10 attributes from CelebA,
which are 5 o clock shadow, goatee, heavy makeup, male,
mustache, no Beard, pale skin, sideburns, wearing lipstick, and
young. The structure of our discriminator is similar to Patch-
GAN [29], but with modifications of the last layer adding an
attribute classifier. The detailed discriminator architecture is
shown in Table II. The loss function of the discriminator is
defined as follow:

LD = αLadv + βLattr, (3)

where the Ladv is the adversarial loss [30] and the Lattr is
the mean square error of the attribute between the ground-truth
image and the recovered face image. Here, we only compute
the Lattr for synthetic paired face images. α and β are two
hyper-parameters that balance the influences of the two losses.

C. Alternating Training

The absence of natural paired face images (with and without
natural occlusions) poses additional challenges to the face
de-occlusion task. To make the network training possible,
we propose an alternating training strategy, with different
loss combinations in different stages, to optimize the whole
network. Overall, the alternating training consists of two
stages: (i) auxiliary training with synthetic paired images, and
(ii) training with natural unpaired images (as shown in Figure
5). The former gives the network a good ability to complete
the face images and the later aims to ensure the position of
the occlusion.

Auxiliary training with synthetic paired images. In this
stage, for synthetic paired images, we combine multiple loss
functions as defined below to train the network.
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Figure 5. The diagram of alternating training for our OA-GAN.

The perceptual loss [31] is used to ensure the low-level pixel
values and high-level abstract features as similar as possible
between the reconstructed face image and the ground truth.
The perceptual loss is defined as:

Lperceptual =
N−1∑
n=0

‖φn(xsynth)− φn(xgt)‖1+

N−1∑
n=0

‖φn(xfinal)− φn(xgt)‖1,

(4)

where the φ is the VGG-16 [32] which is pre-trained based on
ImageNet, and φn represents the n-th feature maps in VGG
model. xsynth, xfinal, and xgt represent the synthetic face
image, the non-occluded face image, and the ground truth
image, respectively.

The style loss [13] is used to perform an autocorrelation
(Gram matrix) on each feature map and ensure the style
unification of the recovered face part and the non-occluded
face part. The style loss is defined as:

Lstyle =

N−1∑
n=0

‖Kn(φn(xsynth)
Tφn(xsynth)− φn(xgt)Tφn(xgt))‖1+

N−1∑
n=0

‖Kn(φn(xfinal)
Tφn(xfinal)− φn(xgt)Tφn(xgt))‖1,

(5)
where the Kn is the normalization factor 1/(Cn · Hn ·Wn)
for the n-th VGG-16 layer, Cn, Hn and Wn are the number,
height and width of feature maps, respectively.

The pixel loss is used to ensure the generate face image
xfinal is close to the gound truth xgt, which is defined as:

Lpixel = γ‖(1−M)� (xfinal − xgt)‖1
+ δ‖M � (xfinal − xgt)‖1,

(6)

where the γ and δ are scalar factors for balancing different
loss functions.

The smoothness loss penalizes the final synthetic face image
xfinal and the mask M if they are not smooth on pixel level,

which is defined as:

Lsmooth =

W,H∑
i,j

(‖xi,j+1
final − x

i,j
final‖1 + ‖x

i+1,j
final − x

i,j
final‖1)

+

W,H∑
i,j

(‖M i,j+1 −M i,j‖1 + ‖M i+1,j −M i,j‖1),

(7)
where W and H are respectively the width and height of the
final synthetic face image xfinal. The size of mask M is also
W ×H . ‖ · ‖1 is the L1 norm.

The L2-norm is a penalty term during network training,
which can make the predicted occlusion mask as tight as pos-
sible; otherwise, some non-occluded area might be predicted
as occluded area.

The total loss function for the synthetic paired face images
is define as follow:

Lpaired = λ1Lperceptual + λ2Lstyle + λ3Lpixel

+ λ4Lsmooth + λ5‖M‖22 + λ6Ladv,
(8)

where λ1 − λ6 are scalar factors for balancing different loss
functions and Ladv is an adversarial loss.

Training with natural unpaired images. In this stage, for
natural unpaired face images, we introduce the smoothness
loss, the mask L2 penalty loss and the adversarial loss to train
the network. The total loss function for the natural unpaired
face image is defined as follow:

Lunpair = λ4Lsmooth + λ5‖M‖22 + λ6Ladv, (9)

where λ1, λ2 and λ3 are scalar factors balancing different loss
functions.

The essence of our alternating network training is to lever-
age the knowledge from paired face images with synthetic
occlusion to assist in the de-occlusoin model learning for
natural occlusions. Our alternating training differs from the
commonly used two-stage training such as [17] in that: while
two-stage training is a step-by-step optimization for different
modules of the network using the same data, alternate training
is to use different data to alternately train the entire network.
In the training process, we first set the ratio of the synthetic
paired face images and the natural unpaired face images to
10:1. Then, we gradually increase the ratio between nature
unpaired face images until the ratio of the synthetic paired
face images and natural unpaired face images becomes 1 to 1.

IV. EXPERIMENTAL RESULTS

A. Database

We perform experimental evaluations on the public CelebA
dataset [16], which consists of 202,599 face images from
10,177 subjects, with each image annotated with 40 binary
attributes. We treat glasses as occlusion, and divide CelebA
into two subsets: wearing glasses (13,193 face images) or not
(189,406 face images).

We also collect a face dataset with natural occlusions by
glasses and respirators, which contains 19746 face images
from CelebA, the MAFA [33] and the Internet. In our exper-
iments, randomly select 80% of the naturally occluded face
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Figure 6. Face occlusion-aware and face completion results by our proposed approach for face images with artificial occlusion. (a) shows the input images
with artificial occlusion. (b) shows the masks predicted by our proposed method. (c) and (d) show the de-occluded and ground-truth face images.

images (by either glasses or glasses) and non-occluded face
dataset for training, and the remaining 20% face images for
testing.

We build the paired occluded and non-occluded face dataset
using more than 640 different types of artificial occlusions
(eyeglasses, respirators, scarves, etc.). We randomly choose
one type of occlusion object and overlay it to a non-occluded
face image from CelebA (see some examples in Figure 6). We
get more than 100,000,000 pairs of occluded and non-occluded
face images in total. Again we randomly use 80% pairs for
training, and the remaining 20% pairs for testing.

B. Training Details

Before training, all face images are aligned based on five
facial landmarks (two centers of two eyes, nose tip, and two
corners of mouth) provided in CelebA, and are scaled to
128 × 128. For the face images we collected, we locate the
five facial landmarks using an open-source landmark detection
algorithm SeetaFace1. Although occlusion may affect the ac-
curacy of face landmark detection, the final face de-occlusion
results (e.g., the last line of Figure 7) show that the proposed
approach still work well even the face landmark detection
accuracy is not good for face images with occlusion. During
training, our artificial occlusions are generated by randomly
placing an object on the face image as shown in Figure 6 (a).

In addition, in order to make the proposed OA-GAN con-
verge well, we use WGAN-GP [34] to optimize the network.
In terms of the optimization, we use the Adam algorithm [35]
with an initial learning rate of 10−4. Our loss function in
Eq. (8) consists of six items, in which the first four items
are designed for face completion and the last two items are
designed for occlusion prediction. For the first four items, we
have followed [13], [1] to set the hyper-parameters (λ1 = 0.05,
λ2 = 120, λ3 = 1, λ4 = 10−3). For the last two items, we
choose the hyper-parameters (λ5 = −1, λ6 = 1) by making

1https://github.com/seetaface/SeetaFaceEngine.

the scale of the value the same as the scale of the value of
the first four items. Although we only use such a simple
rule to choose the hyper-parameters, the face de-occlusion
visualization and face recognition results (see Figure 7 and
Figure 13) show the effectiveness of the proposed approach.

C. Qualitative Comparisons

Qualitative analysis is to compare the visual results, focus-
ing on the reality and rationality of the recovered image. We
conducted four different experiments on face occluded image
dataset. The first experiment is to verify the effectiveness of
the proposed OA-GAN in recovering from face images with
artificial occlusion (see Figure 6). We can see that the proposed
approach generates visually reasonable results compared with
the ground-truth face images. The important facial structures
and characteristics also look visually similar to the ground-
truth.

The second experiment is to compare the results of our OA-
GAN in recovering from face images with natural occlusions
with Cycle-GAN [22], Self-regularization [25], and GANim-
ation [24], which are used for converting natural unpaired
images between two domains or face expression conversion.
The results are shown in Figure 7. In our experiments, Cycle-
GAN, [25], and GANimation only recover the face images
from one type of occlusion; so two models need to be trained
for recovering face images from occluded face images with
glasses and respirators, respectively. From Figure 7, we can see
the results of our method are much better than those obtained
by Cycle-GAN, Self-regularization, and GANimation. We con-
sider that Cycle-GAN and GANimation are based on the cycle
structure which can convert an image (Ia) from domain A to
domain B (denoted as Iab), and then convert image Iab back
to domain A during the model training. Such a cycle structure
can leverage self-supervision to perform image transformation
between two domains, and has been widely used in tasks like
face attribute conversion [24]. Face de-occlusion is a more
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Figure 7. Qualitative comparisons of face de-occlusion results by Cycle-GAN [22], GANimation [24], Self-regularization [25] and our OA-GAN on the
CelebA database. (a, i) are the input images to Cycle-GAN, GANimation, Self-regularization and our OA-GAN. (b, d, f, h) and (j, l, n, p) are recovered face
images by Cycle-GAN, GANimation, Self-regularization and our OA-GAN, respectively. (c, e, g) and (k, m, o) are predicted occlusion masks by GANimation,
Self-regularization and our OA-GAN, respectively.

complicated task than style transformation, which requires that
the non-occluded facial area must remain the same as that in
the input occluded face image, while the occluded area can be
reasonably recovered. The cycle structure cannot assure such
a requirement during transformation between two domains.
Besides, although Self-regularization does not rely on a cycle
structure, and uses a generator with two-path structure, it does
not make good use of the contextual information during face
completion.

In the third experiment, we compare the proposed OA-
GAN with [36], which can perform natural face de-occlusion
using DCGANs in an iterative way. Our approach differs from
[36] in the following aspects: (i) [36] tries to generate a non-
occluded face image from a control vector. In the generated

face image, the area outside the occlusion mask are expected
to be as similar as the same area of the input face image.
Different from [36], the second-stage of our generator (the
face completion module) generates a non-occluded face image
by using the features of the area outside the occlusion mask,
which is the output of the first-stage of our generator (the
occlusion-aware module). As a result, our method can generate
a non-occluded face image with higher quality than [36]. (ii)
[36] is an iterative method; even during network inference, it
usually requires about 1000 iterations, which requires much
more computational cost than our single forward inference
pass. (iii) While [36] does not require any paired data (e.g.,
occluded face image and mated non-occluded face image)
for training, our method can leverage the knowledge from
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Figure 8. Qualitative comparisons of face de-occlusion results by [36] and our OA-GAN for several face images with natural occlusion from the CelebA
database. (a) are the original input face images. (b, d) are the predicted occlusion masks by [36] and our OA-GAN, respectively. (c, e) are the recovered face
images by and our OA-GAN, respectively.
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Figure 9. Results of the proposed OA-GAN in dealing with face images without occlusion. (a) the input face images, (b) the predicted occlusion masks, and
(c) the face images after de-occlusion.

paired face images with synthetic occlusion to perform semi-
supervised model learning for natural face de-occlusion. Visual
comparisons of the face de-occlusion results by our method
and [36]2 in Figure 8 show the superiority our approach.

In the four experiment, we provide evaluations to see how
the proposed OA-GAN can deal with face images without
occlusions. As shown in Figure 9, we can see that the proposed
OA-GAN predicts very few occlusion masks for the face
images without occlusion. This is a good property because
we expect a face de-occlusion algorithm should keep a face
image without occlusion unchanged as much as possible.
For de-occlusion experiments using face images with natural
occlusions, it is difficult to find the exact ground-truth face
images without occlusions.

D. Quantitative Comparisons

In addition to visual quality, we conducted two different
experiments to quantify the effectiveness of the proposed
approach. In the first experiment, we use two metrics to

2Since the code of [36] is not publicly available, we reimplemented the
method in [36] based on the best of our understanding.

evaluate proposed method on recovering synthetic face images.
One metric is the peak signal-to-noise ratio (PSNR), which
is widely used in image compression area to measure the
fidelity of the reconstructed image. The other metric is the
structural similarity index (SSIM) [37], which is a perceptual
metric that considers image degradation as a perceived change
in structural information, while also incorporating important
perceptual phenomena, including both luminance masking and
contrast masking terms. We report the results in terms of PSNR
and SSIM on the synthetic occluded face image dataset.

We compare the proposed approach with face completion
method GFC [1], and general image inpainting methods GnIpt
[5], Pconv [13] and CSA [38]. For fair comparisons, we use
the synthetic paired face images shown in Figure 10 to conduct
the experiment. For our OA-GAN, we let the model predict the
position of occlusions by itself. For GFC, GnIpt, Pconv and
CSA, since these methods require occlusion mask as input,
we use the mask predicted by our model, together with the
occluded face image, as their input. Therefore our method
needs to predict the occluded region and then recover the
face images, but GFC, GnIpt, Pconv and CSA only need
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(a) Input to our 
OA-GAN

(b) Predicted occlusion 
mask by OA-GAN

(d) Input to GFC, 
GnIpt and Pconv

(c) mask binarization

Figure 10. (a) the input face image with artificial occlusion, (b) predicted
occlusion mask by our OA-GAN, (c) is the binary mask image for (b), and (d)
the input to GFC, GnIpt, Pconv and CSA, which is the multiplication result
of (a) and (c).

Table III
QUANTITATIVE EVALUATIONS OF THE PROPOSED APPROACH AGAINST THE

STATE-OF-THE-ART METHOD REQUIRING OCCLUSION MASK AS INPUT
(GFC [1], GNIPT [5], PCONV [13], AND CSA [38]) IN TEAMS OF PSNR

(DB) AND SSIM.

Method GFC GnIpt PConv CSA Proposed

PSNR(dB) 19.96 20.13 22.18 22.71 22.61

SSIM 0.718 0.725 0.768 0.794 0.787

to recover the face images using our mask. The PSNR and
SSIM achieved by the proposed approach, GFC, GnIpt, Pconv
and CSA3 are reported in Table III. We can notice that our
approach achieves higher PSNR and SSIM than GFC, GnIpt
and Pconv, and comparable results with the CSA for face
completion with artificial occlusions. These results suggest that
while the existing methods on face de-occlusion may not work
when manual occlusion masks are not available, the proposed
OA-GAN can still obtain very reasonable de-occlusion results.

In the second experiment, we performed user study by
asking three participants to select the best one from the face
de-occlusion results by our OA-GAN, and three state-of-the-
art (SOTA) de-occlusion methods (Cycle-GAN, GANimation,
and Self-regularization). The de-occlusion results of 300 face
images with natural occlusion are presented to the participants.
Each time, the de-occlusion results by four different methods
are displayed on screen in a random order to avoid bias of a
fixed order. The user study results are given in Figure 11. We
can see that our method achieves much better results than the
SOTA methods in user study, which indicates that face de-
occlusion by our method can have better perceptual quality
than the SOTA methods.

E. Effectiveness for Face Recognition

We also study whether the proposed OA-GAN can improve
face recognition when using the recovered face images for
face recognition. We choose LightCNN-9 [39] as a face
recognition model and use two types of face images to train
it: (a) original face images with natural occlusions in CelebA,
and (b) the face images after de-occlusion by OA-GAN. The
training, gallery, and probe sets for face identification contain

3Since the code for Pconv and CSA are not publicly available, we re-
implemented the two methods based on the best of our understanding.
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Figure 11. The percentage of best face de-occlusion results in user study for
our OA-GAN, GANimation, Cycle-GAN and self-regularization.
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Figure 12. Rank 1-5 face identification accuracies using natural occluded
face images and recovered face images by OA-GAN.

162,770, 348, and 1,053 face images, respectively4. The rank
1-5 face identification rates are shown in Figure 12. We can
see that face identification using the recovered face images
by our approach can lead to higher accuracy than using the
original occluded face images. We also visualized some face
de-occlusion results by our OA-GAN in Figure 13. Since the
ground-truth face images are not available for face images with
natural occlusion, we use another face image without occlusion
of the same person as a reference of the ground-truth. We
can see that the recovered facial areas by our method look
very reasonable and realistic, w.r.t. the reference ground-truth
image.

V. ABLATION STUDY

Our proposed OA-GAN uses different losses to optimize
the network when training with the unpaired face images
with natural occlusions and paired face images with artificial
occlusions. In order to verify the effect of each loss function,
we conduct ablation study about all the loss items (perceptual
loss, style loss, pixel loss, smooth loss, and L2 penalty loss)
in our loss function referring to existing methods [13], [1].
We discard one loss item from the loss function each time,

4The sizes of the gallery and probe sets is not very large because it is
difficult to find a lot of face images with natural occlusions.
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Figure 13. Comparison between the recovered face images by OA-GAN and another face image of the same person. (a) are the input face images. (b) are
the predicted occlusion masks. (c) are the recovered face images by our OA-GAN, and (d) are another face images of the same person.

Input occluded 
face images

Ground-truth 
images

(a) w/o perceptual loss (b) w/o  style loss (c)  w/o smooth loss

(d) w/o L2 penalty loss (e)  w/o pixel loss (f) w/ all losses

Figure 14. Visualization of face de-occlusion results by OA-GAN. (a) are the input face images with natural occlusion, (b) are the predicted occlusion masks,
(c) are the recovered face images by our OA-GAN, and (d) are another face image of the same person, which are not the exact ground-truth face images, but
can be used as references of the ground-truth.

Table IV
PSNR AND SSIM OF THE DE-OCCLUSION RESULTS BY OUR METHOD DURING WHEN DISCARDING INDIVIDUAL LOSS TERMS FOR ABLATION STUDY.

Ablation
condition

(a) w/o
perceptual loss

(b) w/o
style loss

(c) w/o
smooth loss

(d) w/o L2

penalty loss
(e) w/o

pixel loss
(f) w/

all losses

PSNR(dB) 22.48 21.91 21.74 22.55 21.74 22.61

SSIM 0.784 0.726 0.760 0.781 0.742 0.787

and give the qualitative comparison of occlusion prediction
and de-occlusion results in Figure 14. We can notice that
discarding any loss item from our loss function may lead to
severe artifacts in the face images after de-occlusion. We also
provided the PSNR and SSIM scores for individual methods
during ablation study in Table IV. Again, we notice that each
item in our loss function contributes to the convergence of our
model.

We also study the benefit of our training strategy for the
model convergence. We conducted two experiments: (i) pre-
train with the paired face images of artificial occlusions and
then finetune the model with the unpaired face images with

natural occlusions and (ii) train with paired face images
of artificial occlusions and unpaired face images of natural
occlusion using our alternating training method. Since we
do not have the ground-truth for face images with natural
occlusion, we provide qualitative comparison about the re-
covered face images. As shown in Figure 15, we perceive that
our alternating training leads to more visually pleasing facial
images. We believe that this benefits from the training with
artificial occlusions. However, pre-training in experiment (i)
does not have such an effect. Besides, if the model is trained
directly without our strategy, we cannot obtain reasonable face
de-occlusion results.
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Figure 15. Quantitative comparisons of firstly pre-training in paired face images with artificial occlusion and then fine-tuning in unpaired face images with
natural occlusion (training method 1), and our proposed alternating training method (training method 2). (a) is the input of the occluded face images, (b) and
(d) are the predicted masks by two different training methods. (c) and (e) are de-occluded face images using two different training methods.

We also compare our two-stage generator with the existing
two-path generator[24], [25] (shown in Figure 4). For fair
comparisons, we replace the generator of OA-GAN with the
two-path generator, and then use our training strategy to train
the network. The results are shown in Figure 16. We can
see that compared with the two-path generator, the proposed
two-stage network structure can make better use of contextual
information to obtain reasonable image de-occlusion results.

VI. CONCLUSION

In this paper, we propose a deep generative adversarial
network (named as OA-GAN) for natural face de-occlusion.
The proposed OA-GAN learns from unpaired face images
with natural occlusion and paired face images with artificial
occlusion in a semi-supervised manner using different loss
functions. The smoothness loss, the L2 weight penalty loss,
and adversarial loss are used for the natural unpaired occluded
face image. For the synthetic paired images, apart from above
three losses, the perceptual loss, style loss, and pixel loss are
added. Besides, we design an alternate training strategy to
obtain better network convergence. Experimental results on
the public CelebA dataset and a dataset with natural occlusions
show that the proposed approach can achieve promising results
in recovering face images with unknown natural occlusions,
and is helpful for improving face recognition performance.

In our future work, we would like to investigate new
designs of the generator and discriminator to recover high-
quality face images from occluded face images. We also
would like to study the face de-occlusion method utilizing
3D face priors [40][41] and apply the recovered face images
for face recognition, attribute learning, face parsing, emotion
recognition, etc.
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[9] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image
Process., vol. 13, no. 9, pp. 1200–1212, 2004.

[10] A. Telea, “An image inpainting technique based on the fast marching
method,” Journal of graphics tools, vol. 9, no. 1, pp. 23–34, 2004.

[11] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
match: A randomized correspondence algorithm for structural image
editing,” in Proc. SIGGRAPH, 2009.

[12] M.-c. Sagong, Y.-g. Shin, S.-w. Kim, S. Park, and S.-j. Ko, “PEPSI:
Fast image inpainting with parallel decoding network,” in Proc. IEEE
CVPR, 2019, pp. 11 360–11 368.

Page 12 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX 13

Face images with 
natural occlusions

(as input) 
(a)

Predicted occlusion 
masks by two-

pathway generator
(b)

Recovered by two-
pathway generator

(c)

 Predicted occlusion 
masks by two-stage 

generator
(d)

Recovered by two-
stage generator

(e)

Figure 16. Qualitative comparisons between the two-path generator and our two-stage generator. (a) is the input images, (b) and (c) are the predicted occlusion
masks and the recovered face images by OA-GAN using the two-path generator, (d) and (e) are the predicted occlusion masks and the recovered face images
by OA-GAN using the two-stage generator.

[13] G. Liu, F. A. Reda, K. J. Shih, and T.-C. Wang, “Image inpaint-
ing for irregular holes using partial convolutions,” arXiv preprint,
arXiv:1804.07723, 2018.

[14] Y. Zeng, J. Fu, H. Chao, and B. Guo, “Learning pyramid-context encoder
network for high-quality image inpainting,” in Proc. IEEE CVPR, 2019,
pp. 1486–1494.

[15] S. Zhang, R. He, Z. Sun, and T. Tan, “Demeshnet: Blind face inpainting
for deep meshface verification,” IEEE Trans. Inf. Forensics Security,
vol. 13, no. 3, pp. 637–647, 2018.

[16] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proc. ICCV, 2015.

[17] J. Cai, H. Han, S. Shan, and X. Chen, “Fcsr-gan: Joint face completion
and super-resolution via multi-task learning,” IEEE Transactions on
Biometrics, Behavior, and Identity Science, 2019.

[18] A. M. Martı́nez, “Recognizing imprecisely localized, partially occluded,
and expression variant faces from a single sample per class,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 6, pp. 748–762, 2002.

[19] H. JunOh, K. MuLee, and S. UkLee, “Occlusion invariant face re-
cognition using selective local non-negative matrix factorization basis
images,” Image and Vision computing, vol. 26, no. 11, pp. 1515–1523,
2008.

[20] R. Min, A. Hadid, and J.-L. Dugelay, “Improving the recognition of
faces occluded by facial accessories,” in Proc. FG, 2011, pp. 442–447.

[21] Y. Li, J. Zeng, S. Shan, and X. Chen, “Patch-gated cnn for occlusion-
aware facial expression recognition,” in Proc. ICPR, 2018.

[22] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. ICCV,
2017, pp. 2242–2251.

[23] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual
learning for image-to-image translation.” in Proc. ICCV, 2017, pp. 2849–
2857.

[24] A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and F. Moreno-
Noguer, “Ganimation: Anatomically-aware facial animation from a
single image.” in Proc. ECCV, 2018, pp. 818–833.

[25] C. Yang, T. Kim, R. Wang, H. Peng, and C.-C. J. Kuo, “Show, attend
and translate: Unsupervised image translation with self-regularization
and attention.” IEEE Trans. Image Process., vol. 28, no. 10, pp. 4845–
4856, 2019.

[26] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Attgan: Facial attribute
editing by only changing what you want,” IEEE Trans. on Image
Process., 2019.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[28] D. Ulyanov and A. Vedaldi, “Instance normalization: The missing
ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[29] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. CVPR, 2017, pp. 5967–
5976.

[30] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. NeurIPS, 2014, pp. 2672–2680.

[31] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” arXiv preprint arXiv:1508.06576, 2015.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[33] S. Ge, J. Li, Q. Ye, and Z. Luo, “Detecting masked faces in the wild
with lle-cnns,” in Proc. CVPR, 2017, pp. 2682–2690.

[34] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Cour-
ville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[36] L. Xu, H. Zhang, J. Raitoharju, and M. Gabbouj, “Unsupervised facial
image de-occlusion with optimized deep generative models,” pp. 1–6,
2018.

[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. on Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[38] H. Liu, B. Jiang, Y. Xiao, and C. Yang, “Coherent semantic attention
for image inpainting,” arXiv preprint arXiv:1905.12384, 2019.

[39] X. Wu, R. He, Z. Sun, and T. Tan, “A light cnn for deep face
representation with noisy labels,” IEEE Trans. Inf. Forensics Security,
vol. 13, no. 11, pp. 2884–2896, 2018.

[40] H. Han and A. K. Jain, “3D face texture modeling from uncalibrated
frontal and profile images,” in Proc. BTAS, 2012, pp. 223–230.

[41] K. Niinuma, H. Han, and A. K. Jain, “Automatic multi-view face
recognition via 3d model based pose regularization,” in Proc. BTAS,
2013, pp. 1–8.

Jiancheng Cai received the B.S. degree from Shan-
dong University in 2017, and he is working to-
ward the M.S. degree in the Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS), and the University of Chinese Academy of
Sciences. His research interests include computer
vision, pattern recognition, and image processing
with applications to biometrics.

Page 13 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX 14

Hu Han is an Associate Professor of the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences (CAS). He received the B.S. degree from
Shandong University, and the Ph.D. degree from
ICT, CAS, in 2005 and 2011, respectively, both in
computer science. Before joining the faculty at ICT,
CAS in 2015, he has been a Research Associate at
PRIP lab in the Department of Computer Science
and Engineering at Michigan State University, and
a Visiting Researcher at Google in Mountain View.
His research interests include computer vision, pat-

tern recognition, and image processing, with applications to biometrics and
medical image analysis. He has authored or co-authored over 50 papers in
refereed journals and conferences including IEEE Trans. PAMI/IP/IFS/BIOM,
CVPR, ECCV, NeurIPS, and MICCAI. He was a recipient of the IEEE
FG2019 Best Poster Award, and CCBR 2016/2018 Best Student/Poster
Awards. He is a member of the IEEE.

Jiyun Cui received the BS degree from Northeast
Normal University, in 2016, and the master degree
from ICT, CAS in 2019. He is now a research
engineer at Baidu. His research interests include
computer vision and pattern recognition with focus
on bio-perception oriented intelligent computing.

Jie Chen received the MSc and PhD degrees from
the Harbin Institute of Technology, China, in 2002
and 2007, respectively. He joined the faculty with the
Graduate School in Shenzhen, Peking University, in
2019, where he is currently an associate professor
with the School of Electronic and Computer En-
gineering. Since 2018, he has been working with
the Peng Cheng Laboratory, China. From 2007 to
2018, he worked as a senior researcher with the
Center for Machine Vision and Signal Analysis,
University of Oulu, Finland. In 2012 and 2015,

he visited the Computer Vision Laboratory, University of Maryland and
School of Electrical and Computer Engineering, Duke University respectively.
His research interests include pattern recognition, computer vision, machine
learning, deep learning, and medical image analysis. He is an associate editor
of the Visual Computer. He is a member of the IEEE.

Li Liu (SM’19) received the BSc, MSc and PhD
degrees from the National University of Defense
Technology (NUDT), China, in 2003, 2005, and
2012, respectively. She joined the faculty with
NUDT in 2012, where she is currently an associate
professor with the College of System Engineering.
From 2008.1 to 2010.3, she visited the University
of Waterloo, Canada. From 2015.3 to 2016.1, she
visited the Multimedia Laboratory, Chinese Univer-
sity of Hong Kong. From 2016.11 to 2018.11, she
worked with the Center for Machine Vision and

Signal Analysis, University of Oulu, Finland. She was a cochair of seven
International Workshops at CVPR, ICCV and ECCV. She was the leading
guest editor of special issues of the IEEE Transactions on Pattern Analysis and
Machine Intelligence and the nternational Journal of Computer Vision. Her
current research interests include facial behavior analysis, image and video
descriptors, object detection, and recognition. Her papers have about 2,000
citations in Google Scholar. She is a senior member of the IEEE.

S. Kevin Zhou Professor S. Kevin Zhou obtained his
PhD degree from University of Maryland, College
Park. He is a Professor at Chinese Academy of
Sciences. Prior to this, he was a Principal Expert and
a Senior R&D director at Siemens Healthcare. Dr.
Zhou has published 180+ book chapters and peer-
reviewed journal and conference papers, registered
250+ patents and inventions, written two research
monographs, and edited three books. His two most
recent books are entitled “Medical Image Recogni-
tion, Segmentation and Parsing: Machine Learning

and Multiple Object Approaches, SK Zhou (Ed.)” and “Deep Learning for
Medical Image Analysis, SK Zhou, H Greenspan, DG Shen (Eds.).” He has
won multiple awards including R&D 100 Award (Oscar of Invention), Siemens
Inventor of the Year, and UMD ECE Distinguished Aluminum Award. He
has been an associate editor for IEEE Transactions on Medical Imaging and
Medical Image Analysis, an area chair for CVPR and MICCAI, a board
member of the MICCAI Society. He is a Fellow of IEEE and AIMBE.

Page 14 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


