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a b s t r a c t 

Recently, automatic pain assessment technology, in particular automatically detecting pain from facial 

expressions, has been developed to improve the quality of pain management, and has attracted increasing 

attention. In this paper, we propose self-supervised learning for automatic yet efficient pain assessment, 

in order to reduce the cost of collecting large amount of labeled data. To achieve this, we introduce a 

novel similarity function to learn generalized representations using a Siamese network in the pretext 

task. The learned representations are finetuned in the downstream task of pain intensity estimation. To 

make the method computationally efficient, we propose Statistical Spatiotemporal Distillation (SSD) to 

encode the spatiotemporal variations underlying the facial video into a single RGB image, enabling the 

use of less complex 2D deep models for video representation. Experiments on two publicly available pain 

datasets and cross-dataset evaluation demonstrate promising results, showing the good generalization 

ability of the learned representations. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

The concept of pain is learned by individuals through their life

experiences. Hence, pain is a subjective phenomenon, which is in-

fluenced to varying degrees by biological, psychological, and social

factors. Formally, pain can be described as an unpleasant sensory

and emotional experience typically caused by actual or potential

tissue injury. Therefore, pain is considered as an indicator for the

health condition, which identifies harmful conditions for the body.

Reliable understanding of pain contributes to disease diagnosis and

provides useful information for healthcare personnel to choose ad-

equate treatment to avoid long-lasting consequences for individu-

als’ health. 

Automatic pain assessment has attracted increasing attention

of the research community, as it offers continue and objective

pain assessment that improves the clinical outcome. Using visual

data, many automatic pain assessment methods have been pro-

posed by analyzing facial expressions which are a reliable indica-

tor of pain, estimating pain intensity, and distinguishing facial ex-
� Handle by Associate Editor Li Liu. 
∗ Corresponding author. 

E-mail address: mohammad.tavakolian@oulu.fi (M. Tavakolian). 

f  

S  

a  

H  

https://doi.org/10.1016/j.patrec.2020.09.012 

0167-8655/© 2020 Elsevier B.V. All rights reserved. 
ressions caused by pain from other ordinary facial expressions.

n automatic pain assessment, the development of powerful fea-

ure representations from facial videos plays a very important role

nd thus has been one main focus of research. Earlier works at-

empt to address this problem by either ignoring the temporal cue

nd extracting spatial features from frames, or treating videos as

olumetric objects to capture spatiotemporal features. For instance,

ucey et al. [17] used SVM classifiers to classify there levels of pain

ntensity. Kaltwang et al. [14] computed a facial representation by

xtracting LBP and DCT features from video frames. Zhao et al.

32] introduced an alternating direction technique of multipliers

o solve Ordinal Support Vector Regression. Recent advances in

eep learning, in particular Convolutional Neural Networks (CNNs)

nd Recurrent Neural Networks (RNNs), have brought significant

rogress for the problem of pain analysis from facial videos. State

f the art results in this field are typically supervised deep learning

ethods. Zhou et al. [33] trained a Recurrent Convolutional Neu-

al Network (RCNN) to solve a regression problem. Similarly, Ro-

riguez et al. [21] extracted features from frames using a CNN and

ed these features to a LSTM. Tavakolian and Hadid [23] proposed a

patiotemporal Convolutional Neural Network to capture low, mid,

nd long-range variations in the face for pain intensity estimation.

owever, data annotation in pain analysis is typically done using

https://doi.org/10.1016/j.patrec.2020.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.09.012&domain=pdf
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he Facial Action Coding System (FACS) [6] which firstly decom-

oses facial expressions into basic action units and then codes each

ction unit with onset, offset and intensity. FACS based labeling is

ostly and time consuming, since it takes around two hours for a

ACS expert to code one minute video [16] . 

In addition, the generalization ability of supervised learning is

ather limited, i.e. defined largely by the training data. In other

ords, the performance of existing methods is limited to the data

hich they are trained on [20,27,29] . The differences in culture,

ender and age, as well as imaging conditions such as lighting,

ose, low resolution and noise are counted as factors for perfor-

ance deterioration when generalizing methods across datasets

5] . Othman et al. [20] performed cross-dataset pain recognition

sing two datasets and their combination. However, they reduced

he size of the deep model as well as training data by sampling

rames that have high chance of pain occurrence. Currently, to the

est of our knowledge, another challenging issue in facial video

ased pain analysis is the lack of large scale benchmark datasets

ue to the difficulties in data collection and labeling, while deep

earning methods require large scale datasets for training to ob-

ain good performance. Therefore, leveraging knowledge from pre-

rained models and using it to advance pain assessment could be a

ood option. In order to improve the generalization of pain assess-

ent methods, we advocate the test of performance robustness by

pplying cross-database evaluation and the use of dataset combi-

ation to advance pain assessment. 

To avoid time-consuming and costly data annotations, self-

upervised learning has been put forward to learn visual represen-

ations from large-scale unlabeled data ( [13] ). It is concerned with

earning semantically meaningful features from unlabeled data at-

ributes. Hence, self-supervised learning can be considered as an

lternative to supervised learning in automatic pain assessment,

here collecting large-scale labeled dataset is a tedious task. In

his paper, we propose a self-supervised learning method to cap-

ure visual features from unlabeled data using a pretext task to

mprove the generalization of learned representations for pain in-

ensity estimation. To be specific, we learn feature representa-

ions based on measuring sample similarity of large-scale unla-

eled data with a Siamese network [2,11] . Then, we transfer the

earned representations to the downstream task of estimate pain

ntensity level. We note that deep models usually have large com-

utational complexity for spatiotemporal processing of videos. On

he other hand, processing short intervals of videos is not efficient

s they contain less information [26] . To circumvent the deficien-

ies caused by processing videos on short intervals and/or avoiding

eep models for temporal processing, we propose a highly sim-

le, efficient yet effective method called Statistical Spatiotemporal

istillation (SSD) to aggregate motion and appearance information

nderlying a video into one feature map. By temporally dividing

he videos into smaller segments, SSD extracts the mutual infor-

ation between consecutive segments to generate feature maps

ased on Gaussian Scale Mixture. Using the obtained feature maps

 i.e. 2D representations of videos) allows employing less complex

eep models, which are designed for images, for video processing. 

In summary, our main contributions in this paper are summa-

ized as follows. 

• To the best of our knowledge, this is the first work that ex-

plores the idea of self-supervised representation learning in

pain estimation. To achieve this, we adapt a novel similarity

function through a Siamese network to learn representations

from unlabeled data. 
• In order to achieve computational efficiency, we propose a sim-

ple, efficient yet effective method (SSD) to encode statistical

information of the underlying dynamic and appearance of an

arbitrary-length video into a single image map. 
• We extensively validate the effectiveness of our proposed

method for pain intensity estimation in cross-databaset set-

tings, using two publicly available datasets. 

. Proposed method for automatic pain assessment 

In this section, we present firstly in detail the proposed SSD

pproach, which enables us to effectively aggregate the appearance

nd dynamic variations within a video into one single RGB image,

nd, the use of less complex 2D deep models to analyze the data.

hen, we present how to explore self-supervised learning to learn

eneralized representations from unlabeled data for automatic pain

ssessment. 

.1. Statistical spatiotemporal distillation 

Visual attention is usually given to the regions that have more

escriptive information. Inspired by information theory, the local

nformation of an image can be quantified in terms of sequences of

its [10] . We extend this notion to the temporal dimension in order

o capture the discriminative spatiotemporal information. To this

nd, under a Markovian assumption, we delineate a video as an

mage map by devising a statistical model for a neighboring group

f pixels using Gaussian Scale Mixture (GSM). 

Firstly, we divide a given video into several nonoverlapping seg-

ents. Then, the mutual information between consecutive seg-

ents ( i.e. the total perceptual information content of consecutive

egments) is explored to model the variations in dynamics and ap-

earance. Hence, we encode the spatiotemporal variations of two

onsecutive segments into one image map. Further, we use an ag-

regation function to combine several image maps that are ob-

ained by processing consecutive segments throughout the video

 Fig. 1 ). 

Our approach is formally formulated as follows. A block volume,

 i , in a video segment is modeled with GSM: x i = αi u i , where u i is

 zero-mean Gaussian vector, αi is a mixing multiplier. The general

orm of GSM allows αi to be random variable that has a certain

istribution in a continuous scale. For computation simplicity, we

ssume that αi only takes a fixed value at each block volume ( i.e.

t has different values in each block volume). For notation simplic-

ty, we omit the subscript i . In practical scenarios, the noise effect

eeds to be taken into consideration in our model. Hence, we ex-

end the model of the block volume as: 

p = x + n 1 = αu + n 1 , (1) 

here n 1 is Gaussian noise. Intuitively, each block volume p under-

oes spatiotemporal variations v over time, leading to a distorted

ersion q : 

 = y + n 2 = gαu + v + n 2 , (2)

here y represents deformation of x ( i.e. y = gαu + v ), g is a gain

actor, and n 2 denotes Gaussian noise. n 1 and n 2 are independent

ith covariance matrices C n 1 = C n 2 = σ 2 
n I , where I is an identity

atrix. Then, the covariance matrices of x , y , p , and q are derived

traightforwardly as: 

 x = α2 C u , C y = g 2 α2 C u + σ 2 
v I (3)

 p = α2 C u + σ 2 
n I , C q = g 2 α2 C u + σ 2 

v I + σ 2 
n I (4)

here C u is the covariance matrix of u . 

At each point, the perceived visual information of the reference

nd deformed block volumes is obtained by the mutual informa-

ion I ( x | p ) and I ( y | q ) , respectively. We aim to approximate the

erceptual information content from both blocks. To be specific, we

ubtract the common information shared between p and q ( I ( p | q ) )
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Fig. 1. The outline of our proposed SSD for video representation. Given a video of length L , we divide it into non-overlapping segments of smaller length � . SSD generates 

feature maps by computing mutual information between block volumes (spatiotemporal neighborhood) of consecutive segments. Using an aggregation function, we obtain 

an encoded RGB image from the input video. 
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from I ( x | q ) and I ( y | q ) . So, we define a weight based on the mu-

tual information as: 

w = I ( x | p ) + I ( y | q ) − I ( p | q ) , (5)

where x , y , p , and q are all Gaussian for a given α. The mutual

information approximation can be computed using the determi-

nants of the covariances. Details for deriving the mutual informa-

tion weight function in Eq. (5) will be given in the supplementary

material. 

Let x i and y i be the i th points of two frames in consecutive

segments X and Y , respectively. The Mean Square Error (MSE) be-

tween two frames is given by MSE = 

1 
P 

∑ P 
i =1 ( x i − y i ) 

2 
, where P is

the number of pixels in the frame. For each of the three color

channels, we compute a set of weights by moving a sliding voxel

across two consecutive segments (see Fig. 1 ), where the spatial size

of voxel is H × W pixels. This process results in a feature map for

each two consecutive segments of the video. We define a weighted

MSE for the corresponding location of the central point in the spa-

tial neighborhood using w defined in Eq. (5) . Suppose x j,i and y j,i 
are the i th points at the j th frame and w j, i is the weight computed

at the corresponding location. The proposed Statistical Spatiotem-

poral Distillation (SSD) is defined as: 

SSD ( X , Y ) = 

� ∏ 

j=1 

( ∑ P 
i =1 w j,i 

(
x j,i − y j,i 

)2 

∑ P 
i =1 w j,i 

) 

, (6)

where � is the length of each segment of the video. 

Repeating this process for all two consecutive segments, for a

given video of length L , we can obtain � L/� � − 1 feature maps per

color channel, which encode the appearance and dynamic varia-

tions within video segments. This distilled information can not be

used as the input of pretrained CNN models due to multiple chan-

nels. To tackle this issue, we use a weighted aggregation approach

( i.e. weighted sum, for simplicity) to generate a single RGB image

from the obtained � L/� � − 1 channel feature maps. The weights are

calculated as: βi = 

exp ( e i ) ∑ 

i exp ( e i ) 
, where e i is the i th point of the im-

age map. We compute the weighted sum of points for each chan-

nel separately to generate the RGB distilled representation of the

video: S j = 

∑ � L/� �−1 
j=1 

β j e j , where S j denotes the j th point from one

channel of the obtained representation. 
Furthermore, we can simplify the mutual information weight

unction in Eq. (5) as: 

 = 

1 

2 

log 

[ | C ( p , q ) | 
σ 4 K 

n 

]
, (7)

here K is the total number of points in a block volume and 

 C ( p , q ) | = | ((σ 2 
v + σ 2 

n 

)
α2 + σ 2 

n g 
2 α2 

)
C u + σ 2 

n 

(
σ 2 

v + σ 2 
n 

)
I | (8)

Applying an eigenvalue decomposition to the covariance matrix

 u = O �O 

T , where O is an orthogonal matrix and � is a diago-

al matrix with eigenvalues λk for k = 1 , . . . , K along its diagonal

ntries, we can compute | C ( p , q ) | as: 

 C ( p , q ) | = | O 

{(
σ 2 

v + (1 + g 2 ) σ 2 
n 

)
α2 � + σ 2 

n 

(
σ 2 

v + σ 2 
n 

)
I 
}

O 

T | . (9)

Due to the orthogonal property of O , | C ( p , q ) | has a closed-form:

 C ( p , q ) | = 

K ∏ 

k =1 

{(
σ 2 

v + (1 + g 2 ) σ 2 
n 

)
α2 λk + σ 2 

n (σ
2 
v + σ 2 

n ) 
}
. (10)

Hence, again, the mutual information weight function in

q. (5) can be expressed as: 

 = 

1 

2 

K ∑ 

k =1 

log 

(
1 + 

σ 2 
v 

σ 2 
n 

+ 

(
σ 2 

v 
σ 4 

n 

+ 

1 + g 2 

σ 2 
n 

)
α2 λk 

)
. (11)

The obtained weight function shows an interesting connection

ith the local deformation within frames of video. According to

he deformation model in Eq. (2) , the variations from x to y are

haracterized by the gain factor g and the random deformation σ 2 
v .

s g is a scale factor along the temporal frame evolution, it does

ot cause any changes in the image spatial structure. Thus, the

hanges in image spatial structure are captured by σ 2 
v . Our weight

unction increases monotonically with σ 2 
v . This demonstrates that

ore weights are cast to the areas that have larger variations. 

In the derived weight function of Eq. (11) , we still need to de-

ive approximation for a set of parameters: C u , α2 , g , and σ 2 
v . C u is

omputed as: 

ˆ 
 u = 

1 

N 

N ∑ 

i =1 

x i x 
T 
i , (12)
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Fig. 2. An illustration of the Siamese network for learning the similarity between samples in an unsupervised manner. 

w  

b  

i

α

 

t

g  

r

u

σ

2

 

t  

f  

d  

p  

i  

l  

a  

d  

c  

f  

(  

Z  

w  

l  

w  

s

 

T  

t  

f  

p  

p  

w

A

 

p  

r

A

w  

s  

t  

b  

t  

a

 

t  

m  

v  

T  

s  

s  

n

 

f  

r  

m  

r  

f  

t

F  

G  

Q  

w  

c  

l

 

here N is the number of block volumes and x i is the i th neigh-

oring vector. The multiplier α can be approximated using a max-

mum likelihood estimator: 

ˆ 2 = 

1 

K 

x T C 

−1 
u x . (13) 

The deformation parameters g and σ 2 
v can be computed via op-

imizing the following least square regression problem: 

ˆ 
 = arg min 

g 
‖ y − g x ‖ 

2 
2 , (14)

esulting ˆ g = 

x T y 

x T x 
. Substituting this into Eq. (2) , we can compute σ 2 

v 
sing v T v / K , which leads to: 

ˆ 2 v = 

1 

K 

(
y T y − ˆ g x T y 

)
. (15) 

.2. Self-supervised representation learning 

Self-supervised Learning is formulated as firstly learning a pre-

ext task in an unsupervised manner, i.e. the supervisory labels

or the pretext task are automatically generated based on the

ata itself rather than human annotations, and after the unsu-

ervised training finished, it transfers the learned representations

nto a downstream supervised task to evaluate the quality of the

earned representations. In our problem, we define the pretext task

s learning a general similarity function for sample pairs. In the

ownstream task, we define the downstream task as supervised

lassification of different pain intensity levels. To encode such

unction, we propose a method based on Siamese neural networks

 Fig. 2 ). We denote a batch of unlabeled data as Z = { Z i } N i =1 , where

 i is a sample instance. Feeding these data into a CNN model f ( · ),

e obtain their deep representations from the last fully connected

ayer. Then, we define a representation matrix H = [ h 1 , h 2 , . . . , h N ] ,

here h i = f (Z i ) is the extracted deep representation of the i th

ample in the batch. 

We propose a joint representation for samples in each batch.

he joint representation benefits from constructing a linear model

o approximate the structure of each batch in a high-dimensional

eature space. We can model a batch as an affine hull of its sam-

les. The affine hull model is used to account for unseen sam-

les in terms of affine combinations of existing samples. Hence,
 v
e model a batch as: 

H = 

{ 

N ∑ 

i =1 

αi · h i | 
N ∑ 

i =1 

αi = 1 

} 

, (16) 

It is possible to represent the affine hull of Eq. (16) by another

arametric form using batch mean μ as a reference point to rep-

esent every data: 

H = 

{
μ + U · v | v ∈ R 

d 
}
, (17) 

here the d columns of U are the orthogonal bases obtained from

ingular value decomposition (SVD) of the centered deep represen-

ation matrix. We present a batch of samples as a triplet ( μ, U, H )

y including both the structure information and deep representa-

ions. The information of deep representation is used to reduce the

mbiguity of the affine hull space. 

Similar samples can be noisy or vulnerable to outliers. Hence,

he direct search between nearest neighbors degrades the perfor-

ance because it is possible to find a pair of similar samples with

ery small distance that represent different pain intensity levels.

o overcome this limitation, we measure the dissimilarity between

amples so that the Euclidean distance between them is small and

amples of each class could be represented by a combination of its

eighborhood points in the deep feature space. 

Considering the above point, we propose a convex optimization

ormulation to define the dissimilarity metric. Given the deep rep-

esentation matrix of each batch H , we evenly split it into two

atrices H i and H j . Therefore, their corresponding affine hull rep-

esentations are ( μi , U i ) and ( μj , U j ). To the define the objective

unction for the convex optimization, we define a series of func-

ions as follows: 

 v i , v j = | ( μi + U i · v i ) −
(
μ j + U j · v j 

)| 2 2 , (18)

 v i ,α = | ( μi + U i · v i ) − H i · α| 2 2 , (19)

 v j ,β = | (μ j + U j · v j 
)

− H j · β| 2 2 , (20)

here the optimal model coefficients { v ∗
i 
, v ∗

j 
} and sample coeffi-

ients { α∗, β∗} of our metric are achieved by optimizing the fol-

owing unconstrained objective function: 

min 

 i , v j ,α,β
F v i , v j + λ1 

(
G v i ,α + Q v j ,β

)
+ λ2 ‖ α‖ 1 + λ3 ‖ β‖ 1 , (21)
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Table 1 

Characteristics of the pain recognition datasets. 

Dataset Subjects Videos Stimuli Classes 

UNBC-McMaster 25 200 Shoulder Pain 16 

BioVid (Part A) 87 8700 Induced Heat 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The AUC accuracy (%) of our proposed 

method versus the accuracy of representa- 

tions from optical flow and RGB data using 

ResNet-50. 

Data Type UNBC-McMaster BioVid 

RGB 85.9 69.4 

OF 86.2 69.8 

SSD (RGB) 88.5 71.0 

SSD (OF) 86.6 70.3 
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where the first term is to keep the distance between similar sam-

ples h i = μi + U i · v i and h j = μ j + U j · v j small. The second term

is to preserve the individual fidelity between such samples and

their neighbors. The last two terms enforces the coefficients to be

sparse. λ1 , λ2 , and λ3 are trade-off values to control the relative

importance of different terms. 

3. Experiments 

We evaluated the performance of our proposed method by con-

ducting experiments on two publicly available datasets, namely

UNBC-McMaster Shoulder Pain Expression Archive [18] and the

BioVid Heat Pain - Part A [24] . Table 1 summarizes the content

of these datasets. 

3.1. Experimental setup 

In our experiments, we use four different network architectures,

i.e. VGG16 [22] , Inception-V1 [12] , ResNet-18 [9] , and ResNet-50

[9] . All of these models are trained using stochastic gradient de-

scent with the momentum of 0.9 and an annealed learning rate,

starting from 10 −3 and multiplied by a factor of 0.2 per epoch.

During the training, we randomly perform size jittering, cropping,

flipping, and rescaling on the input samples. We also applied our

SSD on optical flow data. For the computation of the optical flow,

we use TLV1 optical flow algorithm [31] , which is implemented in

OpenCV with CUDA. 

The value of λ1 is fixed as 0.01 for all the experiments con-

ducted in this paper. For λ2 and λ3 , we design an automatic

mechanism to control the relative sparsity of α and β . Note that

if λ2 ≥ max (|2 λ1 · ( H 

T μ)|), the zero vector is optimal for α at

zero. The same statement applies for λ3 and β . By performing a

grid search and following the guidelines in [1] , we adaptively set

λ2 = 0 . 1 λ∗
2 

and λ3 = 0 . 1 λ∗
3 

for all experiments. 

3.2. Analysis of SSD representations 

In this section, we evaluate the performance of our method

by analyzing different parameters in SSD representations. As de-

scribed in Section 2.1 , SSD divides the video into smaller fix-sized

non-overlapping segments. The spatiotemporal patch-wise statisti-

cal analysis between two consecutive segments allows SSD to cap-

ture and encode the appearance and dynamic variations into one

single RGB image map. Hence, the performance of SSD depends on

two parameters, i.e. the length of segments and the spatial neigh-

borhood around each point. We analyze the performance of our

method by varying the length of video segments from 5 to 60

frames. Fig. 3 shows the results of experiments using the UNBC-

McMaster dataset. As depicted, the Area Under the Curve (AUC)

accuracy increases as the number of frames per segment increases.

However, after a certain number of frames (20 frames per seg-

ment), the performance drops significantly. The deterioration in

performance is likely due to capturing a wide range of temporal in-

formation from the face, which covers different pain intensity lev-

els throughout the segment. Hence, SSD is not able to effectively

encode the appearance and dynamic of the sequence. 

Another important parameter, which influences the quality of

obtained representations using SSD, is the spatial size of the block

volumes. We change the spatial size of neighborhood around each
oint of the video segments to investigate its effect. Fig. 3 demon-

trates the results of this experiment. Using the small spatial win-

ows, the receptive field of SSD is also small. Hence, the statis-

ical operation is performed in a tiny region of the video, which

gnores most important relationships between neighboring points.

owever, choosing a large size for spatial patches leads to low ac-

uracy. We argue that this drop in the performance is due cap-

uring too much information and increasing the complexity of the

btained image map. Based on the results of this experiment, we

ill use video segments of 20 frames with the spatial size of 5 × 5

n the rest of our experiment, unless otherwise it is mentioned. 

In order to gain a better insight into the effect of segment

ength on SSD, we computed SSD representations using different

egment lengths in Fig. 4 . We varied the number of frames per

egment from 5 to 60 frames. As can be seen, the smaller seg-

ent, lower spatiotemporal variations. In contrast, SSD representa-

ions obtained from longer segments ( e.g. 60 frames) show noisy

ehavior, which interferes the distilled spatiotemporal information.

ased on Eqs. (1) and (2) , enlarging the temporal size of segments

ncreases the spatiotemporal information to noise ratio, while de-

reasing the temporal size of segments limits SSD computation to

 small portion of the video. Hence, it is important to select suf-

ciently enough number of frames per segments for SSD compu-

ation. This qualitative analysis of SSD representations further vali-

ates the quantitative results in Fig. 3 . 

We compared our proposed SSD representation against two

rame-based baseline models. The first model operates on RGB im-

ges and the second model works on the optical flow. We also ap-

lied SSD on the optical flow sequence and the RGB video. The

esults are summarized in Table 2 . The proposed SSD has 2.3% and

.2% improvement over optical flow on the UNBC-McMaster and

he BioVid datasets, respectively, indicating the superiority of SSD

n capturing the appearance and dynamic of the video. 

.3. 2D Models vs. 3D models 

The proposed SSD does not require any parameter learning pro-

ess. It captures appearance and dynamic information of the video

nd encodes it into one RGB image. This enables its output rep-

esentations to be processed by models devised for images. Con-

equently, the need for complex 3D models and large amount of

nnotated training videos can be avoided. Although extracting the

istilled representations adds overhead to training of 2D models,

his time is negligible when compared with the training time of 3D

odels. For instance, the training time of ResNet-50 on RGB frames

f the UNBC-McMaster is 1257 min, which is raised to 1326 min

y applying SSD. However, our method is more efficient in the test

ime. To demonstrate this efficiency, we randomly selected a set

f 50 videos from the test set of the UNBC-McMaster dataset. The

ideos have lengths in range of 150 − 200 frames. We, then, com-

are the runtime of our method using 2D models against their 3D

ounterparts in Table 3 , where we replace 2D filters of CNNs by

D filters. From Table 3 , we conclude that encoding information

ia SSD enables us to estimation pain intensity levels by using less
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Fig. 3. Accuracy (%) of the proposed method by varying the segment length size and the spatial size of neighborhood for SSD representation computation using ResNet-50. 

Fig. 4. Visualization of SSD representations versus different segment lengths. Small 

segments do not cover wide range of spatiotemporal variations, while too long seg- 

ments have more noise. 

Table 3 

Average testing runtime (sec.) per frame and accu- 

racy (%) on the UNBC-McMaster. 

Architecture 2D 3D 

Method Time AUC Time AUC 

VGG16 0.924 75.3 2.769 77.1 

Inception-V1 0.985 78.5 2.854 78.8 

ResNet-18 1.085 80.5 2.866 79.3 

ResNet-50 1.299 83.2 2.892 81.5 
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Table 4 

The accuracy (%) of the proposed self-supervised learning method 

in cross-dataset setting. ResNet-50 is used as the backbone of our 

model. 

Pretext Data Downstream Data AUC 

BioVid UNBC-McMaster 69.2 

UNB-McMaster BioVid 65.5 

BioVid + UNBC-McMaster (10%) UNBC-McMaster 71.3 

BioVid + UNBC-McMaster (30%) UNBC-McMaster 73.5 

BioVid + UNBC-McMaster (50%) UNBC-McMaster 74.2 

UNBC-McMaster + BioVid (10%) BioVid 64.4 

UNBC-McMaster + BioVid (30%) BioVid 69.0 

UNBC-McMaster + BioVid (50%) BioVid 71.8 

Table 5 

Comparison of supervised pain intensity estimation using SSD 

representations in the cross-dataset experimental setting using 

ResNet-50. 

Pretext Data Downstream Data AUC 

BioVid UNBC-McMaster 80.1 

UNB-McMaster BioVid 75.5 

BioVid + UNBC-McMaster (10%) UNBC-McMaster 81.2 

BioVid + UNBC-McMaster (30%) UNBC-McMaster 82.3 

BioVid + UNBC-McMaster (50%) UNBC-McMaster 83.5 

UNBC-McMaster + BioVid (10%) BioVid 76.3 

UNBC-McMaster + BioVid (30%) BioVid 78.2 

UNBC-McMaster + BioVid (50%) BioVid 79.0 

b  

s  

t  

t  

f

 

s  

p  

t  

b  

t  

a  
omplex models devised for images and still achieve high perfor-

ance. 

.4. Cross database analysis 

The performance analysis of automatic pain assessment meth-

ds in the cross-database setting is undermined. The existing ap-

roaches’ performance degrades when the training and testing

atasets are different [20] . This is mainly due to lack of gener-

lization in the learned representations. In this section, we con-

uct cross-dataset experiments to show the generalization of the

earned representations in our self-supervised framework. In these

xperiments, the model learns the pretext task using unlabeled

ata (SSD representations of videos) of either the UNBC-McMaster,

ioVid, or their combination and is fine-tuned and tested using la-

eled SSD representations of the other dataset. We combined dif-

erent portion of the target data with the training data for learn-

ng the pretext task to analyze how the performance is influenced

sing combined datasets. Table 4 summarizes the results. As can
e seen, the model achieves reasonably good performance in self-

upervised fashion and benefits from a larger dataset in the pre-

ext task learning. However, including a portion of target data to

he training data of the pretext task can slightly improve the per-

ormance. 

To gain a better insight in effectiveness of our proposed self-

upervised method, we conduct complementary cross-dataset ex-

eriments in a supervised manner. In these experiments, we train

he CNN model using SSD representations of one dataset (with la-

els) and, then, use the SSD representations of other dataset for

esting. Table 5 lists the results of this experiment. Although the

ccuracy drops in the cross-dataset setting, the SSD still shows a
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Table 6 

Comparative analysis in terms of the Mean Square Error (MSE) and the 

Pearson Correlation Coefficient (PCC) on the UNBC-McMaster dataset us- 

ing RGB and SSD representations. ResNet-50 is used as the backbone of 

our method. 

Method RGB SSD 

MSE PCC MSE PCC 

Supervised RVR [14] 1.39 0.59 1.15 0.63 

HoT [7] 1.21 0.53 0.98 0.66 

OSVR [32] N/A 0.60 1.06 0.63 

RCNN [33] 1.54 0.64 1.27 0.73 

LSTM [21] 0.74 0.78 0.69 0.80 

SCN [23] 0.32 0.92 N/A N/A 

Self-supervised Geometry [8] 1.81 0.51 1.65 0.57 

OPN [15] 1.76 0.57 1.60 0.61 

Jigsaw [19] 1.73 0.68 1.58 0.70 

[25] 1.59 0.65 1.33 0.70 

[4] 1.47 0.71 1.12 0.73 

Our Method 1.03 0.74 0.92 0.78 

Table 7 

Comparative analysis in terms of the AUC accuracy (%) on the 

BioVid dataset. ResNet-50 is used as the backbone of our method. 

Method RGB SSD 

Supervised Head-movement [24] 67.00 70.36 

Time-windows [24] 71.00 72.15 

LBP [30] 63.72 65.20 

BSIF [30] 65.17 67.83 

FAD set [28] 72.40 74.59 

SCN [23] 86.02 N/A 

Self-supervised Geometry [8] 61.29 62.50 

OPN [15] 63.07 64.83 

Jigsaw [19] 63.44 65.19 

[25] 65.23 68.41 

[4] 66.01 69.19 

Our Method 69.35 71.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

d  

s  

r

4

 

t  

B  

s  

g  

T  

s  

a  

i  

p  

a  

c  

s  

t  

o  

h

D

 

c  

i

A

 

A  

N

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

good performance, demonstrating its high capability to represent

video sequences discriminatively. From the results of Tables 4 and

5 , we notice that there is still a gap in performance between super-

vised and self-supervised techniques. However, the cross-dataset

experiments show promising results by using SSD representations. 

3.5. Comparison against the state-of-the-art 

We compare the performance of our proposed method with

the-state-of-the-art methods for pain intensity estimation on the

UNBC-McMaster [18] and the BioVid [24] datasets. In these ex-

periments, VGGFace2 dataset [3] is used as unlabeled data for

learning the pretext task. We conduct experiments using the origi-

nal implementation of supervised and self-supervised approaches

on both RGB and SSD representations. To make a direct and

fair comparison, we report the Mean Square Error (MSE) and

the Pearson Correlation Coefficient (PCC) for the UNBC-McMaster

dataset. Table 6 summarizes the comparative results on the UNBC-

McMaster dataset. We observe that the proposed method improves

the performance of self-supervised pain intensity estimation us-

ing either RGB or SSD data following leave-one-subject-out cross-

validation. Our method achieve 1.03 and 0.92 MSE using RBG and

SSD data, respectively. It also improves PCC among self-supervised

methods. We assert that this improvement is due to learning gen-

eralized representations in the pretext task thanks to the proposed

similarity function, which push dissimilar samples away from each

other. However, there is still a margin between the performance of

the self-supervised and the supervised approaches in Table 6 . 

Table 7 draws comparison against the state-of-the-art methods

on the BioVid dataset. We use part A of this dataset, which con-

tains only unoccluded facial videos. As can be seen, our method
chieves 69.35% and 71.02% AUC accuracy using RGB and SSD

ata, respectively, and improves the highest performance of self-

upervised techniques by 3.34% and 1.83%, showing results compa-

able to some of the supervised techniques. 

. Conclusion 

In this paper, we proposed a novel self-supervised representa-

ion learning framework for automatic pain intensity estimation.

y learning a similarity function on a large portion of unlabeled

amples using a Siamese network as the pretext task, we achieved

eneralized representations of data in an unsupervised manner.

he learned representations were further transferred to the down-

tream supervised task, where the CNN model is fine-tuned using

 small subset of labeled samples. In order to reduce the complex-

ty of the learning process, we presented a statistical spatiotem-

oral distillation technique to capture and encode the appearance

nd dynamic of the video into one single RGB image. Hence, we

ould use 2D models to process video data. We conducted exten-

ive experiments on two publicly available datasets to demonstrate

he effectiveness of our proposed method. The experimental results

f the cross-dataset pain intensity estimation validated our initial

ypothesis of the generalization of the learned representations. 
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