Pattern Recognition 93 (2019) 365-379

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

CycleMatch: A cycle-consistent embedding network for image-text )

matching

Check for
updates

Yu Liu?, Yanming Guo®, Li Liu™¢, Erwin M. Bakker?, Michael S. Lew **

2 Department of Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands
b College of System Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
¢ Center for Machine Vision and Signal Analysis, University of Oulu, Oulu 8000, Finland

ARTICLE INFO

ABSTRACT

Article history:

Received 20 September 2018
Revised 15 March 2019
Accepted 1 May 2019
Available online 4 May 2019

Keywords:

Image-text matching
Embedding

Deep neural networks
Late-fusion inference

In numerous multimedia and multi-modal tasks from image and video retrieval to zero-shot recognition
to multimedia question and answering, bridging image and text representations plays an important and
in some cases an indispensable role. To narrow the modality gap between vision and language, prior
approaches attempt to discover their correlated semantics in a common feature space. However, these
approaches omit the intra-modal semantic consistency when learning the inter-modal correlations. To
address this problem, we propose cycle-consistent embeddings in a deep neural network for matching
visual and textual representations. Our approach named as CycleMatch can maintain both inter-modal
correlations and intra-modal consistency by cascading dual mappings and reconstructed mappings in a
cyclic fashion. Moreover, in order to achieve a robust inference, we propose to employ two late-fusion ap-
proaches: average fusion and adaptive fusion. Both of them can effectively integrate the matching scores
of different embedding features, without increasing the network complexity and training time. In the ex-
periments on cross-modal retrieval, we demonstrate comprehensive results to verify the effectiveness of
the proposed approach. Our approach achieves state-of-the-art performance on two well-known multi-

modal datasets, Flickr30K and MSCOCO.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the explosive growth of multimedia data in social
networks (e.g. image, video, text and audio) has triggered a mas-
sive amount of research activities in multi-modal understanding
and reasoning. For instance, we can recognize a picture of a panda
after hearing the description “black and white bears” without ever
having seen one. This example demonstrates the cross-modal in-
teraction between vision and language. These heterogeneous data
offers us the opportunity to understand the world from diverse
perspectives, while giving rise to the challenges of bridging differ-
ent modalities. In this paper, we focus on the task of image-text
matching, which aims to incorporate heterogeneous representa-
tions from visual and textual modalities. In practice, this task plays
an essential role for a wide variety of tasks in the multimedia
research, for examples, cross-modal retrieval [1,2], visual question
answering [3], zero-shot recognition [4] and video captioning [5].

The core issue with image-text matching is searching for an
appropriate embedding space where related images and texts can
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be matched correctly. Driven by the great strides made by deep
learning [6-8], recent research has been dedicated to exploring
deep neural networks for learning powerful embedding features,
in order to narrow the modality gap between visual and textual
domains. These networks are typically composed of two branches
for generating visual and textual embedding features in a common
latent space, respectively [9-13]. Then, a similarity-based ranking
loss is used to measure the latent embedding features. Latent
embeddings can distill common semantic information about both
the visual content and textual description. To directly match
the similarities between vision and language, researchers further
exploit dual embeddings by translating an input feature in the
source space to be the feature in the target space [14-17]. Both
the latent and dual embeddings can capture inter-modal semantic
correlations, however, they are limited in preserving intra-modal
semantic consistency. Our motivation for this work is that: A
robust embedding method should be able to learn representations of
both the source and target modalities.

Inspired by the idea of cycle-consistent learning [18,19], we
propose cycle-consistent embeddings in an image-text matching
network, which can incorporate both inter-modal correlations and
intra-modal consistency for learning robust visual and textual em-
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Fig. 1. Schematic pipeline of the proposed cycle-consistent embedding method. It
is composed of two cycle branches: (a) image-to-text-to-image cycle and (b) text-
to-image-to-text cycle. We first perform a dual mapping by transforming the input
feature into the target feature space. Then, a reconstructed mapping is used to gen-
erate a reconstructed embedding in the source feature space. Moreover, we con-
struct a latent space to correlate latent embeddings of the two mappings. The two
branches share the mapping functions for transformations between three feature
spaces, and can be trained jointly by optimizing the matching losses in the three
feature spaces.

beddings. Fig. 1 illustrates our embedding method by integrating
three feature embeddings, including dual, reconstructed and latent
embeddings. Specifically, it has two cycle branches, one starting
from an image feature in the visual space and the other from
a text feature in the textual space. For each branch, it first ac-
complishes a dual mapping by translating an input feature in the
source space to be a dual embedding in the target space. Inverse
to the dual mapping, we then exploit a reconstructed mapping,
with the aim of translating the dual embedding back to the source
space. Moreover, we learn a latent space during the dual and
reconstructed mappings and correlate the latent embeddings.
In the three feature spaces, we compute their ranking losses to
jointly optimize the whole embedding learning. Consequently,
our visual-textual embedding method can learn not only inter-
modal mappings (i.e. image-to-text and text-to-image), but also
intra-modal mappings (i.e. image-to-image and text-to-text).
The contributions of this work are summarized as follows:

e We propose a novel deep cycle-consistent embedding
network for image-text matching. Our approach called
CycleMatch can cascade dual and reconstructed mappings
together to maintain inter-modal correlations and intra-
modal consistency. To our best knowledge, this is the first
work to explore the usage of cycle consistency for solving
the task of image-text matching.

o To improve the inference at the test stage, we present two
late-fusion approaches to efficiently integrate the matching

scores of multiple embedding features without increasing
the training complexity.

e In the experiments, our cycle-consistency embedding
outperforms traditional embeddings with considerable im-
provements for cross-modal retrieval on two multi-modal
datasets, i.e. Flickr30K and MSCOCO. In addition, our results
are competitive with the state-of-the-art performance on
both datasets.

The rest of this paper is structured as follows. Related works
are introduced in Section 2. Section 3 presents the details regard-
ing the proposed CycleMatch. The late-fusion inference approaches
are shown in Section 4. The experimental results are reported
in Section 6. Finally, Section 7 summarizes the conclusions and
discusses the future work.

2. Related work

Our work is related to image-text matching, deep visual-textual
embedding and cycle-consistent learning.

2.1. Image-text matching

The problem of image-text matching has been studied by
the multimedia community for decades. One typical solution is
to unify heterogeneous representations into a latent embedding
space, and then measure their similarity to ensure related pairs
are more similar than unrelated ones. To be specific, Canonical
Correlation Analysis (CCA) [20] is a classical and important em-
bedding method, which can learn linear transformations to project
two modalities into a latent space where their correlation is maxi-
mized. In addition, many variants [21-24] are proposed to leverage
the effectiveness of CCA. For example, kernel CCA [21] extended
the classical linear CCA by learning non-linear transformations.
Moreover, Gong et al. [25] integrated a third view with the two-
view CCA using high-level image semantics, in order to gain a
better separation for multi-modal data. Ranjan et al. [26] proposed
a multi-label CCA approach by introducing multi-label information
while learning the cross-modal subspaces. In practice, the integra-
tion of images and texts is a core issue for a variety of multi-modal
applications [3,4,27,28]. For example, Karaoglu et al. [29] proposed
to detect words from images and then to combine the textual cues
with the visual ones. Their method showed promising performance
improvements for both place classification and logo retrieval. Sim-
ilarly, Bai et al. [30] developed a unified and end-to-end trainable
network, where the attention mechanism was further incorporated
to better match the extracted textual and visual cues, to address
the difficulties in fine-grained image classification.

2.2. Deep visual-textual embedding

With the increasing progress of deep learning, research efforts
have been made to CCA into deep neural networks [26,31-33].
However, most deep CCA models rely on expensive decorrela-
tion computations, which limit their generalization abilities at
large-scale data. Alternatively, a number of recent approaches
[12,13,34-37] address the task by designing two-branch networks
to embed visual and textual features into a common latent space,
and then learn latent embeddings by optimizing a ranking loss
between matched and unmatched image-text pairs. For instance,
Wang et al. [9] built a simple and efficient matching network
to preserve the structure relations between images and texts
in the latent space. To associate image regions with words, the
attention mechanism was integrated into visual-textual embedding
models [10,11]. In addition to the pairwise ranking loss, recent
approaches [38,39] leveraged extra loss functions to enhance the
discrimination of the learned embedding features.
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Fig. 2. Conceptual illustration of variants of image-text matching models. (a) Latent embedding model. (b) Dual embedding model with inter-modal reconstruction. (c) Dual
embedding model with inter-modal and intra-modal reconstruction. Note that each embedding network consists of two branches to output the image feature and text
feature, separately. (d) Our cycle-consistent embedding model. The models in (b), (c), (d) also impose latent embeddings on hidden layers. Our model cascades the two

embedding networks in a cyclic fashion, which can enhance interactions between two embedding networks.

Another line of research [14,15,40-42] focuses on learning dual
embeddings between two modalities, e.g. projecting visual features
into the textual feature space and vice versa. Essentially, the dual
embedding models are motivated by autoencoders. For instance,
Feng et al. [14] proposed a correspondence cross-modal autoen-
coder model. 2WayNet [16] built the projections between two
modalities and regularized them with Euclidean loss. Recently, the
work of Gu et al. [17] utilized two generative models to synthesize
grounded visual and textual representations. Also, Huang et al.
[43] jointly modeled image-sentence matching and sentence gen-
eration. Note that, latent embeddings can be additionally used in
the dual embedding models to enhance cross-modal relations.

In contrast to the above studies, our approach builds a re-
constructed mapping upon the dual mapping, and generates
cycle-consistent embeddings that are beneficial to the process of
matching visual-textual representations. In Fig. 2, we show the
differences of our model from previous works.

2.3. Cycle-consistent learning

There are a few papers exploring cycle consistency for diverse
applications [18,19,44-46]. They are mainly motivated by the fact
that, cycle-consistent learning is encouraged to produce additional
feedback signals to improve the bi-directional translations. Specif-
ically, He et al. [18] proposed a dual-learning mechanism based
on deep reinforcement learning, where one agent was used to
learn the primal task, e.g. English-to-French translation, and the
other agent for the dual task, e.g. French-to-English translation.
More recently, Zhu et al. [19] exploited cycle-consistent adversarial
networks (CycleGAN), which combined a cycle-consistency loss
with an adversarial loss [47] to perform unpaired image-to-image
translations between two different visual domains. A similar idea
was also presented in [48,49]. Inspired by CycleGAN, several
recent works have transferred the cycle-consistency loss to many
supervised tasks [50-52].

Although prior works have shown the effectiveness of using
cycle-consistent constraints for intra-modal domain mappings,
yet in the context of cross-modal representation learning, its
effectiveness has not been well investigated. In contrast to prior
approaches that utilize cycle-consistent constraints within one
modality (e.g. neural machine translation and image-to-image
translation), our work is the first to extend the usage of cycle
consistency for learning visual-textual embeddings. The work of
Chen and Zitnick [53] is relevant to ours, as their model can both
generate textual captions and reconstruct visual features given an
image representation. However, their model lacks the inverse cycle
mapping, i.e. text-to-image-to-text, which can be jointly learned in

our model. Last but not least, these existing works did not consider
matching latent embeddings during the cycle-consistent scheme.

3. Proposed cycle-consistent embeddings

In this section, we present the proposed CycleMatch model
with cycle-consistent embeddings for matching visual and textual
representations.

3.1. System architecture

Fig. 3 depicts an overview of the CycleMatch architecture. The
entire network consists of three components: feature encoder,
feature embedding and feature matching. First of all, given an
input image I; and text T;, we employ individual feature encoders
to extract the visual feature v; = Enjng(l;) and textual feature
t; = Enext(T;). Then, we develop several fully-connected (FC) layers

(i.e. FCI(ZJ%) to perform the Image-to-Text (I12T) mapping and several
other FC layers (i.e. FCT%}) for the Text-to-Image (T2I) mapping.

Let fio7(-) and frp(-) represent the mapping functions for 12T and
T2I, respectively. In addition, connecting FCjpt and FCrp; can form
two cycle mappings between the visual and textual feature spaces.
Specifically, given v;, we first transform it to be fir(v;) in the
textual feature space and then learn its reconstructed feature
fra(fior(v;)) in the visual feature space. Moreover, we also correlate
intermediate features derived from FCI(;T) and FCT(;), so as to
learn a latent feature space. Similarly, t; is used to start another
cycle mapping. In a nutshell, each cycle mapping can learn dual,
reconstructed and latent embeddings in a cyclic fashion.

3.2. Formulation

Next, we will detail the above three embeddings and formu-
late their loss functions separately. The entire network contains
two cycle-consistent embedding branches: one for image-to-text-
to-image (I12T2I) mapping and the other for text-to-image-to-text
(T2I2T) mapping. Here, we take the I2T2I mapping for an example.

3.2.1. Dual embedding
In a dataset collection with N image-text pairs, the input v;

is fed into the first layer FCl(le), where i=1,...,N. By using the

following layers FCI(ZjT)( j=2,3,4), the network finally generates
a dual embedding fior(v;) in the textual space, which has the
same dimension as the ground-truth textual feature t;. Then, we
normalize the two features and compute their similarity using the
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Fig. 3. Overview of the proposed CycleMatch. It develops two cycle branches for visual-textual embeddings. For each branch, it is divided into two sub-branches from the
fourth FC layer (i.e. FCI(T‘” and FCﬁ”). One sub-branch continues accomplishing the dual mapping to the target feature space, while the other sub-branch is used to perform
the reconstructed mapping back to the source feature space. In this way, the cycle branches allow to jointly learn dual, reconstructed and latent embedding features. We can
train the network end-to-end by optimizing several ranking loss functions simultaneously.
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Notably, larger scores indicate more similar samples. During
training, it is important to construct a number of negative pairs,
in addition to the positive pair. Thereby, we search for the top K
negative samples in a mini-batch for both fi,(v;) and ¢t;, which are

denoted with for(vy,) and t;,, respectively, where k=1, ..., K. To

learn dual mappings, we need to employ a pairwise ranking loss
function with respect to positive and negative pairs:

N K

Yoy {max [0, m = s(fior), t)) +5(for (@), £, ]

i=1 k=1

dual __
LIZTZI -

+amax [0, m —s(for (@), ti) +s(far (vt ]} (2)

where m is a margin parameter that defines a threshold to con-
strain the positive and negative pairs. o adjusts the weights of the
two loss terms. Ideally, the matched distance s(fip1(v;), t;) should
be smaller than any of the unmatched distances s(fio1(v;), t;k) and

s(fior (V). ti).

3.2.2. Reconstructed embedding

Despite the fact that the task in this work is about cross-
modal matching, it is important as well to ensure intra-modal
consistency, that is, related images (or texts) should have closer
distances than unrelated ones. Hence, we explore reconstructed

mappings to maintain the intra-modal semantic consistency, in
addition to learning inter-modal correlations with dual mappings.
We cascade the dual and reconstructed mappings to form an
intra-modal autoencoder and minimize the reconstruction error
based on the ranking loss instead of the traditional Euclidean loss.
Specifically, we feed fio7(v;) into FCY) | to produce a reconstructed

T2I°
embedding feature #; in the visual feature space with

U = fra(for(vi) = frai 0 for(vy). (3)

The ranking loss for making the reconstructed embedding fea-
ture ¥; match with the original visual feature v; can be written as
follows

N
B =22

{ max [0, m — s(@;, v;) + s(¥;, v;,) |
i1 ket

—_

(4)

+amax[0,m—s@;, v;) + sy, vi)]}.

Since Li55,, also has an effect on the parameters of FCI(ZJ%, the
reconstructed mappings can help to improve the learning of dual
mappings as well.

Moreover, we employ the t-SNE algorithm [54] to visualize our
embedding features. Fig. 4 shows the embedding maps with the
test data from Flickr30K and MSCOCO, respectively. We show some
original images and texts corresponding to the embedding features.

First, the images and texts in each local window demonstrate high
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Fig. 4. Visualization of our embedding features. For each dataset, we pick 1000
images (red) and 5000 texts (green). Some images and texts corresponding to the
embedding features are shown in local windows, from which we can observe not
only correlations between cross-modal samples, but also relations between intra-
modal samples. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

semantic correlations. In addition, these images themselves have
similar visual content, and these texts themselves contain related
descriptions. This observation is consistent with our motivation
that a robust embedding method should be able to consider both
inter-modal correlations and intra-modal consistency.

3.2.3. Latent embedding

Furthermore, we exploit a latent feature space to enhance the
correlations between the dual and reconstructed mappings. Latent
embeddings are able to distill common semantic information from
visual and textual representations. Specifically, we make use of
the intermediate representations from the third FC layers, i.e.

FCI(;T) and FCT%) When v; passes through FCI(23T), we can extract
an intermediate feature f12T (v;). Also, the dual embedding fio(v;)
passes through FCSI) to generate another intermediate feature

fTZI (fior(v;)). The ranking loss for matching latent embeddings
thereby becomes

Ly = ZZ{ max [0.m — s(/5 (v). £33 (r (1))
i=1 k=1
s ). S8 Gar )]
+armax | 0,m = (£ 0. £ (fr @)

(R ) 3 i) |-

(5)

Similar to the above I2T2I branch, it is straightforward to ex-
press the matching losses in the T2I2T branch, including L%‘f‘le,
ercm and LTaztm In Fig. 5, we show the six loss functions for learn-

ing cycle-consistent embeddings.

3.2.4. Full objective
During training, we need to incorporate all the loss functions
jointly. The full objective is to minimize the total loss:

rec lat dual Lrec lat
aMl/”g Hm}m Liotal = L3y + Listor + Ligtar + LIS + LiSior + LS (6)
12T, YVT21

where Wit and Wiy indicate the parameters in FCI(ZJ% and FC%)I,
respectively. They are unshared due to the specialization of two
different modalities.

To demonstrate the effectiveness of our CycleMatch, we uti-
lize the t-SNE [54] algorithm to visualize the embedding features
learned in the visual, textual and latent feature spaces, separately.
As shown in Fig. 6, we randomly select 100 image-text pairs from
the Flickr30K dataset [55]. From all the feature maps, we can visi-

bly observe high similarities between two matched samples.
4. Late-fusion inference

By performing cycle-consistent embeddings, we can represent
one sample with a set of three different features, for instance,
{vi, for(vp), fl(23.’r) (v;)} for an image. Since the reconstructed embed-

ding ¥; and the other latent embedding fTZl (fior(v;)) are related

to v; and fl(23T) (v;), we do not consider them for simplicity. Each of
the three features can be used to measure an image-text matching
score. Instead of using only one score, it is encouraged to leverage
different scores together to achieve a more robust inference. This
is driven by the late-fusion technique [56] in multimedia retrieval,
which is a simple and efficient approach to combine the prediction
scores of individual features. In this work, we present two effective
late-fusion approaches, namely average fusion and adaptive fusion.

4.1. Average fusion

Given a query image I;, we extract three features
{vq, frar(vg). fI2 )(vq)} Similarly, an arbitrary text T; in the dataset

can be described with {t;, fr(t;). fT(;l) (t;)}. We can compute three
similarity scores between I; and T;:

visual score : s (vy, t;) = s(vg, fru(t;)),
textual score : s@ (vy, t;) = s(fior(vg). t;), (7)
latent score : s® (vg, £;) = s(f2 (vg), fS) (£)).

Then we combine the three scores to obtain an average fusion
score as follows

3 (6)) .
1SV (g, t
Sayg( q,ti) Z]_l 3( q 1).

(8)
It is similar to compute the fusion score s™5(tq, v;) in terms of
a query text Tg.

4.2. Adaptive fusion

To study the importance of different features, we further learn
adaptive weights when combining the three scores. As suggested
in [57], the score curve by using a superior feature can be sorted
in an “L” shape, while the curve by using an inferior feature tends
to gradually descend. In addition, the area under the curve can be
used as an indicator to measure the weight of the corresponding
feature. Driven by this observation, we can use the sorted score
curves of the above three features to decide their weights. Specif-
ically, we utilize each of the three features to compute the score
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Fig. 6. Visualization of our embedding features by using 100 image-text pairs in Flickr30K [55]. The first and second rows represent the embedding features learned in the
12T21 and T2I2T branches respectively. In each feature map, matched samples are shown with the same color. In (a), (d), the dual embedding features (‘®’) can match with
the corresponding target features (*'); In (b)(e), the reconstructed embedding features (‘e’) look closely similar to the source features (**'). In (c)(f), the two latent embedding
features (‘e’ and “*’) can learn to correlate with each other as well.

curve of a query image I; to all the text samples. Then, we sort above the axis and omit the negative one.! This way can help
the score curves and compute their areas with respect to the hori- to decrease the effect of long tails of the curves. For example in
zontal axis. In Fig. 7, we show three sorted score curves for either Fig. 7 (b), the three curves have almost similar negative areas,
a query image or text.

based on which it is hard to distinguish the weights of the three

Our adaptive fusion method is inspired by the late fusion in features. Hence, adding the negative area with the positive one

[57], due to its parameter-free property and efficient computation. will narrow the gap of significance of different features and fail
However, our method has two major differences from [57]. First, to learn robust adaptive weights. In the experiments, we show the
Zheng et al. [57] attempt to integrate different features, including advantage of our method over [57].

BoW, Color and GIST features. In contrast, we construct a unified

network to extract multiple embedding features, which have close

relations to each other. Second, In [57], they use the total curve

to compute the area. However, we compute only the positive area

T The similarity scores in this work are based on the cosine distance, ranging
from -1 to 1.
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Fig. 7. Illustration of the sorted score curves based on three different features. (a)
For the query image, the first curve (in red) forms the smallest area above the
X axis, so the corresponding feature (i.e. visual embedding feature) can have the
largest weight (0.428). We show a matched text at the beginning of the curves and
an unmatched text at the end of the curves. (b) Similarly, we demonstrate a text
query example. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Formally, the positive area associated with the jth feature can
be approximated by

N
area') (v,) = > max [0.59 (vg, t;)]. 9)
iz1

Smaller positive area means that the corresponding feature
should have greater weights. Hence, the adaptive weights of Ig
w.r.t. the three features can be expressed with

1

) _
wVy) = ———.
areaﬂ) (vg)

(10)

In addition, we normalize the three weights to make sure
2}11 wU (vq) = 1. Finally, the adaptive fusion score for matching
Iq and T; becomes

s (g, t) =Y W (1) - sD (v, ). (11)
J

Likewise, we demonstrate a text query Ty in the right of Fig. 7,
and show its adaptive weights, wi)(t;). Notice that our adaptive
fusion approach can achieve specific weights for different query
samples. It is an unsupervised and efficient manner without
adding extra parameters and manual tuning. In the experiments,
we analyze the effects of these two late-fusion approaches on the
inference of cross-modal retrieval.

5. Discussion

Although the cycle-consistent idea has been adopted in many
problems, it should not decrease the novelty of our work. In this
section, we mainly aim to state our similarities and differences
compared to the prior works like CycleGAN.

Similarities: Essentially, cycle-consistent learning is a variant of
the auto-encoder model, which mainly aims to construct a cyclic
mapping to reconstruct the input data. Both CycleGAN and Cy-
cleMatch are motivated by the idea of cycle-consistent learning,
even though they focus on addressing different tasks.

Differences: Our proposed CycleMatch uses the idea of cycle-
consistent learning, but it still has task-specific novelties and dif-
ferences from CycleGAN.

o First, CycleGAN integrates a cycle-consistency loss with an
adversarial loss to perform intra-modal representation learn-
ing, i.e. image-to-image translation between two image sets.
In contrast, our CycleMatch is proposed to address the prob-
lem of cross-modal representation learning between image
and text sets. In prior works, the effectiveness of cycle-
consistent learning has not been well investigated in the
context of cross-modal tasks. Our work is the first to extend
cycle-consistent learning to address the task of image-text
matching.

e Second, our reconstructed embedding is learned with the

ranking loss, instead of the traditional Euclidean loss in Cy-

cleGAN. Notably, the ranking loss aims to reconstruct the re-
lations among data samples rather than the original features.

We find that the ranking loss is more suited for the match-

ing task compared to the Euclidean loss.

Third, CycleMatch is a novel network architecture that is dif-

ferent from CycleGAN. Notably, CycleMatch is not based on

the GAN model. In addition, we consider the latent embed-
ding representations, which are not taken into account in

CycleGAN.

o Lastly, we contribute to proposing late-fusion inference in
order to integrate multiple embedding features learned in
the model. This robust and efficient inference is performed
in the test stage and will not complicate the training pro-
cedure. The results in our experiments verify the effective-
ness of the late-fusion inference. However, CycleGAN does
not provide a robust inference in its test stage.

In summary, more and more papers [50-52,58,59] are mak-
ing use of cycle-consistent learning to solve a variety of problems,
such as domain adaptation, video retargeting and zero-shot learn-
ing. These works make promising contributions to the field, even
though they are primarily or partially inspired by CycleGAN. In the
future, we believe more related works will be encouraged in the
field.

6. Experiments

First, we compare CycleMatch with various baseline models to
verify its effectiveness. In addition, we present in-depth analysis on
the two late-fusion approaches. Moreover, our results can be com-
petitive with the state-of-the-art performance for cross-modal re-
trieval on two well-known datasets. Finally, we present additional
ablation study on the effect of feature encoders and variance of
test splits.

6.1. Experimental setup
We introduce the dataset protocols, evaluation metrics, network

details, training details and time complexity, involved in our exper-
imental setup.
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6.1.1. Dataset protocols

The experiments are performed on two well-known datasets.
(1) Flickr30K [55] consists of 31,783 images and each image is as-
sociated with five different sentences. We use the dataset split of
[60], namely 29,783 training images, 1000 validation images and
1000 test images. (2) MSCOCO [61] is one of the largest multi-
modal datasets, which includes 82,783 training images and 40,504
validation images. We pick five ground-truth sentences for each
image. 1,000 test images are selected from the validation set [60].
Notice that some works [9,17,38] merge the remaining validation
images into the training set, to further increase the performance.
However, we keep only using the original training set for fairness.

6.1.2. Evaluation metrics

For evaluating the performance of cross-modal retrieval, we
adopt the common metric R@K, which measures the recall rate
of a correctly retrieved ground-truth at top K retrieved candidates.
Generally, K is set to 1, 5 and 10 for both image-to-text and text-
to-image retrieval.

6.1.3. Network details

In terms of the image encoder, we employed the powerful
ResNet-152 [8] pre-trained on the ImageNet dataset [62]. Besides,
we recast the CNN model to its fully convolutional network (FCN)
counterpart, which can capture rich region representations. The
last layer of the FCN model is spatially averaged to generate a 2048
dimensional visual representation. To extract the textual represen-
tation, we utilized the pre-trained RNN encoder proposed in [63].
It can represent one sentence with a 4096 dimensional feature vec-
tor. Currently, we did not fine-tune the feature encoders during the
training.

As for the two groups of four FC layers in CycleMatch (i.e.

FCI(ZJ% and FC{’Z'; ), the channels of the first three layers are fixed as

[2048,512,512]. Note that, FC1(24T) should have the same dimension

as the textual feature and FCT(‘Z‘[) should be equal to the size of the
visual feature.

6.1.4. Training details

We implemented the proposed approach based on the Caffe li-
brary [64]. It is important to shuffle the training samples randomly
during the data preparation stage. The hyper-parameters are eval-
uated on the validation set of each dataset. We trained the model
using SGD with a mini-batch size of 500, a weight decay of 0.0005,
a momentum of 0.9 and an initialized learning rate of 0.1. The
learning rate is divided by 10 when the decrease in loss stabilizes.
We set « =2 and m = 0.1 in all the experiments. The number of
negative samples in each min-batch is 50. The whole training pro-
cedure terminates after 60 epochs for both datasets.

In Fig. 8, we show the training loss of the six loss functions on
the two datasets. It can be observed that the loss tend to converge
during the training epochs.

6.1.5. Time complexity

We use the total loss in Eq. (6) to perform the training proce-
dure. Each loss term is a simple and efficient ranking loss that is
widely used in retrieval tasks. We used a Titan X card with 12GB to
train all models in the experiments. For the full CycleMatch model,
training required about 19 h on the Flickr30K dataset and 47 h on
the MSCOCO dataset, respectively.

6.2. Comparisons with baseline approaches
To demonstrate the superiority of our approach, we designed

several baseline models (see Table 1) based on the same network
settings and training hyper-parameters as CycleMatch. In terms

of inference, LatentMatch is evaluated with only the latent score.
However, all the other models have both visual and textual scores.
For consistency we utilize the average fusion approach to accom-
plish their inference. Table 2 reports the cross-modal retrieval
performance of these models on both Flickr30K and MSCOCO.
Overall, CycleMatch surpasses LatentMatch and DualMatch with
significant improvements, and achieves overall superior perfor-
mance over other variants of CycleMatch. In the next, we can
report the results from several aspects.

6.2.1. Impact of reconstructed embeddings

First, we explain the benefit of constructing the cycle-consistent
embeddings in our model. Primarily, cycle-consistent learning used
in our model can benefit the dual embeddings. As can be seen in
Fig. 3, the reconstructed embeddings are built on top of the dual
embeddings, therefore the reconstruction loss can help the training
of the dual embeddings. The main difference between DualMatch
and CycleMatch(w/o latent) is that the latter model introduces a
reconstructed mapping upon the traditional dual mapping. As re-
ported in Table 2, the performance gap shows between DualMatch
and CycleMatch(w/o latent) verifies the benefit of adding recon-
structed embeddings in a cyclic fashion.

In addition to the above quantitative evaluation, we show
image-to-text retrieval results as well to qualitatively compare the
two methods. As shown in Fig. 9, CycleMatch (w/o latent) can re-
trieve more accurate text descriptions than DualMatch, given the
same query image. According to both quantitative and qualitative
comparisons, it shows the improvements achieved by adding the
cycle-consistency in our model.

6.2.2. Impact of latent embeddings

By comparing the results of CycleMatch and CycleMatch(w/o
latent), we find that integrating the latent embeddings into Cy-
cleMatch brings further improvements over all metrics. For exam-
ple, R@5 shows about 2% gains for both - T and T— I. Although
using only latent embeddings (i.e. LatentMatch) is inferior to other
models, it is beneficial to adopt them to improve other embedding
methods like CycleMatch.

Moreover, we conduct an experiment below to test the ef-
fect of using different fully-connected (FC) layers on the latent
embeddings. Apart from using the layer FC(3), we also test the
latent embedding based on FC{!) or FC{?). In Table 3, we show
the results by using three different FC layers. It can be seen that
the both FC?) and FC3) features show better results than FC(V,
Although FC feature has more dimensions, its representation
power is less than FC(?) and FC3). One main reason is that FC(!) is
the first layer in the network, but FC2) and FC'®) are closer to the
high-level semantics. In addition, FC'3) has slight improvements
over FC\2). Based on these results, we decide to construct the
latent embedding with the FC3) features.

6.2.3. Impact of cycle branches

Both CycleMatch(I2T2I) and CycleMatch(T2I2T) can outper-
form LatentMatch and DualMatch, even though only one cycle-
consistent embedding branch is used. By comparing these two
models, CycleMatch(I2T2I) performs better for [ — T retrieval, while
CycleMatch(T2I2T) yields better results for T— I retrieval. When
we incorporate the two cycle branches jointly, namely CycleMatch,
it achieves overall superior performance over any single cycle
branch on both datasets.

In addition to the R@K performance, we further present the
matching scores computed by using our embedding features. To be
specific, we randomly select 100 image-text pairs from the test set,
and compute the similarity between one image and text. As shown
in Fig. 10, matched image-text pairs (with the same index) have
greater similarity scores than unmatched ones.
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Fig. 8. Illustration of training loss cost during training CycleMatch on the Flickr30K and MSCOCO datasets.

Table 1

Summary of various embedding methods for image-text matching.

Embedding methods

Main description

LatentMatch
DualMatch

A latent embedding model by matching f1(23T) (v;) and fT(gl) (t)).
A dual embedding model by learning two dual mappings: [ - T and T— L.

CycleMatch(w/o latent)  An ablation model without latent embeddings between dual and reconstructed mappings.

CycleMatch(I12T2I)
CycleMatch(T2I2T)
CycleMatch

An ablation model with an 12T2I cycle branch and an [— T dual mapping.
An ablation model with a T2I2T cycle branch and a T— I dual mapping.
A fully implemented model with two cycle branches.

Table 2

Comparison of different embedding approaches for cross-modal retrieval on Flickr30k and MSCOCO. Higher R@K numbers are
better, where K = 1, 5, 10. The full CycleMatch method outperforms others on both datasets.

Flickr30K dataset MSCOCO dataset
Method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@I0 R@1 R@5 R@10
LatentMatch 497 774 850 37.8 698 806 539 829 908 430 758 859
DualMatch 534 805 871 40.1 709 810 563 835 915 455 767 875

CycleMatch(w/o latent)
CycleMatch(12T2I)
CycleMatch(T2I2T)
CycleMatch

568 817 903 411 725 813 585 840 924 469 783 887
57.0 824 91.0 424 736 820 61.1 855 931 463 793  89.0
564 819 906 432 743 826 59.7 847 926 476 797 896
578 833 909 432 748 838 605 863 937 47.2 803 904

6.3. Analysis of late-fusion inference

two-score strategy integrates visual and textual scores together;
the three-score strategy combines all three scores by further

Recall that CycleMatch contains visual, textual and latent adding the latent score. Table 4 reports the results of the three
scores for inference (Section 4). In this experiment, we compare strategies. For the two-score and three-score strategies, we present
three strategies to study the effect of two late-fusion inference the results of using the average and adaptive fusion, respectively.
approaches on the retrieval performance of CycleMatch. Specifi- From the results, we can make the following observations:
cally, the one-score strategy uses only a single visual score; the
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Query image
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Retrieved texts by DualMatch
A group of people sitting on a deck.

A group of people are sitting outside a cafe
drinking coffee and juice.

A group of people sitting on a deck.

People sitting outside a house enjoying wine.

Retrieved texts by CycleMatch (w/o latent)
A group of people sitting on a deck.
A group of people sit on a deck.

A group of people are sitting outside a cafe
drinking coffee and juice.

A group of people gathered out on a deck.

A pair of skiers , a man and a woman , are
climbing up a snowy and tree-lined hill.

A woman with a blue jacket is posing for a
picture while skiing down a mountain.

Two people are skiing in the snowy mountains.

A man wearing a blue jacket and a backpack
is skiing through a snow covered forest.

(a) Flickr30K

Retrieved texts by DualMatch

a lady with lots of giant crabs cooking them
on the drill.

a lot of food that are in some baskets.

the open air vendor is selling various kinds
of seafood.

a serving pot next to several trays of food.

A pair of skiers , a man and a woman , are
climbing up a snowy and tree-lined hill.

Two people smiling with skis with snow and
trees everywhere.

A woman with a blue jacket is posing for a
picture while skiing down a mountain.

Two people are skiing in the snowy mountains.

Retrieved texts by CycleMatch (w/o latent)

a lady with lots of giant crabs cooking them
on the drill.

the open air vendor is selling various kinds
of seafood.

a lot of food that are in some baskets.

a woman water crabs in some white trays and
other foods.

a baby next to a stuffed bear of some sort.
a baby is sitting next to a stuffed bear.

a smiling little girl hugging a teddy bear.

the baby is sitting with a teddy bear.

(b) MSCOCO

a baby next to a stuffed bear of some sort.
a baby is sitting next to a stuffed bear.
a baby sleeping with teddy bear as big as he is.

the baby is sitting with a teddy bear.

Fig. 9. Image-to-Text retrieval results on the datasets, (a) Flickr30K and (b) MSCOCO. The ground-truth descriptions are in green. By comparison, CycleMatch (w/o latent)
achieves more accurate results than DualMatch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Evaluation on the effect of using different fully-connected layers on the latent embedding. The two-score adaptive fusion is used here.
By comparison, fc(3) is the best one for learning the latent embedding on most measurements.

Method

Flickr30K dataset MSCOCO dataset

Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 Re@1 R@5 R@10 Re@1 R@5 R@10 Re@1 R@5 R@10

latent embedding with FC(")
latent embedding with FC?)
latent embedding with FC®3)

572 821 90.6 421 735 833 595 850 934 469 793 894
582 833 919 433 749 843 60.7 864 94.0 47.5 80.5 904

586 836 916 436 753 842 61.1

86.8 942 479 809 909

(1) The two-score strategy improves the one-score counterpart
with 1%-3% gains. As the visual and textual scores match
the samples in two different feature spaces, their comple-
mentary scores are able to improve the inference quality.

(2) The adaptive fusion outperforms the average one in terms
of both two-score and three-score strategies. Although their
performance gap over the R@K measurements is not signifi-

cant, the adaptive fusion is an efficient method without im-
posing extra parameters and manual tuning. In addition, the
inference time of the adaptive fusion is close to that of the
average fusion.

(3) The three-score strategy fails to achieve further improve-
ments over the two-score one. We attribute this to the
fact that, the latent score measures the similarity between
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Fig. 10. Similarity matrix of 100 image-text pairs from the test set. The related images and texts have the same index numbers. The diagonal line demonstrates high
inter-modal correlations for matched image-text pairs. The original cosine scores are re-scaled to be [0,1].
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Fig. 11. Visualization of adaptive weights for 1000 image queries and 5000 text queries on Flickr30K(a, b) and MSCOCO (c, d). Each dot in the maps is a query sample,
having two weights for the adaptive fusion. Note that w( (-) + w® (-) = 1. The weights of query samples are mostly gathered between 0.4 and 0.6. It suggests that both

visual and textual scores play an important role in the inference results.

Table 4

Evaluation on the effect of different inference strategies on the R@K measurements. The two-score strategy based on the adaptive

fusion achieves the best results (in bold face).

Flickr30K dataset

MSCOCO dataset

Inference method Image to Text

Text to Image

Image to Text Text to Image

R@1 R@5 R@10 Re@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
One-score, without fusion 548 826 901 40.1 709 810 586 855 926 455 783 887
Two-score, average fusion 57.8 83.3 90.9 432 74.8 83.8 60.5 86.3 93.7 472 80.3 90.4
Two-score, adaptive fusion 58.6 836 916 436 753 84.2 61.1 86.8 94.2 479 809 90.9
Three-score, average fusion 574 83.5 91.0 432 74.7 83.9 59.7 86.0 94.0 46.9 80.6 89.8
Three-score, adaptive fusion  57.8 838 912 435 747 840 61.0 864 945 478 810 90.7

f1(23:l') (v;) and fT(gl) (t;). However, we do not use a direct
matching loss between them during training CycleMatch. Al-
though adding this latent score for inference will not bring
further performance gains, learning the latent embeddings
in CycleMatch is still important for improving the entire em-
bedding procedure. As we discussed earlier, CycleMatch per-
forms better than the variant without latent embeddings,
namely CycleMatch(w/o latent).

As we can see, the two-score adaptive fusion achieves the best
results. In Fig. 11, we further present and analyze the two adaptive
weights (i.e. w{)(.) and w(?)(.)), which are learned in the two-
score adaptive fusion for visual and textual scores. Fig. 11(a,b) and
(c,d) shows the weights for Flickr30K and MSCOCO, respectively.
For 12T retrieval, we illustrate the adaptive weights of 1000 image

queries, namely w{')(v4) and wt?)(v4); for T2I retrieval, we show all
the weights of 5000 text queries, denoted as w()(t;) and w)(tg).
Notice that, each dot in Fig. 11 represents a query sample that
learns individual weights based on its score curves. It can be seen
that most samples have weights ranging from 0.4 to 0.6, which
suggests that both visual and textual scores have an important
impact on the inference results.

Comparison with the late fusion in [57]. This experiment is
used to compare the results of our adaptive fusion and the one
in [57]. Recall that our method computes only the positive area
above the axis, while the method in [57] considers both positive
and negative areas. As reported in Table 5 below, the results with
only a positive area are better in the context of both two-score
and three-score fusion cases, even though the performance gap
between the two methods is slight.
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Table 5

Comparison of two different methods for computing adaptive-fusion weights. The method by using only a positive area are better that of using

both positive and negative areas.

Flickr30K dataset

MSCOCO dataset

Inference method Image to Text

Text to Image

Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
Two-score, positive&negative areas 58.1 833 91.2 43.2 75.0 838 60.7 86.3 93.8 474 80.5 90.6
Two-score, positive area 58.6 83.6 91.6 43.6 753 84.2 61.1 86.8 94.2 479 80.9 90.9
Three-score, positive&negative areas  57.5 836 910 433 747 83.8 60.5 86.0 942 473 80.6 90.4
Three-score, positive area 57.8 838 912 435 747 84.0 61.0 864 945 47.8 81.0 90.7

Table 6

Comparison with the state-of-the-art approaches on Flickr30K. In addition, we present the image and text encoders used in these

approaches. Our CycleMatch (the two-score adaptive fusion) achieves better results on R@K measurements (in boldface).

Image Text Image to Text Text to Image
Method encoder encoder
R@1 R@5 R@10 R@1 R@5 R@10

DCCA [32] AlexNet TF-IDF 16.7 393 529 12.6 31.0 43.0
DVSA [34] AlexNet RNN 222 48.2 61.4 15.2 37.7 50.5
UVSE [36] VGG-19 RNN 23.0 50.7 62.9 16.8 42.0 56.5
mCNN [35] VGG-19 CNN 33.6 64.1 74.9 26.2 56.3 69.6
VQA-aware [65] VGG-19 RNN 339 62.5 74.5 249 52.6 64.8
GMM-FV [33] VGG-16 GMM+HGLMM 35.0 62.0 73.8 25.0 52.7 66.0
m-RNN [60] VGG-16 RNN 354 63.8 73.7 22.8 50.7 63.1
RNN-FV [66] VGG-19 RNN 35.6 62.5 74.2 274 55.9 70.0
HM-LSTM [13] AlexNet RNN 38.1 - 76.5 277 - 68.8
DSPE [9] VGG-19 HGLMM 40.3 68.9 79.9 29.7 60.1 721
sm-LSTM [11] VGG-19 RNN 42,5 719 81.5 30.2 60.4 72.3
VSE++ [67] ResNet-152 RNN 43.7 - 82.1 32.2 - 721
DualCNN [38] ResNet-152 ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8
RRF-Net [12] ResNet-152 HGLMM 47.6 774 871 354 68.3 79.9
2WayNet [16] VGG-16 GMM+HGLMM 49.8 67.5 - 36.0 55.6 -
DAN [10] ResNet-152 RNN 55.0 81.8 89.0 394 69.2 791
CycleMatch (Ours) ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2

Table 7

Comparison with the state-of-the-art approaches on MSCOCO. In addition, we present the image and text encoders used in these
approaches. Our CycleMatch (the two-score adaptive fusion) outperforms other approaches by achieving promising results (in boldface).

Image Text Image to Text Text to Image
Method encoder encoder
R@1 R@5 R@10 R@1 R@5 R@10

STV [68] VGG-19 RNN 33.8 67.7 821 259 60.0 74.6
DVSA [34] AlexNet RNN 384 69.9 80.5 274 60.2 74.8
GMM-FV [33] VGG-16 GMM-+HGLMM 394 67.9 80.9 25.1 59.8 76.6
m-RNN [60] VGG-16 RNN 41.0 73.0 83.5 29.0 422 77.0
RNN-FV [66] VGG-19 RNN 415 72.0 829 29.2 64.7 80.4
BiLSTM-Max [63] ResNet-101 RNN 42.6 75.3 873 339 69.7 83.8
mCNN [35] VGG-19 CNN 42.8 731 841 326 68.6 82.8
UVSE [36] VGG-19 RNN 434 75.7 85.8 31.0 66.7 79.9
HM-LSTM [13] AlexNet RNN 439 - 878 36.1 - 86.7
order-embeddings [69] VGG-19 RNN 46.7 - 88.9 379 - 85.9
DSPE [9] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9
VQA-aware [65] VGG-19 RNN 50.5 80.1 89.7 37.0 70.9 82.9
DualCNN [38] ResNet-50 ResNet-50 52.2 80.4 88.7 372 69.5 80.6
sm-LSTM [11] VGG-19 RNN 53.2 83.1 91.5 40.7 75.8 874
2WayNet [16] VGG-16 GMM-+HGLMM 55.8 75.2 - 39.7 63.3 -
RRF-Net [12] ResNet-152 HGLMM 56.4 85.3 915 439 78.1 88.6
VSE++ [67] ResNet-152 RNN 58.3 - 93.3 43.6 - 87.8
CycleMatch (Ours) ResNet-152 RNN 61.1 86.8 94.2 47.9 80.9 90.9

6.4. Comparisons with state-of-the-art approaches

In Tables 6 and 7, we present a comprehensive comparison
with previous papers where they reported the cross-modal re-
trieval performance on Flickr30K and MSCOCO. It can be seen
that our CycleMatch (the two-score adaptive fusion) outperforms
recent state-of-the-art approaches [10,12,67] with promising
improvements on both datasets. It is worth noting that these ap-
proaches employ different feature encoders that have a significant
influence on the performance. For a clear comparison, we further
list the image and text encoders used in these approaches. In the

following experiments, we will study the effect of different feature
encoders on the performance of CycleMatch.

To boost the performance, recent several approaches
[17,38,43,67] further fine-tune the image encoders during training
their models. Their results with fine-tuning the image encoders
achieve better performance on MSCOCO than Flickr30K. We should
know that it is feasible to fine-tune the image encoders while
training our CycleMatch, which can help to further improve our
results. In addition, the fine-tuning process will maintain the find-
ings we mentioned as above. More importantly, our results on the
Flickr30K dataset can even compete with the fine-tuned results in
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Flickr30K
[mage Query (1) A man in ared cap singing ( or talking ) into a microphone
" during the day with trees in the background.
(2) a black male with a red hat holding a microphone.
(3) A black man in a brown shirt and hat speaks into a microphone.
» (4) An african american man has on a brown hat and wearing a
% p brown button shirt holding a microphone as he sings.
17} : (5) A black man with a white hat and sunglasses speaks into a
8 J microphone outside a Chase bank.
% Text Query
Q
% An old man
22} holding a
camera while
walking a small
brown dog.
Image Query ) .
(1) A crowd of people are gathering at many different tents, most
of which have white roofs, outside.
(2) Workers erect a pavilion for an event in the park.
(3) A group of people are standing in the sand trying to hold a
3 large pole.
2 (4) A group of people outside are walking under a large reflective
o ] round sculpture.
o (5) All kinds of different people outside on a pier.
=
= Text Query
s
Two guys are
stacking lots
of broads
together.

™ Image Query
* (1) a cat snuggled next to luggage on the floor.
(2) a cat laying in front of I ge on the floor.
(3) a white, blue and black ys on the floor near
several suitcases.
8 (4) a brown cat sleeping in a black piece of luggage.
] (5) a cat sitting in a black piece of luggage.
Q4
1 Text Query
[
Qo
Q the sun shines
(75 through a
window into
a clean living
room with a
tile floor.
~ Image Query
(1) a food entree is shown on a plate.
(2) an egg and vegetable fritter is served with a side of broccoli.
(3) a closeup view of a plate holding potatoes, broccoli, and ham.
B (4) a plate with a piece chicken and some broccoli.
§ (5) a close up picture of some food on a plate.
o —
-
=1
= Text Query
= -
aman that is
in the water
with a
surfboard.

Fig. 12. Qualitative results of our CycleMatch on Flickr30K and MSCOCO. Given one query, the top-5 candidates are retrieved. In the success cases, the correct matches are
highlighted with green. In the failure cases, our method can still retrieve some reasonable candidates related to the query. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Table 8

Evaluation on the effect of different feature encoders on the performance of CycleMatch. By comparison, ResNet-152 is a superior image

encoder and RNN is a more powerful text encoder.

Flickr30K

MSCOCO

Image encoder  Text encoder  Image to Text

Text to Image

Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Effect of image encoders

VGG-19 RNN 514 80.6 88.1 38.5 71.0 813 55.1 83.5 913 43.7 76.7 88.4
ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 479 80.9 90.9
Effect of text encoders

ResNet-152 word2vec 481 78.7 874 37.7 70.8 81.1 55.9 83.8 91.8 44.7 79.1 87.7
ResNet-152 HGLMM 54.5 81.6 90.9 41.3 731 82.8 58.4 85.5 934 46.2 80.3 89.4
ResNet-152 RNN 58.6 83.6 91.6 43.6 753 84.2 61.1 86.8 94.2 479 80.9 90.9

[17,38,43,67]. On the MSCOCO dataset, the fine-tuned approaches
[17,38,43,67] merge the validation images into the training set to
further increase the performance. However, we still use the origi-
nal training set for a fair comparison with other prior approaches.
Notice that, the accuracies of image-to-text retrieval are higher
than those of text-to-image retrieval, because one image is anno-
tated with several texts but one text matches with only one image.

In addition to the quantitative evaluation, we present our
image-to-text and text-to-image retrieval examples in Fig. 12,
which includes both success and failure cases. For each query sam-
ple, the top-5 candidates are retrieved, of which the ground-truth
samples are highlighted in green. We notice that, the retrieved
candidates are semantically related to the query sample in some
extent, even for the failure cases.

6.5. Effect of feature encoders

As shown in Fig. 3, we extract visual and textual features from
off-the-shelf feature encoders. The proposed CycleMatch can be
compatible with diverse feature encoders, but it is still encour-
aged to study the effect of different feature encoders on the per-
formance. We report the results in Table 8.

Considering the image encoders, we use the VGG-19 and
ResNet-152 models to extract the visual features and compare
their results. We can see that, ResNet-152 has a considerable
improvements over VGG-19 on all measurements, especially for
R@1 accuracies. This shows the benefit of using more powerful
CNN models for improving the visual embeddings. In addition,
the feature dimension with ResNet-152 (i.e. 2,048) is lower than
that with VGG-19 (i.e. 4,096). Therefore, in this work we take the
ResNet-152 model as the preferable image encoder.

In terms of the text encoders, we test another two encoders
apart from the RNN encoder. The first one is word2vec [70], which
describes each word in the sentence with a 300-dimensional
feature vector. We then compute the average of all the word
features to represent the sentence feature. The second one is an
expensive representation based on the Hybrid Gaussian-Laplacian
mixture model (HGLMM) [33]. Specifically, HGLMM computes a
18,000-dimension feature vector with 30 centers (i.e. 300 x 30 x 2).
Similar to [9], we further reduce it to a 6,000-dimension feature
vector in order to decrease the training complexity. As shown in
Table 8, the RNN encoder is more powerful than both word2vec
and HGLMM. In addition, the feature dimension based RNN (i.e.
4,096) is feasible and practical during training CycleMatch.
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Table 9

Evaluation on the effect of fine-tuning the image encoder during training CycleMatch.

Flickr30K

MSCOCO

Image encoder Text encoder Image to Text

Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
VGG-19 without fine-tune 514 80.6 88.1 38.5 71.0 81.3 551 83.5 913 43.7 76.7 88.4
VGG-19 with fine-tune 54.8 831 90.5 423 74.8 84.5 60.2 873 94.0 493 81.2 91.8

Table 10

Evaluation on the effect of different test splits on the performance of CycleMatch. The results on the MSCOCO dataset show that CycleMatch can

achieve high mean accuracy and low standard deviation.

Image Text Image to Text Text to Image
encoder encoder

R@1 R@5 R@10 R@1 R@5 R@10
ResNet-152 RNN 60.23 + 1.46 88.08 + 1.19 94.88 + 0.77 4773 + 091 81.89 + 0.88 9141 + 0.62

6.6. Effect of fine-tuning image encoders

In this experiment, we perform the fine-tuning (ft) process
for the VGG-19 image encoder. The results in Table 9 show
considerable improvements for all R@K measurements. Similarly,
fine-tuning ResNet-152 can bring further improvements as well,
while it is out of the scope in our work.

6.7. Variance of test splits

For a fair comparison, we employ the standard data split
including 1000 test images that are captured from the validation
set [12,60]. However, no prior work has studied the effect of using
different test splits on the retrieval performance. To this end,
we perform 100 times of evaluations on the MSCOCO dataset.
For each evaluation, we randomly select 1000 images from the
validation set and test the results with the proposed CycleMatch.
As shown in Table 10, our results show high mean accuracy and
low standard deviation. This reveals the proper stability of our
approach for cross-modal retrieval. It is worth mentioning that we
cannot conduct this experiment on the Flickr30K dataset, as its
test set (i.e. including only 1000 images) has been already fixed.

7. Conclusions

In this paper, we have developed a novel embedding method
for the multi-modal task of matching visual and textual repre-
sentations. We proposed cycle-consistent embeddings to learn
both intra-modal correlations and intra-modal consistency. Our
approach taking advantage of multiple embedding techniques is
able to outperform any single embedding method. The experi-
mental results have demonstrated the superiority of our method
over other embedding methods. In addition, we have presented
two simple and efficient late-fusion approaches to increase the
inference quality. The late-fusion inference can integrate different
matching scores together without increasing the training complex-
ity. Finally, our approach has shown state-of-the-art performance
for cross-modal retrieval on Flickr30K and MSCOCO. In the future,
we will take into account local relations when matching images
and sentences, for example, semantic correlations between visual
regions and phases. One potential solution is to exploit the atten-
tion mechanism to localize the objects corresponding to the phase
description.
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