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a b s t r a c t 

In numerous multimedia and multi-modal tasks from image and video retrieval to zero-shot recognition 

to multimedia question and answering, bridging image and text representations plays an important and 

in some cases an indispensable role. To narrow the modality gap between vision and language, prior 

approaches attempt to discover their correlated semantics in a common feature space. However, these 

approaches omit the intra-modal semantic consistency when learning the inter-modal correlations. To 

address this problem, we propose cycle-consistent embeddings in a deep neural network for matching 

visual and textual representations. Our approach named as CycleMatch can maintain both inter-modal 

correlations and intra-modal consistency by cascading dual mappings and reconstructed mappings in a 

cyclic fashion. Moreover, in order to achieve a robust inference, we propose to employ two late-fusion ap- 

proaches: average fusion and adaptive fusion. Both of them can effectively integrate the matching scores 

of different embedding features, without increasing the network complexity and training time. In the ex- 

periments on cross-modal retrieval, we demonstrate comprehensive results to verify the effectiveness of 

the proposed approach. Our approach achieves state-of-the-art performance on two well-known multi- 

modal datasets, Flickr30K and MSCOCO. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, the explosive growth of multimedia data in social

etworks (e.g. image, video, text and audio) has triggered a mas-

ive amount of research activities in multi-modal understanding

nd reasoning. For instance, we can recognize a picture of a panda

fter hearing the description “black and white bears” without ever

aving seen one. This example demonstrates the cross-modal in-

eraction between vision and language. These heterogeneous data

ffers us the opportunity to understand the world from diverse

erspectives, while giving rise to the challenges of bridging differ-

nt modalities. In this paper, we focus on the task of image-text

atching, which aims to incorporate heterogeneous representa-

ions from visual and textual modalities. In practice, this task plays

n essential role for a wide variety of tasks in the multimedia

esearch, for examples, cross-modal retrieval [1,2] , visual question

nswering [3] , zero-shot recognition [4] and video captioning [5] . 

The core issue with image-text matching is searching for an

ppropriate embedding space where related images and texts can
∗ Corresponding author. 
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e matched correctly. Driven by the great strides made by deep

earning [6–8] , recent research has been dedicated to exploring

eep neural networks for learning powerful embedding features,

n order to narrow the modality gap between visual and textual

omains. These networks are typically composed of two branches

or generating visual and textual embedding features in a common

atent space, respectively [9–13] . Then, a similarity-based ranking

oss is used to measure the latent embedding features. Latent

mbeddings can distill common semantic information about both

he visual content and textual description. To directly match

he similarities between vision and language, researchers further

xploit dual embeddings by translating an input feature in the

ource space to be the feature in the target space [14–17] . Both

he latent and dual embeddings can capture inter-modal semantic

orrelations, however, they are limited in preserving intra-modal

emantic consistency. Our motivation for this work is that: A

obust embedding method should be able to learn representations of

oth the source and target modalities. 

Inspired by the idea of cycle-consistent learning [18,19] , we

ropose cycle-consistent embeddings in an image-text matching

etwork, which can incorporate both inter-modal correlations and

ntra-modal consistency for learning robust visual and textual em-

https://doi.org/10.1016/j.patcog.2019.05.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.05.008&domain=pdf
mailto:m.s.k.lew@liacs.leidenuniv.nl
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Fig. 1. Schematic pipeline of the proposed cycle-consistent embedding method. It 

is composed of two cycle branches: (a) image-to-text-to-image cycle and (b) text- 

to-image-to-text cycle. We first perform a dual mapping by transforming the input 

feature into the target feature space. Then, a reconstructed mapping is used to gen- 

erate a reconstructed embedding in the source feature space. Moreover, we con- 

struct a latent space to correlate latent embeddings of the two mappings. The two 

branches share the mapping functions for transformations between three feature 

spaces, and can be trained jointly by optimizing the matching losses in the three 

feature spaces. 
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beddings. Fig. 1 illustrates our embedding method by integrating

three feature embeddings, including dual, reconstructed and latent

embeddings. Specifically, it has two cycle branches, one starting

from an image feature in the visual space and the other from

a text feature in the textual space. For each branch, it first ac-

complishes a dual mapping by translating an input feature in the

source space to be a dual embedding in the target space. Inverse

to the dual mapping, we then exploit a reconstructed mapping,

with the aim of translating the dual embedding back to the source

space. Moreover, we learn a latent space during the dual and

reconstructed mappings and correlate the latent embeddings.

In the three feature spaces, we compute their ranking losses to

jointly optimize the whole embedding learning. Consequently,

our visual-textual embedding method can learn not only inter-

modal mappings (i.e. image-to-text and text-to-image), but also

intra-modal mappings (i.e. image-to-image and text-to-text). 

The contributions of this work are summarized as follows: 

• We propose a novel deep cycle-consistent embedding

network for image-text matching. Our approach called

CycleMatch can cascade dual and reconstructed mappings

together to maintain inter-modal correlations and intra-

modal consistency. To our best knowledge, this is the first

work to explore the usage of cycle consistency for solving

the task of image-text matching. 
• To improve the inference at the test stage, we present two

late-fusion approaches to efficiently integrate the matching
scores of multiple embedding features without increasing

the training complexity. 
• In the experiments, our cycle-consistency embedding

outperforms traditional embeddings with considerable im-

provements for cross-modal retrieval on two multi-modal

datasets, i.e. Flickr30K and MSCOCO. In addition, our results

are competitive with the state-of-the-art performance on

both datasets. 

The rest of this paper is structured as follows. Related works

re introduced in Section 2 . Section 3 presents the details regard-

ng the proposed CycleMatch. The late-fusion inference approaches

re shown in Section 4 . The experimental results are reported

n Section 6 . Finally, Section 7 summarizes the conclusions and

iscusses the future work. 

. Related work 

Our work is related to image-text matching, deep visual-textual

mbedding and cycle-consistent learning. 

.1. Image-text matching 

The problem of image-text matching has been studied by

he multimedia community for decades. One typical solution is

o unify heterogeneous representations into a latent embedding

pace, and then measure their similarity to ensure related pairs

re more similar than unrelated ones. To be specific, Canonical

orrelation Analysis (CCA) [20] is a classical and important em-

edding method, which can learn linear transformations to project

wo modalities into a latent space where their correlation is maxi-

ized. In addition, many variants [21–24] are proposed to leverage

he effectiveness of CCA. For example, kernel CCA [21] extended

he classical linear CCA by learning non-linear transformations.

oreover, Gong et al. [25] integrated a third view with the two-

iew CCA using high-level image semantics, in order to gain a

etter separation for multi-modal data. Ranjan et al. [26] proposed

 multi-label CCA approach by introducing multi-label information

hile learning the cross-modal subspaces. In practice, the integra-

ion of images and texts is a core issue for a variety of multi-modal

pplications [3,4,27,28] . For example, Karaoglu et al. [29] proposed

o detect words from images and then to combine the textual cues

ith the visual ones. Their method showed promising performance

mprovements for both place classification and logo retrieval. Sim-

larly, Bai et al. [30] developed a unified and end-to-end trainable

etwork, where the attention mechanism was further incorporated

o better match the extracted textual and visual cues, to address

he difficulties in fine-grained image classification. 

.2. Deep visual-textual embedding 

With the increasing progress of deep learning, research efforts

ave been made to CCA into deep neural networks [26,31–33] .

owever, most deep CCA models rely on expensive decorrela-

ion computations, which limit their generalization abilities at

arge-scale data. Alternatively, a number of recent approaches

12,13,34–37] address the task by designing two-branch networks

o embed visual and textual features into a common latent space,

nd then learn latent embeddings by optimizing a ranking loss

etween matched and unmatched image-text pairs. For instance,

ang et al. [9] built a simple and efficient matching network

o preserve the structure relations between images and texts

n the latent space. To associate image regions with words, the

ttention mechanism was integrated into visual-textual embedding

odels [10,11] . In addition to the pairwise ranking loss, recent

pproaches [38,39] leveraged extra loss functions to enhance the

iscrimination of the learned embedding features. 
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Fig. 2. Conceptual illustration of variants of image-text matching models. (a) Latent embedding model. (b) Dual embedding model with inter-modal reconstruction. (c) Dual 

embedding model with inter-modal and intra-modal reconstruction. Note that each embedding network consists of two branches to output the image feature and text 

feature, separately. (d) Our cycle-consistent embedding model. The models in (b), (c), (d) also impose latent embeddings on hidden layers. Our model cascades the two 

embedding networks in a cyclic fashion, which can enhance interactions between two embedding networks. 
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Another line of research [14,15,40–42] focuses on learning dual

mbeddings between two modalities, e.g. projecting visual features

nto the textual feature space and vice versa. Essentially, the dual

mbedding models are motivated by autoencoders. For instance,

eng et al. [14] proposed a correspondence cross-modal autoen-

oder model. 2WayNet [16] built the projections between two

odalities and regularized them with Euclidean loss. Recently, the

ork of Gu et al. [17] utilized two generative models to synthesize

rounded visual and textual representations. Also, Huang et al.

43] jointly modeled image-sentence matching and sentence gen-

ration. Note that, latent embeddings can be additionally used in

he dual embedding models to enhance cross-modal relations. 

In contrast to the above studies, our approach builds a re-

onstructed mapping upon the dual mapping, and generates

ycle-consistent embeddings that are beneficial to the process of

atching visual-textual representations. In Fig. 2 , we show the

ifferences of our model from previous works. 

.3. Cycle-consistent learning 

There are a few papers exploring cycle consistency for diverse

pplications [18,19,44–46] . They are mainly motivated by the fact

hat, cycle-consistent learning is encouraged to produce additional

eedback signals to improve the bi-directional translations. Specif-

cally, He et al. [18] proposed a dual-learning mechanism based

n deep reinforcement learning, where one agent was used to

earn the primal task, e.g. English-to-French translation, and the

ther agent for the dual task, e.g. French-to-English translation.

ore recently, Zhu et al. [19] exploited cycle-consistent adversarial

etworks (CycleGAN), which combined a cycle-consistency loss

ith an adversarial loss [47] to perform unpaired image-to-image

ranslations between two different visual domains. A similar idea

as also presented in [4 8,4 9] . Inspired by CycleGAN, several

ecent works have transferred the cycle-consistency loss to many

upervised tasks [50–52] . 

Although prior works have shown the effectiveness of using

ycle-consistent constraints for intra-modal domain mappings,

et in the context of cross-modal representation learning, its

ffectiveness has not been well investigated. In contrast to prior

pproaches that utilize cycle-consistent constraints within one

odality (e.g. neural machine translation and image-to-image

ranslation), our work is the first to extend the usage of cycle

onsistency for learning visual-textual embeddings. The work of

hen and Zitnick [53] is relevant to ours, as their model can both

enerate textual captions and reconstruct visual features given an

mage representation. However, their model lacks the inverse cycle

apping, i.e. text-to-image-to-text, which can be jointly learned in
ur model. Last but not least, these existing works did not consider

atching latent embeddings during the cycle-consistent scheme. 

. Proposed cycle-consistent embeddings 

In this section, we present the proposed CycleMatch model

ith cycle-consistent embeddings for matching visual and textual

epresentations. 

.1. System architecture 

Fig. 3 depicts an overview of the CycleMatch architecture. The

ntire network consists of three components: feature encoder,

eature embedding and feature matching. First of all, given an

nput image I i and text T i , we employ individual feature encoders

o extract the visual feature v i = En img (I i ) and textual feature

 i = En text (T i ) . Then, we develop several fully-connected (FC) layers

i.e. F C 
( j) 
I2T 

) to perform the Image-to-Text (I2T) mapping and several

ther FC layers (i.e. F C 
( j) 
T2I 

) for the Text-to-Image (T2I) mapping.

et f I2T ( ·) and f T2I ( ·) represent the mapping functions for I2T and

2I, respectively. In addition, connecting FC I2T and FC T2I can form

wo cycle mappings between the visual and textual feature spaces.

pecifically, given v i , we first transform it to be f I2T ( v i ) in the

extual feature space and then learn its reconstructed feature

 T2I ( f I2T ( v i )) in the visual feature space. Moreover, we also correlate

ntermediate features derived from F C (3) 
I2T 

and F C (3) 
T2I 

, so as to

earn a latent feature space. Similarly, t i is used to start another

ycle mapping. In a nutshell, each cycle mapping can learn dual,

econstructed and latent embeddings in a cyclic fashion. 

.2. Formulation 

Next, we will detail the above three embeddings and formu-

ate their loss functions separately. The entire network contains

wo cycle-consistent embedding branches: one for image-to-text- 

o-image (I2T2I) mapping and the other for text-to-image-to-text 

T2I2T) mapping. Here, we take the I2T2I mapping for an example.

.2.1. Dual embedding 

In a dataset collection with N image-text pairs, the input v i 
s fed into the first layer F C (1) 

I2T 
, where i = 1 , . . . , N. By using the

ollowing layers F C 
( j) 
I2T 

( j = 2 , 3 , 4) , the network finally generates

 dual embedding f I2T ( v i ) in the textual space, which has the

ame dimension as the ground-truth textual feature t i . Then, we

ormalize the two features and compute their similarity using the
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Fig. 3. Overview of the proposed CycleMatch. It develops two cycle branches for visual-textual embeddings. For each branch, it is divided into two sub-branches from the 

fourth FC layer (i.e. F C (4) 
IT 

and F C (4) 
TI 

). One sub-branch continues accomplishing the dual mapping to the target feature space, while the other sub-branch is used to perform 

the reconstructed mapping back to the source feature space. In this way, the cycle branches allow to jointly learn dual, reconstructed and latent embedding features. We can 

train the network end-to-end by optimizing several ranking loss functions simultaneously. 
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cosine distance 

s ( f I2T ( v i ) , t i ) = 

f I2T ( v i ) · t i 
|| f I2T ( v i ) || · || t i || . (1)

Notably, larger scores indicate more similar samples. During
training, it is important to construct a number of negative pairs,
in addition to the positive pair. Thereby, we search for the top K
negative samples in a mini-batch for both f I2T ( v i ) and t i , which are
denoted with f I2T ( v −i,k ) and t −

i,k 
, respectively, where k = 1 , . . . , K. To

learn dual mappings, we need to employ a pairwise ranking loss
function with respect to positive and negative pairs: 

L dual 
I2T2I = 

N ∑ 

i =1 

K ∑ 

k =1 

{
max 

[
0 , m − s ( f I2T ( v i ) , t i ) + s ( f I2T ( v i ) , t −i,k ) 

]
+ α max 

[
0 , m − s ( f I2T ( v i ) , t i ) + s ( f I2T ( v −i,k ) , t i ) 

]}
, (2)

here m is a margin parameter that defines a threshold to con-

strain the positive and negative pairs. α adjusts the weights of the

two loss terms. Ideally, the matched distance s ( f I2T ( v i ), t i ) should

be smaller than any of the unmatched distances s ( f I2T ( v i ) , t −i,k ) and

s ( f I2T ( v −i,k ) , t i ) . 

3.2.2. Reconstructed embedding 

Despite the fact that the task in this work is about cross-

modal matching, it is important as well to ensure intra-modal

consistency, that is, related images (or texts) should have closer

distances than unrelated ones. Hence, we explore reconstructed
appings to maintain the intra-modal semantic consistency, in

ddition to learning inter-modal correlations with dual mappings.

e cascade the dual and reconstructed mappings to form an

ntra-modal autoencoder and minimize the reconstruction error

ased on the ranking loss instead of the traditional Euclidean loss.

pecifically, we feed f I2T ( v i ) into F C 
( j) 
T2I 

, to produce a reconstructed

mbedding feature ˜ v i in the visual feature space with 

˜ 
 i = f T2I ( f I2T ( v i )) = f T2I ◦ f I2T ( v i ) . (3)

The ranking loss for making the reconstructed embedding fea-

ure ˜ v i match with the original visual feature v i can be written as

ollows 

L rec 
I2T2I = 

N ∑ 

i =1 

K ∑ 

k =1 

{ 

max 
[
0 , m − s ( ̃  v i , v i ) + s ( ̃  v i , v −i,k ) 

]
+ α max 

[
0 , m − s ( ̃  v i , v i ) + s ( ̃  v −i,k , v i ) 

]} 

. 

(4)

Since L rec 
I2T2I 

also has an effect on the parameters of F C 
( j) 
I2T 

, the

econstructed mappings can help to improve the learning of dual

appings as well. 

Moreover, we employ the t-SNE algorithm [54] to visualize our

mbedding features. Fig. 4 shows the embedding maps with the

est data from Flickr30K and MSCOCO, respectively. We show some

riginal images and texts corresponding to the embedding features.

irst, the images and texts in each local window demonstrate high
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Fig. 4. Visualization of our embedding features. For each dataset, we pick 10 0 0 

images (red) and 50 0 0 texts (green). Some images and texts corresponding to the 

embedding features are shown in local windows, from which we can observe not 

only correlations between cross-modal samples, but also relations between intra- 

modal samples. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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emantic correlations. In addition, these images themselves have

imilar visual content, and these texts themselves contain related

escriptions. This observation is consistent with our motivation

hat a robust embedding method should be able to consider both

nter-modal correlations and intra-modal consistency. 

.2.3. Latent embedding 

Furthermore, we exploit a latent feature space to enhance the

orrelations between the dual and reconstructed mappings. Latent

mbeddings are able to distill common semantic information from

isual and textual representations. Specifically, we make use of

he intermediate representations from the third FC layers, i.e.

 C (3) 
I2T 

and F C (3) 
T2I 

. When v i passes through F C (3) 
I2T 

, we can extract

n intermediate feature f (3) 
I2T 

( v i ) . Also, the dual embedding f I2T ( v i )

asses through F C (3) 
T2I 

to generate another intermediate feature

f (3) 
T2I 

( f I2T ( v i )) . The ranking loss for matching latent embeddings

hereby becomes 

L lat 
I2T2I = 

N ∑ 

i =1 

K ∑ 

k =1 

{ 

max 

[ 
0 , m − s 

(
f (3) 
I2T 

( v i ) , f (3) 
T2I 

( f I2T ( v i )) 
)

+ s 
(

f (3) 
I2T 

( v i ) , f (3) 
T2I 

( f I2T ( v −i,k )) 
)] 

+ α max 

[ 
0 , m − s 

(
f (3) 
I2T 

( v i ) , f (3) 
T2I 

( f I2T ( v i )) 
)

+ s 
(

f (3) 
I2T 

( v −
i,k 

) , f (3) 
T2I 

( f I2T ( v i )) 
)] } 

. 

(5) 
i  
Similar to the above I2T2I branch, it is straightforward to ex-

ress the matching losses in the T2I2T branch, including L dual 
T2I2T 

,

 

rec 
T2I2T 

and L lat 
T2I2T 

. In Fig. 5 , we show the six loss functions for learn-

ng cycle-consistent embeddings. 

.2.4. Full objective 

During training, we need to incorporate all the loss functions

ointly. The full objective is to minimize the total loss: 

arg min 

W I2T ,W T2I 

L total = L dual 
I2T2I + L rec 

I2T2I + L lat 
I2T2I + L dual 

T2I2T + L rec 
T2I2T + L lat 

T2I2T , (6) 

here W I2T and W T2I indicate the parameters in F C 
( j) 
I2T 

and F C 
( j) 
T2I 

,

espectively. They are unshared due to the specialization of two

ifferent modalities. 

To demonstrate the effectiveness of our CycleMatch, we uti-

ize the t-SNE [54] algorithm to visualize the embedding features

earned in the visual, textual and latent feature spaces, separately.

s shown in Fig. 6 , we randomly select 100 image-text pairs from

he Flickr30K dataset [55] . From all the feature maps, we can visi-

ly observe high similarities between two matched samples. 

. Late-fusion inference 

By performing cycle-consistent embeddings, we can represent

ne sample with a set of three different features, for instance,

 v i , f I2T ( v i ) , f 
(3) 
I2T 

( v i ) } for an image. Since the reconstructed embed-

ing ˜ v i and the other latent embedding f (3) 
T2I 

( f I2T ( v i )) are related

o v i and f (3) 
I2T 

( v i ) , we do not consider them for simplicity. Each of

he three features can be used to measure an image-text matching

core. Instead of using only one score, it is encouraged to leverage

ifferent scores together to achieve a more robust inference. This

s driven by the late-fusion technique [56] in multimedia retrieval,

hich is a simple and efficient approach to combine the prediction

cores of individual features. In this work, we present two effective

ate-fusion approaches, namely average fusion and adaptive fusion.

.1. Average fusion 

Given a query image I q , we extract three features

 v q , f I2T ( v q ) , f 
(3) 
I2T 

( v q ) } . Similarly, an arbitrary text T i in the dataset

an be described with { t i , f T2I ( t i ) , f 
(3) 
T2I 

( t i ) } . We can compute three

imilarity scores between I q and T i : 

 

visual score : s (1) ( v q , t i ) = s ( v q , f T2I ( t i )) , 

textual score : s (2) ( v q , t i ) = s ( f I2T ( v q ) , t i ) , 
latent score : s (3) ( v q , t i ) = s ( f (3) 

I2T 
( v q ) , f (3) 

T2I 
( t i )) . 

(7) 

Then we combine the three scores to obtain an average fusion

core as follows 

 

a v g ( v q , t i ) = 

∑ 3 
j=1 s 

( j) ( v q , t i ) 
3 

. (8)

It is similar to compute the fusion score s avg ( t q , v i ) in terms of

 query text T q . 

.2. Adaptive fusion 

To study the importance of different features, we further learn

daptive weights when combining the three scores. As suggested

n [57] , the score curve by using a superior feature can be sorted

n an “L” shape, while the curve by using an inferior feature tends

o gradually descend. In addition, the area under the curve can be

sed as an indicator to measure the weight of the corresponding

eature. Driven by this observation, we can use the sorted score

urves of the above three features to decide their weights. Specif-

cally, we utilize each of the three features to compute the score
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Fig. 5. Conceptual illustration of loss functions for training CycleMatch. The first row includes the loss functions in the I2T2I cycle and the second row is for the T2I2T cycle. 

Fig. 6. Visualization of our embedding features by using 100 image-text pairs in Flickr30K [55] . The first and second rows represent the embedding features learned in the 

I2T2I and T2I2T branches respectively. In each feature map, matched samples are shown with the same color. In (a), (d), the dual embedding features (‘ •’) can match with 

the corresponding target features (‘ ∗ ’); In (b)(e), the reconstructed embedding features (‘ •’) look closely similar to the source features (‘ ∗ ’). In (c)(f), the two latent embedding 

features (‘ •’ and ‘ ∗ ’) can learn to correlate with each other as well. 
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curve of a query image I q to all the text samples. Then, we sort

the score curves and compute their areas with respect to the hori-

zontal axis. In Fig. 7 , we show three sorted score curves for either

a query image or text. 

Our adaptive fusion method is inspired by the late fusion in

[57] , due to its parameter-free property and efficient computation.

However, our method has two major differences from [57] . First,

Zheng et al. [57] attempt to integrate different features, including

BoW, Color and GIST features. In contrast, we construct a unified

network to extract multiple embedding features, which have close

relations to each other. Second, In [57] , they use the total curve

to compute the area. However, we compute only the positive area
bove the axis and omit the negative one. 1 This way can help

o decrease the effect of long tails of the curves. For example in

ig. 7 (b), the three curves have almost similar negative areas,

ased on which it is hard to distinguish the weights of the three

eatures. Hence, adding the negative area with the positive one

ill narrow the gap of significance of different features and fail

o learn robust adaptive weights. In the experiments, we show the

dvantage of our method over [57] . 
1 The similarity scores in this work are based on the cosine distance, ranging 

from −1 to 1. 
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Fig. 7. Illustration of the sorted score curves based on three different f eatures. (a) 

For the query image, the first curve (in red) forms the smallest area above the 

X axis, so the corresponding feature (i.e. visual embedding feature) can have the 

largest weight (0.428). We show a matched text at the beginning of the curves and 

an unmatched text at the end of the curves. (b) Similarly, we demonstrate a text 

query example. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Formally, the positive area associated with the j th feature can

e approximated by 

rea ( j) 
+ ( v q ) = 

N ∑ 

i =1 

max 
[
0 , s ( j) ( v q , t i ) 

]
. (9)

Smaller positive area means that the corresponding feature

hould have greater weights. Hence, the adaptive weights of I q 
.r.t. the three features can be expressed with 

 

( j) ( v q ) = 

1 

area ( j) 
+ ( v q ) 

. (10)

In addition, we normalize the three weights to make sure
 3 
j=1 w 

( j) ( v q ) = 1 . Finally, the adaptive fusion score for matching

 q and T i becomes 

 

adt ( v q , t i ) = 

∑ 

j 

w 

( j) ( v q ) · s ( j) ( v q , t i ) . (11)

Likewise, we demonstrate a text query T q in the right of Fig. 7 ,

nd show its adaptive weights, w 

( j ) ( t q ). Notice that our adaptive

usion approach can achieve specific weights for different query

amples. It is an unsupervised and efficient manner without

dding extra parameters and manual tuning. In the experiments,

e analyze the effects of these two late-fusion approaches on the

nference of cross-modal retrieval. 
. Discussion 

Although the cycle-consistent idea has been adopted in many

roblems, it should not decrease the novelty of our work. In this

ection, we mainly aim to state our similarities and differences

ompared to the prior works like CycleGAN. 

Similarities: Essentially, cycle-consistent learning is a variant of

he auto-encoder model, which mainly aims to construct a cyclic

apping to reconstruct the input data. Both CycleGAN and Cy-

leMatch are motivated by the idea of cycle-consistent learning,

ven though they focus on addressing different tasks. 

Differences: Our proposed CycleMatch uses the idea of cycle-

onsistent learning, but it still has task-specific novelties and dif-

erences from CycleGAN. 

• First, CycleGAN integrates a cycle-consistency loss with an

adversarial loss to perform intra-modal representation learn-

ing, i.e. image-to-image translation between two image sets.

In contrast, our CycleMatch is proposed to address the prob-

lem of cross-modal representation learning between image

and text sets. In prior works, the effectiveness of cycle-

consistent learning has not been well investigated in the

context of cross-modal tasks. Our work is the first to extend

cycle-consistent learning to address the task of image-text

matching. 
• Second, our reconstructed embedding is learned with the

ranking loss, instead of the traditional Euclidean loss in Cy-

cleGAN. Notably, the ranking loss aims to reconstruct the re-

lations among data samples rather than the original features.

We find that the ranking loss is more suited for the match-

ing task compared to the Euclidean loss. 
• Third, CycleMatch is a novel network architecture that is dif-

ferent from CycleGAN. Notably, CycleMatch is not based on

the GAN model. In addition, we consider the latent embed-

ding representations, which are not taken into account in

CycleGAN. 
• Lastly, we contribute to proposing late-fusion inference in

order to integrate multiple embedding features learned in

the model. This robust and efficient inference is performed

in the test stage and will not complicate the training pro-

cedure. The results in our experiments verify the effective-

ness of the late-fusion inference. However, CycleGAN does

not provide a robust inference in its test stage. 

In summary, more and more papers [50–52,58,59] are mak-

ng use of cycle-consistent learning to solve a variety of problems,

uch as domain adaptation, video retargeting and zero-shot learn-

ng. These works make promising contributions to the field, even

hough they are primarily or partially inspired by CycleGAN. In the

uture, we believe more related works will be encouraged in the

eld. 

. Experiments 

First, we compare CycleMatch with various baseline models to

erify its effectiveness. In addition, we present in-depth analysis on

he two late-fusion approaches. Moreover, our results can be com-

etitive with the state-of-the-art performance for cross-modal re-

rieval on two well-known datasets. Finally, we present additional

blation study on the effect of feature encoders and variance of

est splits. 

.1. Experimental setup 

We introduce the dataset protocols, evaluation metrics, network

etails, training details and time complexity, involved in our exper-

mental setup. 
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6.1.1. Dataset protocols 

The experiments are performed on two well-known datasets.

(1) Flickr30K [55] consists of 31,783 images and each image is as-

sociated with five different sentences. We use the dataset split of

[60] , namely 29,783 training images, 10 0 0 validation images and

10 0 0 test images. (2) MSCOCO [61] is one of the largest multi-

modal datasets, which includes 82,783 training images and 40,504

validation images. We pick five ground-truth sentences for each

image. 1,0 0 0 test images are selected from the validation set [60] .

Notice that some works [9,17,38] merge the remaining validation

images into the training set, to further increase the performance.

However, we keep only using the original training set for fairness. 

6.1.2. Evaluation metrics 

For evaluating the performance of cross-modal retrieval, we

adopt the common metric R@K, which measures the recall rate

of a correctly retrieved ground-truth at top K retrieved candidates.

Generally, K is set to 1, 5 and 10 for both image-to-text and text-

to-image retrieval. 

6.1.3. Network details 

In terms of the image encoder, we employed the powerful

ResNet-152 [8] pre-trained on the ImageNet dataset [62] . Besides,

we recast the CNN model to its fully convolutional network (FCN)

counterpart, which can capture rich region representations. The

last layer of the FCN model is spatially averaged to generate a 2048

dimensional visual representation. To extract the textual represen-

tation, we utilized the pre-trained RNN encoder proposed in [63] .

It can represent one sentence with a 4096 dimensional feature vec-

tor. Currently, we did not fine-tune the feature encoders during the

training. 

As for the two groups of four FC layers in CycleMatch (i.e.

F C 
( j) 
I2T 

and F C 
( j) 
T2I 

), the channels of the first three layers are fixed as

[2048,512,512]. Note that, F C (4) 
I2T 

should have the same dimension

as the textual feature and F C (4) 
T2I 

should be equal to the size of the

visual feature. 

6.1.4. Training details 

We implemented the proposed approach based on the Caffe li-

brary [64] . It is important to shuffle the training samples randomly

during the data preparation stage. The hyper-parameters are eval-

uated on the validation set of each dataset. We trained the model

using SGD with a mini-batch size of 500, a weight decay of 0.0 0 05,

a momentum of 0.9 and an initialized learning rate of 0.1. The

learning rate is divided by 10 when the decrease in loss stabilizes.

We set α = 2 and m = 0 . 1 in all the experiments. The number of

negative samples in each min-batch is 50. The whole training pro-

cedure terminates after 60 epochs for both datasets. 

In Fig. 8 , we show the training loss of the six loss functions on

the two datasets. It can be observed that the loss tend to converge

during the training epochs. 

6.1.5. Time complexity 

We use the total loss in Eq. (6) to perform the training proce-

dure. Each loss term is a simple and efficient ranking loss that is

widely used in retrieval tasks. We used a Titan X card with 12GB to

train all models in the experiments. For the full CycleMatch model,

training required about 19 h on the Flickr30K dataset and 47 h on

the MSCOCO dataset, respectively. 

6.2. Comparisons with baseline approaches 

To demonstrate the superiority of our approach, we designed

several baseline models (see Table 1 ) based on the same network

settings and training hyper-parameters as CycleMatch. In terms
f inference, LatentMatch is evaluated with only the latent score.

owever, all the other models have both visual and textual scores.

or consistency we utilize the average fusion approach to accom-

lish their inference. Table 2 reports the cross-modal retrieval

erformance of these models on both Flickr30K and MSCOCO.

verall, CycleMatch surpasses LatentMatch and DualMatch with

ignificant improvements, and achieves overall superior perfor-

ance over other variants of CycleMatch. In the next, we can

eport the results from several aspects. 

.2.1. Impact of reconstructed embeddings 

First, we explain the benefit of constructing the cycle-consistent

mbeddings in our model. Primarily, cycle-consistent learning used

n our model can benefit the dual embeddings. As can be seen in

ig. 3 , the reconstructed embeddings are built on top of the dual

mbeddings, therefore the reconstruction loss can help the training

f the dual embeddings. The main difference between DualMatch

nd CycleMatch(w/o latent) is that the latter model introduces a

econstructed mapping upon the traditional dual mapping. As re-

orted in Table 2 , the performance gap shows between DualMatch

nd CycleMatch(w/o latent) verifies the benefit of adding recon-

tructed embeddings in a cyclic fashion. 

In addition to the above quantitative evaluation, we show

mage-to-text retrieval results as well to qualitatively compare the

wo methods. As shown in Fig. 9 , CycleMatch (w/o latent) can re-

rieve more accurate text descriptions than DualMatch, given the

ame query image. According to both quantitative and qualitative

omparisons, it shows the improvements achieved by adding the

ycle-consistency in our model. 

.2.2. Impact of latent embeddings 

By comparing the results of CycleMatch and CycleMatch(w/o

atent), we find that integrating the latent embeddings into Cy-

leMatch brings further improvements over all metrics. For exam-

le, R@5 shows about 2% gains for both I → T and T → I. Although

sing only latent embeddings (i.e. LatentMatch) is inferior to other

odels, it is beneficial to adopt them to improve other embedding

ethods like CycleMatch. 

Moreover, we conduct an experiment below to test the ef-

ect of using different fully-connected (FC) layers on the latent

mbeddings. Apart from using the layer FC (3) , we also test the

atent embedding based on FC (1) or FC (2) . In Table 3 , we show

he results by using three different FC layers. It can be seen that

he both FC (2) and FC (3) features show better results than FC (1) .

lthough FC (1) feature has more dimensions, its representation

ower is less than FC (2) and FC (3) . One main reason is that FC (1) is

he first layer in the network, but FC (2) and FC (3) are closer to the

igh-level semantics. In addition, FC (3) has slight improvements

ver FC (2) . Based on these results, we decide to construct the

atent embedding with the FC (3) features. 

.2.3. Impact of cycle branches 

Both CycleMatch(I2T2I) and CycleMatch(T2I2T) can outper-

orm LatentMatch and DualMatch, even though only one cycle-

onsistent embedding branch is used. By comparing these two

odels, CycleMatch(I2T2I) performs better for I → T retrieval, while

ycleMatch(T2I2T) yields better results for T → I retrieval. When

e incorporate the two cycle branches jointly, namely CycleMatch,

t achieves overall superior performance over any single cycle

ranch on both datasets. 

In addition to the R@K performance, we further present the

atching scores computed by using our embedding features. To be

pecific, we randomly select 100 image-text pairs from the test set,

nd compute the similarity between one image and text. As shown

n Fig. 10 , matched image-text pairs (with the same index) have

reater similarity scores than unmatched ones. 
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Fig. 8. Illustration of training loss cost during training CycleMatch on the Flickr30K and MSCOCO datasets. 

Table 1 

Summary of various embedding methods for image-text matching. 

Embedding methods Main description 

LatentMatch A latent embedding model by matching f (3) 
I2T 

( v i ) and f (3) 
T2I 

( t i ) . 

DualMatch A dual embedding model by learning two dual mappings: I → T and T → I. 

CycleMatch(w/o latent) An ablation model without latent embeddings between dual and reconstructed mappings. 

CycleMatch(I2T2I) An ablation model with an I2T2I cycle branch and an I → T dual mapping. 

CycleMatch(T2I2T) An ablation model with a T2I2T cycle branch and a T → I dual mapping. 

CycleMatch A fully implemented model with two cycle branches. 

Table 2 

Comparison of different embedding approaches for cross-modal retrieval on Flickr30k and MSCOCO. Higher R@K numbers are 

better, where K = 1 , 5 , 10 . The full CycleMatch method outperforms others on both datasets. 

Flickr30K dataset MSCOCO dataset 

Method Image to Text Text to Image Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

LatentMatch 49.7 77.4 85.0 37.8 69.8 80.6 53.9 82.9 90.8 43.0 75.8 85.9 

DualMatch 53.4 80.5 87.1 40.1 70.9 81.0 56.3 83.5 91.5 45.5 76.7 87.5 

CycleMatch(w/o latent) 56.8 81.7 90.3 41.1 72.5 81.3 58.5 84.0 92.4 46.9 78.3 88.7 

CycleMatch(I2T2I) 57.0 82.4 91.0 42.4 73.6 82.0 61.1 85.5 93.1 46.3 79.3 89.0 

CycleMatch(T2I2T) 56.4 81.9 90.6 43.2 74.3 82.6 59.7 84.7 92.6 47.6 79.7 89.6 

CycleMatch 57.8 83.3 90.9 43.2 74.8 83.8 60.5 86.3 93.7 47.2 80.3 90.4 
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.3. Analysis of late-fusion inference 

Recall that CycleMatch contains visual, textual and latent

cores for inference ( Section 4 ). In this experiment, we compare

hree strategies to study the effect of two late-fusion inference

pproaches on the retrieval performance of CycleMatch. Specifi-

ally, the one-score strategy uses only a single visual score; the
wo-score strategy integrates visual and textual scores together;

he three-score strategy combines all three scores by further

dding the latent score. Table 4 reports the results of the three

trategies. For the two-score and three-score strategies, we present

he results of using the average and adaptive fusion, respectively.

rom the results, we can make the following observations: 
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Fig. 9. Image-to-Text retrieval results on the datasets, (a) Flickr30K and (b) MSCOCO. The ground-truth descriptions are in green. By comparison, CycleMatch (w/o latent) 

achieves more accurate results than DualMatch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Evaluation on the effect of using different fully-connected layers on the latent embedding. The two-score adaptive fusion is used here. 

By comparison, fc(3) is the best one for learning the latent embedding on most measurements. 

Flickr30K dataset MSCOCO dataset 

Method Image to Text Text to Image Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

latent embedding with FC (1) 57.2 82.1 90.6 42.1 73.5 83.3 59.5 85.0 93.4 46.9 79.3 89.4 

latent embedding with FC (2) 58.2 83.3 91.9 43.3 74.9 84.3 60.7 86.4 94.0 47.5 80.5 90.4 

latent embedding with FC (3) 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9 

 

 

 

 

 

 

 

 

 

 

 

 

(1) The two-score strategy improves the one-score counterpart

with 1%–3% gains. As the visual and textual scores match

the samples in two different feature spaces, their comple-

mentary scores are able to improve the inference quality. 

(2) The adaptive fusion outperforms the average one in terms

of both two-score and three-score strategies. Although their

performance gap over the R@K measurements is not signifi-
cant, the adaptive fusion is an efficient method without im-

posing extra parameters and manual tuning. In addition, the

inference time of the adaptive fusion is close to that of the

average fusion. 

(3) The three-score strategy fails to achieve further improve-

ments over the two-score one. We attribute this to the

fact that, the latent score measures the similarity between
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Fig. 10. Similarity matrix of 100 image-text pairs from the test set. The related images and texts have the same index numbers. The diagonal line demonstrates high 

inter-modal correlations for matched image-text pairs. The original cosine scores are re-scaled to be [0,1]. 

Fig. 11. Visualization of adaptive weights for 10 0 0 image queries and 50 0 0 text queries on Flickr30K(a, b) and MSCOCO (c, d). Each dot in the maps is a query sample, 

having two weights for the adaptive fusion. Note that w 

(1) (·) + w 

(2) (·) = 1 . The weights of query samples are mostly gathered between 0.4 and 0.6. It suggests that both 

visual and textual scores play an important role in the inference results. 

Table 4 

Evaluation on the effect of different inference strategies on the R@K measurements. The two-score strategy based on the adaptive 

fusion achieves the best results (in bold face). 

Flickr30K dataset MSCOCO dataset 

Inference method Image to Text Text to Image Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

One-score, without fusion 54.8 82.6 90.1 40.1 70.9 81.0 58.6 85.5 92.6 45.5 78.3 88.7 

Two-score, average fusion 57.8 83.3 90.9 43.2 74.8 83.8 60.5 86.3 93.7 47.2 80.3 90.4 

Two-score, adaptive fusion 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9 

Three-score, average fusion 57.4 83.5 91.0 43.2 74.7 83.9 59.7 86.0 94.0 46.9 80.6 89.8 

Three-score, adaptive fusion 57.8 83.8 91.2 43.5 74.7 84.0 61.0 86.4 94.5 47.8 81.0 90.7 
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f (3) 
I2T 

( v i ) and f (3) 
T2I 

( t i ) . However, we do not use a direct

matching loss between them during training CycleMatch. Al-

though adding this latent score for inference will not bring

further performance gains, learning the latent embeddings

in CycleMatch is still important for improving the entire em-

bedding procedure. As we discussed earlier, CycleMatch per-

forms better than the variant without latent embeddings,

namely CycleMatch(w/o latent). 

As we can see, the two-score adaptive fusion achieves the best

esults. In Fig. 11 , we further present and analyze the two adaptive

eights (i.e. w 

(1) ( · ) and w 

(2) ( · )), which are learned in the two-

core adaptive fusion for visual and textual scores. Fig. 11 (a,b) and

c,d) shows the weights for Flickr30K and MSCOCO, respectively.

or I2T retrieval, we illustrate the adaptive weights of 10 0 0 image
ueries, namely w 

(1) ( v q ) and w 

(2) ( v q ); for T2I retrieval, we show all

he weights of 50 0 0 text queries, denoted as w 

(1) ( t q ) and w 

(2) ( t q ).

otice that, each dot in Fig. 11 represents a query sample that

earns individual weights based on its score curves. It can be seen

hat most samples have weights ranging from 0.4 to 0.6, which

uggests that both visual and textual scores have an important

mpact on the inference results. 

Comparison with the late fusion in [57] . This experiment is

sed to compare the results of our adaptive fusion and the one

n [57] . Recall that our method computes only the positive area

bove the axis, while the method in [57] considers both positive

nd negative areas. As reported in Table 5 below, the results with

nly a positive area are better in the context of both two-score

nd three-score fusion cases, even though the performance gap

etween the two methods is slight. 
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Table 5 

Comparison of two different methods for computing adaptive-fusion weights. The method by using only a positive area are better that of using 

both positive and negative areas. 

Flickr30K dataset MSCOCO dataset 

Inference method Image to Text Text to Image Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

Two-score, positive&negative areas 58.1 83.3 91.2 43.2 75.0 83.8 60.7 86.3 93.8 47.4 80.5 90.6 

Two-score, positive area 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9 

Three-score, positive&negative areas 57.5 83.6 91.0 43.3 74.7 83.8 60.5 86.0 94.2 47.3 80.6 90.4 

Three-score, positive area 57.8 83.8 91.2 43.5 74.7 84.0 61.0 86.4 94.5 47.8 81.0 90.7 

Table 6 

Comparison with the state-of-the-art approaches on Flickr30K. In addition, we present the image and text encoders used in these 

approaches. Our CycleMatch (the two-score adaptive fusion) achieves better results on R@K measurements (in boldface). 

Method 

Image 

encoder 

Text 

encoder 

Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

DCCA [32] AlexNet TF-IDF 16.7 39.3 52.9 12.6 31.0 43.0 

DVSA [34] AlexNet RNN 22.2 48.2 61.4 15.2 37.7 50.5 

UVSE [36] VGG-19 RNN 23.0 50.7 62.9 16.8 42.0 56.5 

mCNN [35] VGG-19 CNN 33.6 64.1 74.9 26.2 56.3 69.6 

VQA-aware [65] VGG-19 RNN 33.9 62.5 74.5 24.9 52.6 64.8 

GMM-FV [33] VGG-16 GMM + HGLMM 35.0 62.0 73.8 25.0 52.7 66.0 

m-RNN [60] VGG-16 RNN 35.4 63.8 73.7 22.8 50.7 63.1 

RNN-FV [66] VGG-19 RNN 35.6 62.5 74.2 27.4 55.9 70.0 

HM-LSTM [13] AlexNet RNN 38.1 – 76.5 27.7 – 68.8 

DSPE [9] VGG-19 HGLMM 40.3 68.9 79.9 29.7 60.1 72.1 

sm-LSTM [11] VGG-19 RNN 42.5 71.9 81.5 30.2 60.4 72.3 

VSE ++ [67] ResNet-152 RNN 43.7 – 82.1 32.2 – 72.1 

DualCNN [38] ResNet-152 ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8 

RRF-Net [12] ResNet-152 HGLMM 47.6 77.4 87.1 35.4 68.3 79.9 

2WayNet [16] VGG-16 GMM + HGLMM 49.8 67.5 – 36.0 55.6 –

DAN [10] ResNet-152 RNN 55.0 81.8 89.0 39.4 69.2 79.1 

CycleMatch (Ours) ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 

Table 7 

Comparison with the state-of-the-art approaches on MSCOCO. In addition, we present the image and text encoders used in these 

approaches. Our CycleMatch (the two-score adaptive fusion) outperforms other approaches by achieving promising results (in boldface). 

Method 

Image 

encoder 

Text 

encoder 

Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

STV [68] VGG-19 RNN 33.8 67.7 82.1 25.9 60.0 74.6 

DVSA [34] AlexNet RNN 38.4 69.9 80.5 27.4 60.2 74.8 

GMM-FV [33] VGG-16 GMM + HGLMM 39.4 67.9 80.9 25.1 59.8 76.6 

m-RNN [60] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0 

RNN-FV [66] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4 

BiLSTM-Max [63] ResNet-101 RNN 42.6 75.3 87.3 33.9 69.7 83.8 

mCNN [35] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8 

UVSE [36] VGG-19 RNN 43.4 75.7 85.8 31.0 66.7 79.9 

HM-LSTM [13] AlexNet RNN 43.9 – 87.8 36.1 – 86.7 

order-embeddings [69] VGG-19 RNN 46.7 – 88.9 37.9 – 85.9 

DSPE [9] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9 

VQA-aware [65] VGG-19 RNN 50.5 80.1 89.7 37.0 70.9 82.9 

DualCNN [38] ResNet-50 ResNet-50 52.2 80.4 88.7 37.2 69.5 80.6 

sm-LSTM [11] VGG-19 RNN 53.2 83.1 91.5 40.7 75.8 87.4 

2WayNet [16] VGG-16 GMM + HGLMM 55.8 75.2 – 39.7 63.3 –

RRF-Net [12] ResNet-152 HGLMM 56.4 85.3 91.5 43.9 78.1 88.6 

VSE ++ [67] ResNet-152 RNN 58.3 – 93.3 43.6 – 87.8 

CycleMatch (Ours) ResNet-152 RNN 61.1 86.8 94.2 47.9 80.9 90.9 
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6.4. Comparisons with state-of-the-art approaches 

In Tables 6 and 7 , we present a comprehensive comparison

with previous papers where they reported the cross-modal re-

trieval performance on Flickr30K and MSCOCO. It can be seen

that our CycleMatch (the two-score adaptive fusion) outperforms

recent state-of-the-art approaches [10,12,67] with promising

improvements on both datasets. It is worth noting that these ap-

proaches employ different feature encoders that have a significant

influence on the performance. For a clear comparison, we further

list the image and text encoders used in these approaches. In the
ollowing experiments, we will study the effect of different f eature

ncoders on the performance of CycleMatch. 

To boost the performance, recent several approaches

17,38,43,67] further fine-tune the image encoders during training

heir models. Their results with fine-tuning the image encoders

chieve better performance on MSCOCO than Flickr30K. We should

now that it is feasible to fine-tune the image encoders while

raining our CycleMatch, which can help to further improve our

esults. In addition, the fine-tuning process will maintain the find-

ngs we mentioned as above. More importantly, our results on the

lickr30K dataset can even compete with the fine-tuned results in
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Fig. 12. Qualitative results of our CycleMatch on Flickr30K and MSCOCO. Given one query, the top-5 candidates are retrieved. In the success cases, the correct matches are 

highlighted with green. In the failure cases, our method can still retrieve some reasonable candidates related to the query. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Table 8 

Evaluation on the effect of different feature encoders on the performance of CycleMatch. By comparison, ResNet-152 is a superior image 

encoder and RNN is a more powerful text encoder. 

Flickr30K MSCOCO 

Image encoder Text encoder Image to Text Text to Image Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

Effect of image encoders 

VGG-19 RNN 51.4 80.6 88.1 38.5 71.0 81.3 55.1 83.5 91.3 43.7 76.7 88.4 

ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9 

Effect of text encoders 

ResNet-152 word2vec 48.1 78.7 87.4 37.7 70.8 81.1 55.9 83.8 91.8 44.7 79.1 87.7 

ResNet-152 HGLMM 54.5 81.6 90.9 41.3 73.1 82.8 58.4 85.5 93.4 46.2 80.3 89.4 

ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9 
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17,38,43,67] . On the MSCOCO dataset, the fine-tuned approaches

17,38,43,67] merge the validation images into the training set to 

urther increase the performance. However, we still use the origi-

al training set for a fair comparison with other prior approaches.

otice that, the accuracies of image-to-text retrieval are higher

han those of text-to-image retrieval, because one image is anno-

ated with several texts but one text matches with only one image.

In addition to the quantitative evaluation, we present our

mage-to-text and text-to-image retrieval examples in Fig. 12 ,

hich includes both success and failure cases. For each query sam-

le, the top-5 candidates are retrieved, of which the ground-truth

amples are highlighted in green. We notice that, the retrieved

andidates are semantically related to the query sample in some

xtent, even for the failure cases. 

.5. Effect of feature encoders 

As shown in Fig. 3 , we extract visual and textual features from

ff-the-shelf feature encoders. The proposed CycleMatch can be

ompatible with diverse feature encoders, but it is still encour-

ged to study the effect of different feature encoders on the per-

ormance. We report the results in Table 8 . 
Considering the image encoders, we use the VGG-19 and

esNet-152 models to extract the visual features and compare

heir results. We can see that, ResNet-152 has a considerable

mprovements over VGG-19 on all measurements, especially for

@1 accuracies. This shows the benefit of using more powerful

NN models for improving the visual embeddings. In addition,

he feature dimension with ResNet-152 (i.e. 2,048) is lower than

hat with VGG-19 (i.e. 4,096). Therefore, in this work we take the

esNet-152 model as the preferable image encoder. 

In terms of the text encoders, we test another two encoders

part from the RNN encoder. The first one is word2vec [70] , which

escribes each word in the sentence with a 300-dimensional

eature vector. We then compute the average of all the word

eatures to represent the sentence feature. The second one is an

xpensive representation based on the Hybrid Gaussian-Laplacian

ixture model (HGLMM) [33] . Specifically, HGLMM computes a

8,0 0 0-dimension feature vector with 30 centers (i.e. 300 × 30 × 2).

imilar to [9] , we further reduce it to a 6,0 0 0-dimension feature

ector in order to decrease the training complexity. As shown in

able 8 , the RNN encoder is more powerful than both word2vec

nd HGLMM. In addition, the feature dimension based RNN (i.e.

,096) is feasible and practical during training CycleMatch. 
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Table 9 

Evaluation on the effect of fine-tuning the image encoder during training CycleMatch. 

Flickr30K MSCOCO 

Image encoder Text encoder Image to Text Text to Image Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

VGG-19 without fine-tune 51.4 80.6 88.1 38.5 71.0 81.3 55.1 83.5 91.3 43.7 76.7 88.4 

VGG-19 with fine-tune 54.8 83.1 90.5 42.3 74.8 84.5 60.2 87.3 94.0 49.3 81.2 91.8 

Table 10 

Evaluation on the effect of different test splits on the performance of CycleMatch. The results on the MSCOCO dataset show that CycleMatch can 

achieve high mean accuracy and low standard deviation. 

Image 

encoder 

Text 

encoder 

Image to Text Text to Image 

R@1 R@5 R@10 R@1 R@5 R@10 

ResNet-152 RNN 60.23 ± 1.46 88.08 ± 1.19 94.88 ± 0.77 47.73 ± 0.91 81.89 ± 0.88 91.41 ± 0.62 
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6.6. Effect of fine-tuning image encoders 

In this experiment, we perform the fine-tuning (ft) process

for the VGG-19 image encoder. The results in Table 9 show

considerable improvements for all R@K measurements. Similarly,

fine-tuning ResNet-152 can bring further improvements as well,

while it is out of the scope in our work. 

6.7. Variance of test splits 

For a fair comparison, we employ the standard data split

including 10 0 0 test images that are captured from the validation

set [12,60] . However, no prior work has studied the effect of using

different test splits on the retrieval performance. To this end,

we perform 100 times of evaluations on the MSCOCO dataset.

For each evaluation, we randomly select 10 0 0 images from the

validation set and test the results with the proposed CycleMatch.

As shown in Table 10 , our results show high mean accuracy and

low standard deviation. This reveals the proper stability of our

approach for cross-modal retrieval. It is worth mentioning that we

cannot conduct this experiment on the Flickr30K dataset, as its

test set (i.e. including only 10 0 0 images) has been already fixed. 

7. Conclusions 

In this paper, we have developed a novel embedding method

for the multi-modal task of matching visual and textual repre-

sentations. We proposed cycle-consistent embeddings to learn

both intra-modal correlations and intra-modal consistency. Our

approach taking advantage of multiple embedding techniques is

able to outperform any single embedding method. The experi-

mental results have demonstrated the superiority of our method

over other embedding methods. In addition, we have presented

two simple and efficient late-fusion approaches to increase the

inference quality. The late-fusion inference can integrate different

matching scores together without increasing the training complex-

ity. Finally, our approach has shown state-of-the-art performance

for cross-modal retrieval on Flickr30K and MSCOCO. In the future,

we will take into account local relations when matching images

and sentences, for example, semantic correlations between visual

regions and phases. One potential solution is to exploit the atten-

tion mechanism to localize the objects corresponding to the phase

description. 
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