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Abstract— Automated computer-vision-based defect detection
has received much attention with the increasing surface quality
assurance demands for the industrial manufacturing of flat
steels. This article attempts to present a comprehensive survey
on surface defect detection technologies by reviewing about
120 publications over the last two decades for three typical flat
steel products of con-casting slabs and hot- and cold-rolled steel
strips. According to the nature of algorithms as well as image
features, the existing methodologies are categorized into four
groups: statistical, spectral, model-based, and machine learning.
These works are summarized in this review to enable easy referral
to suitable methods for diverse application scenarios in steel mills.
Realization recommendations and future research trends are also
addressed at an abstract level.

Index Terms— Automated optical inspection (AOI), automated
visual inspection (AVI), flat steel, surface defect detection, survey.

I. INTRODUCTION

AS A dominant steel product, flat steel occupies more
than 65% of all the products in the iron and steel

industry, which is the vital fundamental material for the related
planar industries, including without limitation, architecture,
aerospace, machinery, automobile, and so on. Any quality
problems suffering on flat steel would lead to huge economic
and reputation losses to steel manufacturers. For thin and wide
flat steel, surface defects are the greatest threat to the product
quality. Even for occasional internal defects, morphological
changes will arise on the surface with large probability.
Automated visual inspection (AVI) instrument targeting on
surface quality emerges as a standard configuration for flat

Manuscript received August 27, 2019; revised November 12, 2019; accepted
December 17, 2019. Date of publication January 1, 2020; date of current
version February 10, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant 51704089 and Grant
61973323 and in part by the Anhui Provincial Natural Science Foundation
of China under Grant 1808085QF190. The Associate Editor coordinating the
review process was Shutao Li. (Corresponding author: Chunhua Yang.)

Qiwu Luo and Chunhua Yang are with the School of Automation, Central
South University, Changsha 410083, China (e-mail: ychh@csu.edu.cn).

Xiaoxin Fang is with the School of Electrical and Automation Engineering,
Hefei University of Technology, Hefei 230009, China.

Li Liu is with the Center for Machine Vision and Signal Analysis,
University of Oulu, 90014 Oulu, Finland, and also with the College of System
Engineering, National University of Defense Technology, Changsha 410073,
China.

Yichuang Sun is with the School of Engineering and Computer Science,
University of Hertfordshire, Hatfield ALl0 9AB, U.K.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2019.2963555

Fig. 1. Contribution of defect detection in a typical AVI instrument.

steel mills to improve product quality and promote production
efficiency.

A general AVI instrument provides two main functions
of defect detection and classification [1]–[4]. The former
detection process recognizes the defective regions from normal
background without identifying what types of defects they are.
This step is the foundation of the “quality problem closed
loop,” and earlier defect detection allows less economic losses.
The latter process is dedicated to identify and label detected
defects to support finishing product grading. In this context,
the flat steel covers three categories of con-casting slabs and
hot- and cold-rolled steel strips, where slabs are rolled into
hot strips and then to cold strips. Taking a hot strip as an
example, Fig. 1 briefly shows the flowchart of AVI processes.
In general, defect detection is required to be in strict real-time,
while defect classification can be handled in quasi-real-time.
The total performance of the AVI system is mainly limited by
the accuracy, time efficiency, and robustness of the arithmetical
methods in the defect detection process, which is the very
focus of this article.

However, on-site surface defect detection in real-world steel
mills is seriously challenging, which is given in the following.

1) Unsatisfactory Imaging Environments: Continuous cast-
ing and rolling production lines involve multiple
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sufferings of high temperature, dense mist, heavy cool-
ing water drops [5], uneven illumination, stochastic
noises [1], [2], and aperiodic vibration [6]. The undesir-
able image quality requires preeminent detection algo-
rithms to resist large intraclass variation and minor
interclass distance [1]–[4].

2) Eternally Continuous Image Streams: The online
dual-surface quality measurement for average flat steel
mills requires the surface AVI instrument to continu-
ously process about 2.56 Gb/s of image flows [5] to
identify defective regions, which force the detection
algorithms to achieve excellent balance between accu-
racy, computational complexity, and reliability.

Over the years, industry and academia devote themselves to
address the aforementioned challenges from hardware upgrade
to algorithmic optimization. The hardware architecture based
on either server expansion [7]–[9] or application-specific inte-
grated circuit (ASIC) acceleration [5] has been opened in some
recent reports. Furthermore, it is not easy to see dramatic
hardware breakthroughs within a relatively short time due to
the limitation of Moore’s law [10]. This review thus focuses on
the latest theoretical and algorithmic advances of automated
visual defect detection over the past two decades to enable easy
referral to suitable methods for diverse application scenarios
in steel mills. Especially, the works over the last five years
accounted for nearly 50%.

The structure of this context is as follows. After the intro-
duction in Section I, some relevant prior survey articles are
briefly reviewed in Section II. Typical defect morphologies
on flat steel surfaces are illustrated vividly in Section III. The
four categories of defect detection approaches are presented in
Section IV in detail. This article is ended in Section V with the
conclusion and comments on the realization recommendations
and future research trends.

II. PRIOR LITERATURE REVIEW

A number of AVI surveys (such as [11]–[13]) with a wide
coverage of inspection problems can be available successively.
Recently published surveys gradually pay more attention to
specific planar materials, such as fabric [8] and semiconduc-
tor [14]. Notably, a brief but rare AVI review covering defect
detection and classification techniques for steel products was
reported [9], where nearly all types of steel products (slab,
billet, plate, hot strip, cold strip, and rod/bar) are involved at
an overview level. It is widely recognized that AVI techniques
are more suitable to inspect surface defects on sheet materials
than on wire rod/bar with minor diameter or even special-
shaped structures [15]. To further narrow the scope of [9],
that is, concentrate on the vital defect detection process on
only flat steel products, this article attempts to present a first
transactions survey on this focused topic so as to support the
AVI applications for the relevant industrial manufacturing.

III. DEFECT MORPHOLOGIES ON FLAT STEEL SURFACE

Various defects on flat steel surface are generally caused by
mechanical or metallurgical imperfection during the industrial
manufacturing. To save article space, we only take some

surface defect image samples for hot-rolled steel strips and
con-casting slabs by using the AVI instrument designed in [5]
for illustration. Fig. 2(a) shows four raw defective images
(4096 × 1024 pixels) acquired by the equipped line-scan
camera, and Fig. 2(b) shows 18 typical defect samples
with 256 × 256 pixels obtained from raw images after
the defect detection process. These are roller marks, longi-
tudinal scratches, horizontal scratches, inclusions, scarring,
holes, waves, pitting, air bubbles, peeling, water droplets,
convex bags, reticulations, star cracks, foreign bodies, heavy
leather, wrinkles, and longitudinal cracks, respectively. Finally,
in Fig. 2(c), some longitudinal crack image samples of
con-casting slabs are presented (512 × 512 pixels), and
this defect type is with high probability of occurrence on
continuous casting line, which has great threat to the quality of
downstream products. Besides the diversity and complexity of
these defects, nearly, all the challenges mentioned in Section I
can be encountered in these image samples. For example,
some pseudodefects of water droplets and mill scales are pretty
commonly distributing on the surfaces of hot-rolled strips and
casting slabs, which would trigger false detection. In another
example, the image intensity is fairly inhomogeneous and
varies actively.

IV. TAXONOMY OF DEFECT DETECTION METHODS

This section presents a review on the prior techniques and
models for defect detection of flat steel surfaces. In gen-
eral, researchers categorize previously proposed methods into
different groups based on the distinct features, while the
taxonomy also varies from person to person. Fofi et al. [16]
broadly separated the texture defect detection approaches
into local and global groups. According to different tech-
nique roadmaps, defect detection methods are summarized
as classification-, local-abnormality-, and template-matching-
based methods in [17]. Youkachen et al. [18] classified the
defect detection methods into probabilistic-, statistical-,
proximity-, deviation-, and network-based models. At the
microscopic level, the flat steel surface inspection problem is
essentially a texture analysis problem [8]. Normally, texture
analysis problem can be solved by statistical-, spectral-, and
model-based methods. Notably, machine learning enjoys its
popularity in computer vision in recent years, especially in
texture analysis. Thus, as shown in Fig. 3, this article classifies
defect detection methods for flat steel surfaces into four
categories: conventional statistical, spectral, model-based, and
emerging machine learning.

A. Statistical

Statistical approaches are frequently used to detect the
defects of flat steel surface by evaluating the regular and
periodic distribution of pixel intensities. Eight representative
statistical methods are briefly introduced as follows.

1) Thresholding: Thresholding methods are usually used to
separate the defective regions on flat steel surfaces, which
have been widely applied in online AVI systems [19], [20].
The traditional thresholding methods identify the defects by
comparing the value of image pixels to a fix number and

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 07,2020 at 07:22:13 UTC from IEEE Xplore.  Restrictions apply. 



628 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 3, MARCH 2020

Fig. 2. Typical defect image samples. (a) Typical defective raw images of steel surface (4096 × 1024 pixels) acquired by line-scan camera and (b) series of
typical defect samples with 256 × 256 pixels for hot-rolled steel strips. (c) Typical longitudinal cracks acquired by area-scan camera for con-casting slabs.

turn the test image into a simple binary frame, which is
sensitive to random noises and nonuniform illuminations.
Djukic and Spuzic [21] first estimated the probability distrib-
ution of pixel intensities from some defect-free hot-rolled steel
images, which was considered as a basis for adaptively deter-
mining threshold. The dynamical thresholding procedure can
then discriminately separate true defects from random noise.
Furthermore, Nand et al. [22] calculated the local entropy of
defective and defect-free images and extracted the defective
region of image by using background subtraction method
by comparing their entropy, and it is reported to perform
better on detecting defective blocks of low-quality steel surface
than the former dynamical thresholding method. To obtain
a better global detection performance, Neogi et al. [23] pro-
posed a global adaptive percentile thresholding scheme based
on gradient images. It can selectively segment the defective
region and effectively preserve the defect edges regardless
of the size of defects. In order to further accomplish the
task of defect detection, it is promising to obtain the opti-
mal thresholds or design a smarter dynamic thresholding
mechanism.

2) Clustering: Based on the similarity among image pix-
els, the clustering method is specialized in mining informa-
tion implicitly existing in texture images, and then, defect

detection can be achieved by the multiple-class defect classifi-
cation. Real-time and antinoise capability are always the basic
requirements of industrial defect detection; Bulnes et al. [24]
detected the defects occurring periodically by clustering the
characteristics (i.e., position and type) of each defect. This
method can timely detect the periodical defects even in a
noisy environment. However, some interferences, such as
stochastic industrial liquids, increase the detection difficulty.
Zhao et al. [25] proposed a two-level labeling technique to
solve the above-mentioned problem based on superpixels. The
pixels are clustered into superpixels, then, superpixels are clus-
tered into subregions, the superpixel boundaries are updated
iteratively until pixels with similar visual senses are clustered
into one superpixel, and subregions after many rounds of
growth will converge toward defects. This method achieved
an average correct detection rate of 91% when applying on
cold strips. Furthermore, Wang et al. [26] proposed an entity
sparsity pursuit (ESP) method to detect surface defects. The
defect image can be segmented into several superpixels to
realize ESP of defects, while defects do not satisfy the sparsity
assumption in a pixel level. The ESP method is insensitive
to noise and computationally efficient. For the nature of
clustering, it is more suitable for defect classification than
defect detection.
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Fig. 3. Overall structure of detection method taxonomy.

3) Edge-Based: The purpose of edge detection is to identify
points with obvious brightness changes in digital images.
Researchers often use the local image differentiation technique
to obtain edge detection operator, and the commonly used edge
detection templates for flat steel surface are Kirsch, Sobel,
and Canny operator. It is investigated that Sobel is specialized
in weighing the influence of pixel position to reduce the
ambiguity of edge, but it is sensitive to uneven illumina-
tion on flat steel surface, which easily leads to false edge
detection. In order to avoid false detection, Borselli et al. [27]
modified the Sobel operator by applying thresholding to con-
vert the grayscale image into a binary matrix. Furthermore,
Shi et al. [28] developed eight directional templates to obtain
more comprehensive edge information than the original Sobel
operator, which only has horizontal and vertical directions.
Fig. 4 shows the technical details of these two Sobel operators,
including template topology and detect performance. The
easily trigged false edge detection was well suppressed by
the eight-directional Sobel operator. With the weighted factor
and multiple templates, Kirsch is more noise-robust for tiny
defect detection among flat steel images, especially suffered
from uneven illumination, while the eight directional templates
bring large computation amounts to Kirsch. Bo et al. [29] sim-
plified the original Kirsch operator by choosing some partial
templates on the premise of little influence on edge extraction.
Compared with the first-order Kirsch and Sobel operator,
Canny possesses better signal-to-noise ratio and detection
accuracy due to its second-order feature. However, it suffers
from low adaptive ability and sometimes is easy to blur the
noise-free region. Hence, it is not a wise choice to directly
apply the existing edge detection operator on steel surface

Fig. 4. Comparison of the traditional and the optimized Sobel operator.

defect inspection until the appropriate algorithm is imported
to enhance its edge detail retaining ability. Furthermore, many
edge detection operators have not been used to detect surface
defects of flat steel, such as Prewitt, Laplacian, and Log.
Specifically, Prewitt has been used for object enhancement and
extraction. Laplacian sharpening template and Log operators
have been reported performing well in determining edge
position. Thus, it is highly recommended to explore other edge
detection operators on the task of steel surface inspection in
the near future.
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4) Fractal Dimension: Fractal dimension (FD) has the
desirable self-similarity, which means that the overall infor-
mation can be expressed by partial features. It is reported
that statistical gray value of defect images practically pos-
sesses some features of FD, especially in self-similarity.
Zhiznyakov et al. [30] employed the fractal features of digital
images to detect the defects of flat steel surfaces by char-
acterizing the internal distribution of self-similarity and the
image segments with the highest similarity. The experimental
results are basically consistent with inspected data from a
nondestructive testing inspector. Similarly, the multifractal
dimension is utilized by Yazdchi et al. [31] to detach and
specify the defective region for five typical defects of steel
surfaces. It should be pointed out that the application of FD
has some limitations because it is only suitable for self-similar
defect image detection.

5) Gray-Level Statistic: Using thresholding methods for
defect detection directly may be ineffective in low contrast
images, so it is necessary to analyze the distribution of image
gray level before threshold operation. Yang et al. [32] utilized
the features (i.e., mean value and distribution of pixels) from
steel surface background to separate bright and dark defect
objects simultaneously. Furthermore, to be insensitive to noise,
Choi and Kim [33] first estimated the distribution of back-
ground by a spectral-based approach and then locally refined
the defective regions to obtain the probabilistic estimation.
This method is superior to the previous defect detection meth-
ods and gives the robust results even in a noisy environment.
However, the above-mentioned methods for surface defect
detection are limited by application scenarios due to the diver-
sity of surface defects. Ma et al. [34] proposed a neighborhood
gray-level difference method using the multidirectional gray-
level fluctuation, which combined the advantages of global
and local characteristics. The proposed algorithm not only
enhances the generalization but also improves the accuracy
of surface defects inspection.

6) Co-Occurrence Matrix: Gray level co-occurrence
matrix (GLCM) is a common means to describe the
texture by studying the spatial correlation of gray level.
Haralick et al. [35] first presented GLCM, and the matrix
is defined according to the spatial relation between the
adjacent pixels of the input image; then, based on the GLCM,
14 texture descriptors (i.e., angular second moment, contrast,
correlation, entropy, variance, sum of average, sum of
variance, inverse difference moment, variance of difference,
sum of entropy, difference of entropy, shadow of clustering,
prominence of clustering, and maximal probability) are
generated to successfully describe the relationship between
the adjacent pixels in an image by calculating the angular
relations and distances between the adjacent resolution
units. Fig. 5 shows the direction analysis of GLCM with a
simple example. Subsequently, GLCM has shown powerful
ability on automatic texture discrimination in [36]–[38].
However, it is not an easy job to balance the matrix
performance and the window size. In order to overcome
the local-descriptive limitation of GLCM, Wang et al. [39]
combined the complimentary feature sets of the histogram
of oriented gradient (HOG) and GLCM to describe the

Fig. 5. (a) Direction analysis. (b) Image block. (c) GLCM of P0.

global and local textures of steel surface images, respectively.
However, this approach is sensitive to background noises and
ununiform gray level changes. Moreover, the computation is
relatively complex. Thus, Tsai et al. [40] used the weighted
eigenvalue of GLCM as a single discriminative feature,
so low computational complexity and considerable robustness
to noise were achieved simultaneously. Nevertheless, there
might be some potential but useful discriminative features in
GLCM, which could be explored for future texture analysis.
Furthermore, lots of other types of features extracted by some
descriptors are suggested to be fused with those of GLCM,
and smoothed local binary pattern (SLBP) [41] is a typical
example of this method. If so, more descriptive feature
vectors can be built for better surface defect recognition of
flat steels.

7) Local Binary Pattern: As a classical operator, local
binary pattern (LBP) is widely used to characterize the local
texture features of images, which has significant advantages
of rotation and gray invariance. In 1994, LBP is first pro-
posed by Ojala et al. [42], Later, LBP is frequently used to
detect defects on flat steel surface [43]–[45]. In order to
overcome the shortcomings of the original LBP (i.e., weak
global descriptive and noise sensitive), various LBP variants
are developed based on changing the threshold or scale of
the original LBP (see Fig. 6), and these variants are widely
applied on defect detection of flat steel surface. For example,
Wang et al. [26] proposed an LBP-inspired feature extractor
by estimating the variations of four directions simultaneously,
which are horizontal, vertical, and two diagonal directions,
so that the features extracted by this method have better
visual discrimination. Still, the noise sensitive has not been
eliminated for this method. Song and Yan [2] designed an
adjacent evaluation completed LBP (AECLBP) by replacing
the central pixel with its neighbor pixels. and claimed that
AECLBP had achieved considerable recognition accuracy and
great robustness to noise. However, its scale adaptability is not
so preeminent as it inherits the nature of CLBP. Furthermore,
Chu and Gong [41] proposed a novel LBP version called
SLBP; fusing the SLBP frames and GLCM, this method can
not only suppress noise effectively but also extract features
with scale, rotation, illumination, and translation invariance.
Nevertheless, descriptive information among nonuniform pat-
terns has been ignored in all these LBP variants. Using reverse
thinking, Luo et al. [3] proposed a generalized completed
LBPs (GCLBP) by first exploring the nonuniform patterns to
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Fig. 6. Standard pipeline of original LBP and the variants of LBP based on
changing threshold and scale. (a) LBP extension method based on changing
threshold. (b) LBP extension method based on varying scale.

supplement the descriptive information in uniform patterns.
Furthermore, the work of GCLBP, Luo et al. [46] developed
a more effective LBP-descriptor (namely SDLBP), which has
remarkable advantages in anti-interference and simplicity of
calculation. As a lightweight feature descriptor, LBP variants
can be applied on both defect detection and classification, and
developing more noise-robust and scale-invariant LBP variants
or LBP-like descriptors is highly encouraged and coincides
with the AVI future trends.

8) Morphological: Mathematical morphology is an arith-
metical tool for image analysis based on morphological struc-
tural elements. It has a huge influence on the theory and
technology of image processing, especially on shape and
structure analysis, which has been widely applied in noise
removal [47], [48], feature extraction [49], [50], and image
enhancement [51], [52]. Mathematical morphology is special-
ized in edge processing for its capability of global description.
Song et al. [53] removed the edges of oil pollution interfer-
ence and reflective pseudodefect by fusing dilation and erosion
operations into image subtraction operations. Furthermore, this
research team [25] utilized morphology subtraction to extract
the0 defect edges from the industrial liquid region on the
steel surface in the cold rolling process. With the firm and
complete theory basis, mathematical morphology is widely
used in nearly all aspects of image processing, including
image segmentation, feature extraction, edge detection, image
filtering, image enhancement, and so on. Nevertheless, the
calculation expenses when using morphology should be highly
emphasized in the online application of surface defect detec-
tion for flat steels, as it mainly relies on a so-called structural
element probe to traverse the pixels on image for collecting
image information, but such operation will generate a large
amount of calculation.

9) Brief Summary: Tables I and II give a quick glance for
these eight types of statistical methods. In summary, these
methods are based on two kinds of fundamental structural
properties, regularity and local orientation (anisotropy), and
both properties have great perceived value. Chetverikov and

Hanbury [54] analyzed and compared these two approaches
comprehensively and then concluded that the approaches pre-
sented earlier support and complement each other in a natural
and understandable way.

B. Spectral

Although the statistical approaches occupy the largest
amount of works for steel surface detection in this context,
many of them fail to yield reliably correct detection results for
several defects with subtle intensity transitions (such as thin
roll marks and tiny scratches), especially when illumination
varies or pseudodefect visits frequently. Consequently, emer-
gent AVI methods are highly expected for steel surface defect
detection in real-world production. Early report about AVI
system for hot steel slabs [55] has recommended that it may
be possible to find better solutions in the transform domain
which are less sensitive to noise and intensity variations than
the direct processing methods in the pixel domain, which will
be reviewed in Sections III-B1–III-B7.

1) Fourier Transform: With the appearance of the Fourier
transform (FT), image features of translation invariance,
expansion invariance, and rotation invariance are realized.
Generally, the defect images obtained directly from the steel
production line need to be further processed to effectively
enhance the quality of images. For removing the background
noise, Yazdchi et al. [31] adopted a temporal Fourier analy-
sis to eliminate the black and white vertical strips in the
images formed by the steel plate reflecting ambient light,
which appears as the band near a single direct current (dc)
term. Similarly, to detect longitudinal cracks from compli-
cated backgrounds on con-casting slab surfaces, the Fourier
amplitude spectrum of each subband is computed to get
features with translational invariance [56]. Inspired by discrete
FT, Aiger and Talbot [57] proposed an unsupervised method
based on phase-only transform (PHOT), which can persist
only irregular patterns to present defects. This novel approach
is shown to be effective and generic on various textured
surfaces (i.e., wood, steel, ceramic, and silicon wafers). Nev-
ertheless, the FT-based approaches are inadequate under the
circumstances that Fourier frequency components related to
the background and defect areas are highly mixed together.
This is because it is difficult to implement noninterference
each other during processing frequency domain components
associated with background or defect respectively.

2) Gabor Filters: FT represents an image by obtaining
global features in the frequency domain, and thus, most of
local descriptive information is ignored in the spatial domain.
This shortcoming is implicitly but markedly made up by
Gabor filters in both the spatial and frequency domains by
modulating a specific Gaussian kernel function on a sinu-
soidal wave with a certain frequency [58]. Then, localized
and oriented frequency analysis can be achieved by using
a simple 2-D Gabor filter [59]. For the targeted task of
surface defect detection for flat steels in this article, Gabor
function should be chosen carefully because it significantly
affects spatial localization, orientation selectivity, and spatial
frequency characterization [60], [61]. Fig. 7 shows a clas-
sical example of using Gabor filters to detect defect edges.
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TABLE I

LIST OF SOME OF TYPICAL STATISTICAL METHODS OF DEFECT DETECTION

This point has also been emphasized more than once during
the Gabor feature extraction process when it was used for
defect detection of flat steel products [50], [62], [63]. It is
well recognized that the real and imaginary parts can be,
respectively used, for image smoothing and edge detection
for a typical Gabor detector. The parameters of the Gabor
filter are mainly decided by the defect size and direction, and
it is thus hard to obtain the desired results for miscellaneous
defects with various sizes by a single Gabor filter. Accordingly,
Choi et al. [64] proposed a two- Gabor-filter combinational

method enhanced by morphological features separate pinholes
on steel slabs. Similarly, Medina et al. [65] claimed that the
correct defection rate could be increased by fusing Gabor fea-
tures to other classical image features to a large extent. It was
also drawn in [65] that real-time aspect should be attached
great importance to on-site application of defect detection for
industrial manufacturing. The detection acceleration method
by employing the Log-Gabor filter bank presented in [66] pro-
vides a typical case about this assertion. The above-mentioned
methods have proven that Gabor filtering performs well on
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TABLE II

STRENGTHS AND WEAKNESSES OF DIFFERENT STATISTICAL METHODS OF DEFECT DETECTION

characterizing distinctive texture patterns. Besides, Gabor can
be combined with statistical methods to get better results (such
as LBP, GLCM, and fractal), and Alvaro et al. [67] confirmed
that the combinational approach based on Gabor filter and
volumetric FD possesses promising ability of obtaining rich
texture features.

3) Optimized FIR Filters: The filter optimization process
is essential to effectively separate the frequencies of the
defect-free texture with low signal energy and the defective
texture with high signal energy [68]. As a typical optimized
filter, the finite impulse response (FIR) filter provides rela-
tively preeminent feature separation between the defect-free
and the defective regions from the FIR-filtered frames [8].
Kumar [69] pointed out in his Ph.D. dissertation that FIR filter
performs better both on optimization scale and computational
expense than infinite impulse response (IIR) and Gabor filters
as FIR filter has more freely available turning parameters.
Furthermore, Kumar and Pang [70] and Kumar [71] applied
the FIR filters on the fabric defect detection and obtained
milestone achievement in textile industry. Inspired by this
trend, Jeon et al. [72] proposed a novel suboptimal FIR fil-
tering scheme that adaptively combines the optimized FIR
filters by considering the texture features of images cap-
tured from a dual-light switching-lighting device, to detect
various shapes of defects on steel surfaces. This innovative
detection method is effective to handle nonuniform surfaces
and scale-oxidized substances caused during the hot-working
manufacturing process. In addition, FIR filters are very suitable
to be embedded in FPGAs, which is compliant with the
lightweight trend of the instrumentation and measurement
society. To sum up, optimized FIR filtering shows enormous
application potentiality in the detection of defects for flat steel
surfaces.

4) Wavelet Transform: Compared with Gabor filters,
wavelet transform can not only move the time–frequency
window but also automatically adjust the window with the

change of the frequency in the center of the window. Mean-
while, the characteristics of wavelet are more in line with
the human visual mechanism. Consequently, wavelet transform
can effectively extract information from signals and perform
multiscale analysis of functions or signals through scaling
and shifting operations. Due to the existence of pseudo-
defects caused by water droplets, oxidized scales, uneven
illumination, and so on, the defect detection of steel surface
becomes increasingly challenging. Five different types of
wavelets, namely, Haar, Daubechies 2 (DB2), Daubechies 4
(DB4), biorthogonal spline (Bior), and multiwavelet, have
been evaluated by Ghorai et al. [1] to extract the features
of small-size image blocks. However, the antinoise measure
resisting the uneven illumination is absent in this scheme.
Liu and Yan [73] proposed a novel wavelet-based image
filtering algorithm based on anisotropic diffusion. The fea-
tures of anisotropic diffusion encouraging the intraregion
smoothing adaptively and inhibiting the interregion diffusion
permit that wavelet anisotropic diffusion method can not
only extract defect from noisy backgrounds reliably but also
can separate high- and low-frequency components effectively.
Similarly, Wu et al. [74] proposed an undecimated wavelet
transform (UMT) for solving the problem of false alarms
resulted from oxidized scales and watermarks with an overall
recognition rate of 90.23%. Besides the challenge of pseudode-
fects, some steel surface defects produce very subtle intensity
transitions. Song et al. [75] employed a scattering convolu-
tion network (SCN) based on wavelet transform to improve
the tolerance ability on local and linearized deformations.
This method has been successfully applied on surface defect
detection for hot-rolled strips and obtained an average correct
recognition accuracy of 97.22%.

5) Multiscale Geometric Analysis: The singularity of 2-D
defect images captured from steel production lines is primarily
depicted by edge information that appears as irregular lines
or surfaces. Wavelet transform can optimally characterize
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the point singularity but can hardly characterize the lines
and surface singularities due to the finiteness of separable
wavelet directions. An appropriate solution to this problem
is to employ multiscale geometric analysis (MGA) whose
multidirectivity renders protection and detection of edge fea-
tures (especially singular edges) more precisely. Generally,
MGA methods are separated into adaptive and nonadaptive
types. The adaptive methods are represented by Bandelet [76]
and Tetrolet [77]. Zhang et al. [78] have proposed an image
fusion method based on Bandelet-pulse coupled neural net-
work (PCNN) model to solve the problem of the pseudo-Gibbs
phenomena around singularities. For quality assurance of
con-casting slabs and hot strips, Xu et al. [79] succes-
sively proposed a Shearlet-based feature extraction method
(DST-KLPP) and an adaptive MGA method (RNAMlet) [80],
and both of them emphasized much on detection rates and
computation expenses. When it comes to the typical non-
adaptive MGA such as Ridgelet [81] and Curvelet [82],
Ai and Xu [56] applied Curvelet enhanced by kernel local-
ity preserving projections to track longitudinal cracks on
con-casting slabs. Nevertheless, how to effectively distinguish
confused defect edges and active background textures is still
an open research topic for both engineering and academia.

6) Hough Transform: Hough transform (HT) [83] is consid-
ered as a powerful tool in well-defined line-feature detection.
Its applications can be found in the fingerprint identifica-
tion [84], [85] and vehicle license plate recognition [86].
Interestingly, Sharifzadeh et al. [20] applied HT to detect
the defects of holes, scratches, coil breaks, and rusts on
cold-rolled steel strips. However, it is difficult to raise the
correct detection rates to more than 90%. Hough line detection
has the advantage of strong anti-interference ability and is
also insensitive to noises, incomplete part of edges, and other
coexisting nonlinear structures. However, HT can only track
the direction of edges, and the length information of the line
segment is lost. It is worth noting that the time and space
complexity should be effectively reduced if using HT for
surface defect detection of flat steels.

7) Brief Summary: Tables III and IV give a quick glance for
these six types of spectral methods, and the advantages and
disadvantages are also analyzed briefly. In general, spectral
methods are dedicated to find a special transform domain
where the defect objects can be more easily and completely
separated from both the local and global backgrounds.

C. Model-Based

Naturally, statistical-based methods are relatively sensitive
to noise, while spectral-based methods lack local information,
and both of them have bottlenecks on representing miscella-
neous defects and stochastic background variations appeared
on textured surfaces. Model-based methods tend to perform
better for diverse defect detection by projecting original texture
distribution of image blocks to low-dimensional distribution
via a structurally special model enhanced by parameter learn-
ing. Several model-based methods are now briefly discussed
next.

1) Markov Random Field Model: On the basic idea of that
a texture has interaction among relevant random variables in

a stochastic or periodic 2-D field, Cross and Jain [87] first
used Markov random field (MRF) as texture model, and the
structure of 2-D MRF can well represent the spatial correlation
of image pixels. Inspired by this concept, Gayubo et al. [88]
utilized MRF to restore flat steel defects (i.e., cracks) and
eliminate the spurious features (i.e., pseudo). Furthermore,
Xu [89] dramatically decreased the detection false rate from
18.8% to 3.7% by using the proposed context-adaptive hidden
Markov tree model (CAHMT) based on an assertion that the
correlation of wavelet coefficients of flat steel surface images
at different scales satisfies the Markov property. The recent
works exhibit the huge application potentiality of MRF on
industrial surface defect detection.

2) Weibull Model: Some flat steel surface defects that
produce subtle intensity transitions may be difficult to be
detected by using the above-mentioned MRF-based method.
A potential solution to handle the detection task of such defects
is to utilize the relatively complete descriptive superiorities on
texture contrast, scale, and shape of Weibull distribution [90].
Continuing this idea, Fofi et al. [16] proposed a novel, non-
parametric and efficient Weibull-based defect detection method
by computing two parameters of a Weibull fit for the distri-
bution of image gradients in local regions. This unsupervised
method performs well on a large industrial optical inspection
database, which involves some highly challenging flat steel
defects. However, it is hard for Weibull distribution to handle
the defects with gradual intensity or with low contrast. Hence,
Liu et al. [91] developed a Haar–Weibull-variance (HWV)
model by replacing the features of local gradient magnitude
by Haar features from local patches. This method is reported
to have achieved an average correct detection rate of 96.2%
on a homogeneously textured defect data set gathered from an
actual hot-rolling mill.

3) Active Contour Model: The basic idea of active con-
tour model (ACM) is to use a continuous curve to express
and locate the edge of object (here is, defect) by curve
evolution. ACM is popular in image segmentation as it can
achieve subpixel accuracy of object boundaries [92], [93].
Song and Yan [94] proposed saliency convex ACM (SCACM)
by fusing visual saliency map into convex energy minimization
function to detect micro surface defects on silicon steel strips.
The SCACM yielded good performance on both spot defect
and steel pit defect as the fused visual saliency map highlights
the potential defects and suppresses the clutter background as
well. Yang et al. [95] developed an ACM-based defect detec-
tion method without edges through incorporating a variable
penalty term and a convolution kernel and reported that it
can effectively segment defect features with inhomogeneous
boundaries from complicated surface textures. The iteration
steps and computing time increasingly attract the attention of
scholars.

4) Other Latest Reported Model-Based: There are
some latest reported model-based defect detection meth-
ods. Susan and Sharma [96] proposed the Gaussian mixture
entropy model for defect detection, which is specialized
in identifying miscellaneous defects, such as holes and
stains. Based on low-rank representation, Yan et al. [97] uti-
lized smooth-sparse decomposition (SSD) model for anomaly

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 07,2020 at 07:22:13 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: AUTOMATED VISUAL DEFECT DETECTION FOR FLAT STEEL SURFACE: A SURVEY 635

TABLE III

LIST OF SOME OF TYPICAL SPECTRAL METHODS OF DEFECT DETECTION

detection in images, Huangpeng et al. [98] proposed a novel
weighted low-rank reconstruction model for automatic visual
defect detection, and Zhou et al. [99] presented a double low-
rank and sparse decomposition (DLRSD) model to obtain
the defective region of steel sheet surface. These approaches
are reported to perform well. Wang et al. [26] constructed
a compact model to be regarded as a kind of guidance
information by mining intrinsic image priors, and it offers a

good generalization ability for different detection tasks and
is sufficiently robust to noise. Furthermore, Wang et al. [17]
proposed a guidance template-based defect detection method
for strip steel surfaces by introducing a sorting operation to
sort gray levels with each column of test image and then
subtracts the sorted test image with guidance template to
locate defects conveniently. It achieved an average detection
rate of 96.2% on a data set with 1500 test images involving
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TABLE IV

STRENGTHS AND WEAKNESSES OF DIFFERENT SPECTRAL METHODS OF DEFECT DETECTION

challenges of uneven illumination. Any information descriptive
models with low computational complexity can be considered
for the task of surface defect detection for flat steels in the
future.

5) Brief Summary: Table V highlights some representatives
of model-based detection methods, and the strengths and
weaknesses are also gathered in Table VI. In this branch
direction, how to found noise robust, theoretically explainable,
computationally simple models to adaptively absorb sparse
features of defects will attract increasing attention from both
academia and industry.

D. Machine Learning

The essence of machine learning is to analyze and learn
data and then make decisions or predictions accurately for
further operation. With the popularity of artificial intelli-
gence in recent years, machine learning, a powerful branch
of model-based methods, has been proposed extensively for
defect detection of flat steel surface. As shown in Fig. 8,
the defect detection task is essentially handled as a binary
(defective or defect-free) classification problem in machine
learning methods (or we can call them advanced classi-
fiers), and the machine learning defect detection methods are
reviewed in three categories of supervised, unsupervised, and
reinforcement learning.

1) Supervised Learning: The goal of supervised learning
is to model a conditional distribution between input vectors
(surface images) and target vectors (defect label 0 or 1).
Support vector machine (SVM), decision trees, and neural net-
works are classical examples in this category. As a generalized
linear classifier for binary classification of data, SVM is fre-
quently utilized to identify the defective and defect-free regi-
ons [100], [101]. Ghorai et al. [1] hold that the performance of
classifiers in defect detection depends on the feature and clas-
sifier combination and fused the classifiers (i.e., SVM and
VVRKFA) with different feature sets (i.e., Haar, DB2, and
DN4) to divide the test images into defective and normal
ones, finding that the performance of VVRKFA with one-level
Haar features ranks first among all the feature-classifier com-
binations. The neural network can learn the pattern from the

training data set and determine the category of the new data
according to the previous knowledge. Liu and Kang [102] used
a two-layer feedforward neural network to classify the pixel of
test images into defect and defect-free regions on the basic idea
that the defect detection task is actually a binary classification
problem. However, a great quantity of parameters of neural
networks leads to huge computational complexity. Convolution
and subsampling in the convolution neural network (CNN)
effectively reduce the model size by tailoring the model para-
meters. Thus, CNN-based architectures are widely applied to
automatic feature extraction [103] as well as on image defect
detection [104]–[108] in industrial inspection. For example,
Cha and Choi [105] proposed a deep CNN to detect cracks on
concrete and steel surface without calculating defect features.
The framework can effectively resist the interferences caused
by the extensively varying real-world situations. This team
also designed a structural visual inspection method based on
faster region-based CNN (faster R-CNN) to ensure quasi-real-
time simultaneous detection of multiple types of defects [109].
Moreover, Song et al. [108] realized the precise detection
of weak scratches on metal surface by confusing deep CNN
and skeleton extraction, and the experimental results indi-
cate its strong robustness to background noises. In order to
enable CNN-based detection methods to be applied in real-
time industrial scenes, an impressive method called you only
look once (YOLO) network was proposed by addressing the
biclassification task as a regression problem. Li et al. [110]
improved the YOLO network by making it all convolutional
and then applied the YOLO-variant to detect surface defects
of flat steel, and this network reached 99% correct detection
rate with a speed of 83 FPS on a data set of 4655 defect
images of cold-rolled steel surface. The satisfactory detection
performance of supervised learning methods is achieved only
with a premise of having a great quantity of labeled image
samples on defect database, while collecting and labeling a
great number of image samples on industrial manufacturing
line are quite labor-intensive and time consuming, or even to
say, impracticable.

2) Unsupervised Learning: Automated defect detection
has always been a challenging task, especially in actual
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TABLE V

LIST OF SOME OF TYPICAL MODEL-BASED METHODS OF DEFECT DETECTION

TABLE VI

STRENGTHS AND WEAKNESSES OF DIFFERENT MODEL-BASED METHODS OF DEFECT DETECTION

industrial application. It is not always easy to gather a large
number of labeled image samples, that is, the training images
consist of a set of input vectors without any corresponding
target values. Here, the unsupervised learning is dedicated to
discover groups of similar examples within the input data.
In some cases, it is also called clustering.

CNN can be used not only for supervised learning but also
for unsupervised learning. The deep convolutional generative
adversarial network (DCGAN) [111] is a kind of CNN, which
build certain constraints on traditional generative adversarial
networks (GANs) to overcome its drawback of unstable output,

and it often works in unsupervised learning manner for defect
detection [112], [113]. Notably, Zhao et al. [113] combined
GAN and autoencoder (AE) and LBP to detect defects on a
textured surface, which needs only positive samples without
any defect sample nor manual label. This framework is of
better practical application value due to its unsupervised
natures. Moreover, AE-based algorithms also demonstrate
strong competitiveness in steel surface defect detection, which
are reported to be fairly noise-robust. Mei et al. [114] utilized
convolutional denoising AE network to reconstruct image
patches, combined with the reconstruction residual maps, and
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Fig. 7. Example of using Gabor filters to detect defect edges.

Fig. 8. General flow of machine learning methods.

this scheme can reliably learn the final detection results, where
no manual intervention is needed throughout all the detection
process. Youkachen et al. [18] inventively applied convolu-
tional AE (CAE) to reconstruct the defective test images,
and then, the reconstructed images were used to highlight
the shape feature by simple postprocessing algorithms, pro-
viding another good application case on miscellaneous defect
detection through unsupervised learning. Although the above-
mentioned unsupervised learning methods are able to learn
from unlabeled images, they are susceptible to noise and initial
value. How to consolidate the abovementioned impressive
results into reliable achievements will become the focus of
this branch’s direction.

3) Reinforcement Learning: Both supervised learning and
unsupervised learning methods have obtained a rapid progress
on surface defect detection of industrial flat steel. Different
from these two methods, the reinforcement learning meth-
ods realize surface defect detection with fairly small data
sets through a so-called rewards and punishment system
to optimize inner parameters automatically. For example,
Ren et al. [115] proposed a general approach requiring small
training data for automated surface inspection and transferred
the features from a pretrained deep learning network and
convolved the trained classifier over the input images. In the

defect detection tests of flat steel surface, the proposed algo-
rithm reduced error escape rates by from 6.00% to 19.00%
in three defect types than several state-of-the-art benchmarks.
Tao et al. [116] proposed a novel cascaded AE (CASAE)
framework to detect some complex defects under the indus-
trial environment, which converts test images into pixel-wise
prediction mask based on semantic segmentation. The defect
regions can be accurately tracked by using a compact CNN.
Zhou et al. [117] designed a new bilinear model of double-
visual geometry group 16 (D-VGG16) to extract global and
local features of surface defects, and these features were then
fed to the gradient-weighted class activation mapping (Grad-
CAM) to finish defect detection. The proposed method can
simultaneously realize defect classification and localization
with small samples in a weakly supervised manner. Moreover,
He et al. [4] proposed a new method named CAE-SGAN by
fusing CAE and semisupervised GAN (SGAN), where CAE
acts as an advanced classifier to identify detective regions. The
generalization ability improved by semisupervised learning
from SGAN supported that the CAE-SGAN scheme yielded
competitive performance compared with some other traditional
detection methods.

4) Brief Summary: Supervised learning determines test
samples defective or nondefective by training samples with
labels. Unsupervised learning can realize accurate and effec-
tive surface defect detection through the training of a large
number of unlabeled samples in many harsh industrial manu-
facturing scenarios. In contrast, reinforcement learning tries to
obtain intelligent self-optimization through continuously inter-
acting with its environment so as to achieve defect detection
by making full use of limited labeled and unlabeled samples
at low cost. For ease read, Table VII lists some typical defect
detection methods based on machine learning with a short
summary closely presented in Table VIII. As stated earlier,
machine learning tends to accomplish the defect detection
tasks more intelligently, and such an emerging technology
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TABLE VII

LIST OF SOME OF TYPICAL MACHINE LEARNING METHODS OF DEFECT DETECTION

is promising in the application of flat steel surface defect
detection.

V. SUMMARY AND DISCUSSION

In Tables I, III, V, and VII, some typical defect detec-
tion methods among the four big families are highlighted.
Attention is drawn to application scenarios, types of defects,
involved challenges, source of images under test, and reported
detection performance. In terms of detection performance,

on the one hand, detection accuracy is an important evalu-
ation criterion. Different references have different standard of
detection accuracy, such as true positive rate (TPR), false-
negative rate (FNR), false-positive rate (FPR), equal error
rate (EER), area under curve (AUC), mean absolute error
(MAE), G-mean, F-measure, and so on. On the other hand,
running time is another vital evaluation criterion, as the
rapid casting or rolling rhythm of flat steel in real-world
industrial sites has high-level time cost requirement on defect
detection.
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TABLE VIII

STRENGTHS AND WEAKNESSES OF DIFFERENT MACHINE LEARNING METHODS OF DEFECT DETECTION

Respect to the image source used for study, the raw
images represent the real-world images (always with large
size e.g., 4096 × 1024 pixels), which are acquired by an AVI
machine running on industrial steel production line for defect
detection. While the database includes a number of defec-
tive or defect-free image block samples (always with small
size, e.g., 256 × 256 pixels), which are obtained from raw
images after some postprocesses of segmentation and labeling.
It is worth mentioning that the results of detection accuracy
evaluated based on raw images are more reliable than those
evaluated based on database when the corresponding detection
methods are really applied on AVI system in actual steel
manufacturing line, and those will be more credible to flat steel
manufacturers, as all the results of detection accuracy based on
raw images should be evaluated from all the detected defects
and actual defects (not on database but on the real-world steel
surface), while the actual defects need professional defect
inspectors to find out one by one from the historical flat
steel products, which are extremely labor-intensive and time-
consuming. This is why this kind of studies (see [5]) is quite
rare at present. Driven by developments of emerging machine
learning and improvements of hardware computing power,
algorithmic research will develop toward the urgent needs of
engineering applications, and more high-quality achievements
can be expected to open in the near future.

This article has summarized the research efforts made
over the past two decades about the automated visual defect
detection of flat steel surface in industrial manufacturing,
where the largest volume of published reports in this literature
belongs to the last five years. The research trend has gradually
shifted from the previous theoretical study to on-site applica-
tion. Representative works from statistical, spectral, model-
based, and machine learning aspects are listed for readers to
have a general overview of the state of the arts. Existing
challenges to surface defect detection and some potential
proposals are investigated from a systematic perspective as
follows.

1) How to make better balance of detection accuracy and
computing efficiency is still relatively open to the auto-
mated computer-vision-based surface defect detection.
However, for the real-world industrial manufacturing of
flat steels, detection stability especially robustness to
environmental variations is on the very top list.

2) Real-time operation of high-resolution AVI system is
expecting fast defect detection. As for algorithm itself,
fusing features extracted by multiple descriptors to

support final detection decision can yield better results
than those produced by a single descriptor in the most
cases. Intrinsic priors of the production line are sug-
gested to assist the defect detection. Online surface
defect detection prefers lightweight arithmetic methods
to complex learning networks, as our problem is an
unsupervised and real-time detection task in essence,
while machine learning or deep network is the pre-
eminent alternative for complex multiclass classifica-
tion problem with rich data sets (i.e., defect classi-
fication). As the defect detection task can be treated
as a biclassification problem, it is not surprising that
the machine learning trend is gradually sinking to the
discussed defect detection topic. With respect to its
resident hardware, the concept of edge computing could
be employed for terminal accelerating, that is, ASICs,
such as FPGAs, are encouraged to be placed at the
front end of image acquisition where preprocessing on
raw data can be finished in real-time so as to prevent
redundant information being spread to the subsequent
transmission and postprocessing.

3) As the prelude of defect detection, noise smoothing
and edge enhancing are suggested to be arranged as
closer as possible to the imaging sensors; incredibly,
the most effective denoising method for AVI system
is to make the images as clean as possible by some
feasible engineering measures. For example, equipping
high-pressure air-gun removing surface water droplets
is far more effective than to develop advanced water
removal algorithms to eliminate false alarm triggered
by pseudodefect. Moreover, adaptive and closed-loop
controlling is strongly recommended for the illumination
subsystem.

4) It is not prudent to compare detection performance of
different techniques as different experiments select dif-
ferent testing methods with different evaluation criteria
on distinct data sets. More steel surface defect databases,
especially raw images from real-world industrial produc-
tion line, are urgently expected for enriching diversified
and cumulative future research ecology, which will be
sure to benefit to explore for a feasible and comparable
standard of performance evaluation for distinct defect
detection methodologies.

5) We have tried to include as many as possible up-to-
date references following the emerging AVI techniques,
and it is impossible to comprise all the existing publi-
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cations due to space limitations. In addition, the second
survey article focusing on surface defect classification
techniques about flat steels is under way.
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