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Dynamic Sparse Subspace Clustering for Evolving
High-Dimensional Data Streams
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Abstract—In an era of ubiquitous large-scale evolving data
streams, data stream clustering (DSC) has received lots of atten-
tion because the scale of the data streams far exceeds the
ability of expert human analysts. It has been observed that
high-dimensional data are usually distributed in a union of
low-dimensional subspaces. In this article, we propose a novel
sparse representation-based DSC algorithm, called evolutionary
dynamic sparse subspace clustering (EDSSC). It can cope with
the time-varying nature of subspaces underlying the evolving
data streams, such as subspace emergence, disappearance, and
recurrence. The proposed EDSSC consists of two phases: 1) static
learning and 2) online clustering. During the first phase, a data
structure for storing the statistic summary of data streams, called
EDSSC summary, is proposed which can better address the
dilemma between the two conflicting goals: 1) saving more points
for accuracy of subspace clustering (SC) and 2) discarding more
points for the efficiency of DSC. By further proposing an algo-
rithm to estimate the subspace number, the proposed EDSSC does
not need to know the number of subspaces. In the second phase,
a more suitable index, called the average sparsity concentra-
tion index (ASCI), is proposed, which dramatically promotes the
clustering accuracy compared to the conventionally utilized SCI
index. In addition, the subspace evolution detection model based
on the Page-Hinkley test is proposed where the appearing, disap-
pearing, and recurring subspaces can be detected and adapted.
Extinct experiments on real-world data streams show that the
EDSSC outperforms the state-of-the-art online SC approaches.

Index Terms—Data stream clustering (DSC), high-dimensional
data stream, sparse representation, subspace clustering (SC).
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I. INTRODUCTION

H IGH-DIMENSIONAL data streams are generated at an
unprecedented scale in various realms, such as media,

communication, finance, meteorology, etc., [1]–[4]. These data
streams are often high dimensional, unlabeled, large scale, and
evolving, which present huge challenges for data stream clus-
tering (DSC). Most existing DSC algorithms, including the
classic ones, such as CluStream [5] and DenStream [6], or even
the more recent ones, such as STRAP [7], EDMStream [8],
and CEDAS [9], are inadequate to address these challenges. In
addition, most existing DSC algorithms are based on nonevo-
lutionary models (e.g., CluStream) or simple evolutionary
models (e.g., DenStream, STRAP, and CEDAS) which can-
not adapt to the complicated dynamics of clusters’ structures
in the real world [8], [10]. Therefore, there is a pressing need
to study more effective DSC algorithms to process evolving
data streams that are high dimensional and large scale.

Motivations: It has been realized that many real-world
high-dimensional data, such as motion [11], face [12], and
texture [13], actually lie in a union of low-dimensional sub-
spaces [1], [2], [14]–[18]. Subspace clustering (SC) refers to
the problem of simultaneously clustering the data into multiple
subspaces and finding a low-dimensional subspace to fit each
group of points [19]–[22]. Currently, representation-based SC
(RBSC) approaches have been dominating the field and repre-
sent the state of the art. They are based on the hypothesis that
each data point in a union of subspaces can be represented as
a linear combination of other points, that is, the so-called self-
expressiveness property. Popular RBSC approaches include
sparse SC (SSC) [1], low-rank representation (LRR) [16], and
their variants.

RBSC approaches have been extensively studied in the static
data clustering field. However, existing RBSC approaches
cannot be directly applied to the DSC problem due to the
following reasons.

1) Most RBSC approaches, such as SSC and LRR, are
batch processing based [as shown in Fig. 1(a)] and, thus,
cannot deal with evolving data streams. As contrasted
in Fig. 1, for data streams, it is obviously unwise and
even impracticable to collect all the data points and then
process them due to the limitations in computing and
storage resources. In addition, batch processing manners
cannot achieve real-time processing and cannot meet the
basic requirements of online learning scenarios.

2) Most existing online RBSC approaches are based on
nonevolutionary models resulting in the information that
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Fig. 1. (a) SC on a static dataset. (b) SC on an evolving data stream: S1,
S2, and S3 exist at timestamp t1; S4 emerges at timestamp t2; at timestamp
t3, S3 and S4 disappear; and S3 recurs at timestamp t4 (t4 > t3 > t2 > t1).

changes over time underlying the data streams [as shown
in Fig. 1(b)] that cannot be revealed.

3) The difficulty is balancing two conflicting goals:
a) saving more points for pursuing good clustering
performance of SC or b) discarding more points for
pursuing efficiency of DSC. On the one hand, the self-
expressiveness property of data requires saving lots of
data points to obtain more robust results, leading to
an increase in computational complexity and storage
assumption of most existing SC approaches [23]. On
the other hand, the DSC algorithms usually discard many
points to fulfill the restrictions on computing and storage
usage.

Recently, research on online SC algorithms using the self-
expressiveness property has grown in popularity with some
representative algorithms, such as SSSC [23], SLRR [23],
online LRR [24], OLRSC [25], and SLSR [23], proposed.
Most of these approaches achieve online SC based on two-
phase frameworks, that is, the static phase for global subspace
learning and the online phase for subspace classifying (see
Fig. 2). However, we think these approaches are too infant
to deal with DSC problems from the following aspects: first,
they are based on the assumption that subspaces as well as the
subspace structure remain stationary and can be all learned in
the static phase, without taking the evolving subspace struc-
ture into consideration (which is impractical in the DSC field).
Second, they lack proper data structures for storing statistic
summaries of data streams, which is one of the basic require-
ments for DSC goals. For example, SSSC, SLSR, and SLRR
tend only to save the data points used in the static phase and
discard all the data points in the second phase. Online LRR
saves all the newly added data to refine the subspace structure
learned in the first phase. Clearly, it is not reasonable to simply
reserve or discard all the data points to solve DSC tasks.

Fig. 2. Unified framework of state-of-the-art online RBSC algorithms.

Contributions: In this article, a novel online SC method,
called evolutionary dynamic SSC (EDSSC), is proposed
for evolving high-dimensional DSC tasks. Like the recent
approaches SSSC [23], SLSR [23], SLRR [23], and online
LRR [24], our proposed EDSSC consists of two phases:
1) static learning and 2) online clustering, but fundamental
differences exist: EDSSC does not assume that the global
subspace structure must be covered by the data points in the
static learning phase and must remain unchanged in the online
clustering phase. Instead, EDSSC can detect and adapt to
the evolving subspace structure based on the proposed sub-
space evolution detection strategy. In the online clustering
phase, EDSSC identifies the representative points of the newly
appearing subspaces and then updates the models with these
new points, instead of keeping all the points (such as online
LRR [24]) or discarding all the points (such as SSSC [23]).
The statistic information of the data streams with identified
representative points are stored in a data structure that is
referred to as EDSSC summary. The main contributions of
this article are summarized as follows.

1) We are among the first to formulate and study online
SC on evolving data streams, that is, the task of per-
forming SC on data streams whose points lie in a
union of evolving subspaces. We provide a mathematical
formulation of online SC and propose a novel online
SC method EDSSC by making use of the self-
expressiveness property of data.

2) We propose a new index, called the average sparsity
concentration index (ASCI), to help EDSSC to identify
if the newly arriving point is a normal point or an out-
lier. This issue has not acquired sufficient attention in
state-of-the-art online RBSC approaches. Compared to
the widely adopted index, that is, the sparsity concen-
tration index (SCI) [15], we contend ASCI is better than
SCI, especially when the number of data points among
subspaces is imbalanced (see Example 2).

3) We propose a subspace structure evolution detection
model in EDSSC based on the Page–Hinkley (PH)
test [7], [26] and three typical subspace evolutions, such
as subspace emergence, disappearance, and recurrence,
can be detected. In addition, unlike the state-of-the-art
online RBSC algorithms, EDSSC does not require the
number of subspaces to be known as prior information.
Instead, a method to estimate the number of subspaces
is proposed to ensure that EDSSC is more practical.

4) We perform extensive experiments on evolving data
streams derived from real-world public datasets, includ-
ing facial images (AR, ExYaleB, and MPIE) and hand-
written digits or characters (USPS, PenDigits, EMNIST-
letter, and MNIST), showing that EDSSC achieves
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significant improvement in clustering quality [measured
by accuracy and normalized mutual information (NMI)]
over the existing representative DSC (CEDAS [9] and
STRAP [7]) or online RBSC methods (SSSC [23],
SLRR [23], SLSR [23], and OLRSC [25]). For example,
on the ExYaleB data stream, EDSSC achieves 75.01%
accuracy and 86.47% NMI compared with 57.14% accu-
racy and 74.43% NMI of OLRSC which has the best
performance among all baseline algorithms.

This article is a substantial extension of our conference
paper [27]. The proposed D-SSC model in [27] gets further
improved in this article from the following aspects. First, we
propose a new subspace evolution detection model based on
the PH test which is different from the one adopted by D-
SSC [27]. In comparison, the proposed subspace evolution
detection model relies on fewer parameters, making EDSSC
more adaptable to evolving data streams. Second, we solve
the estimation of the number of problem subspaces that is
not fully resolved in [27]. Third, as concluded above, a more
proper index, that is, ASCI is proposed in this article to ensure
EDSSC is more robust than D-SSC in processing the imbal-
anced data streams. In addition, we further analyze EDSSC in
space and time complexity and parameter sensitivity. Finally,
more extensive experiments are performed in this article where
more real-world datasets and more state-of-the-art approaches
are tested.

Organizations: The remainder of this article is organized
as follows. Section II provides a review of the state of the
art. Section III formulates the evolving high-dimensional DSC
problem. Section IV presents the principles and methodology
behind EDSSC and describes the corresponding pseudocode as
well as the complexity analysis of the EDSSC. In Section V,
we verify and analyze the performance of the proposed algo-
rithm by comparing with SSSC [23], SLRR [23], SLSR [23],
OLRSC [25], CEDAS [9], and STRAP [7]. Finally, the study
is concluded in Section VI.

II. RELATED WORK

Our approach draws on methods from DSC and SC. In this
section, we will give a brief overview of the related work.

A. High-Dimensional Data Stream Clustering

Although a plethora of DSC algorithms has been proposed,
the clustering of high-dimensional data streams is still in
an immature stage. One of the main reasons is that in the
high-dimensional space, all pairs of points tend to be almost
equidistant from each other due to an effect, called “curse of
dimensionality” [28]. Yet only a few approaches have been
proposed to tackle the high-dimensional DSC problem. They
can be divided into two categories: 1) full-space-based ones
and 2) subspace-based ones.

Full-Space-Based DSC: Most partition-based methods can-
not keep effective performance when dealing with high-
dimensional data streams. However, STRAP [7], one of
the latest methods of partition-based DSC algorithms,
has been successfully employed to process the KDD’99
dataset (34D). Compared to partition-based DSC methods,

density-based [6], [9] and synchronization-based ones [29] are
more suitable for processing high-dimensional data streams
because, in theory, they can find arbitrary-shaped clus-
ters that exist in the entire feature space without requir-
ing the number of clusters. For example, DenStream [6],
CEDAS (density based) [9], and SyncTree (synchronization
based) [29] are recently proposed and hold state-of-the-art
performance among full-space DSC algorithms. They achieve
high-performance DSC by combining the static clustering the-
ories (i.e., density-based clustering or synchronization-based
clustering [30]–[34]) with dynamic frames (a graph structure
or a hierarchical tree). It should be noted that one of the major
limitations of the full-space DSC algorithms is that they can
only detect clusters existing in the full space. However, clus-
ters are always being hidden since many irrelevant dimensions
exist in the high-dimensional space. Therefore, the cluster-
ing accuracy of these algorithms cannot be guaranteed for
high-dimensional data streams.

Subspace-Based DSC: As discussed above, the cluster struc-
tures of high-dimensional data are quite challenging to be
directly discovered due to the curse of dimensionality. Luckily,
it has been found that some of the high-dimensional data
points may be possibly grouped together in certain subspaces.
Recently, a few DSC algorithms [28], [35]–[39] are proposed
to detect the cluster structures in low-dimensional subspaces.
HPStream [28] first introduces the projected clustering method
to process high-dimensional data streams. However, it needs
a predefined number of clusters that is impractical in real
scenarios. HDDStream [35] introduces the density-based pro-
jected clustering idea to the DSC field. PreDeConStream [36]
extends a static projected-based clustering method, called
PreDeCon [40], toward the data stream processing field.
SubCluTree [38] uses an adaptive grid strategy to perform
a bottom-up detection of the subspace candidates. In addi-
tion, it can adapt to the varying speeds of the streaming
data. Generally, the subspace-based DSC algorithms cost con-
siderable time for searching the preferred dimension in all
possible subspaces of the full space, which cannot meet the
low computational complexity requirement of data stream
processing [36].

B. Subspace Clustering

The goal of SC is to reveal the data structures by detecting
the clusters in the low-dimensional subspaces of the original
feature space. Actually, SC is quite a general concept with
tremendous algorithms proposed in different directions. For
example, the axis-parallel SC methods, for example, [41]–[43],
aim to find the clusters only in the axis-parallel subspaces.
The arbitrarily oriented SC algorithms, such as 4C [44],
CASH [45], and ORSC [46], make it possible to find the clus-
ters in arbitrarily oriented subspaces. Particularly, the ORSC
achieves state-of-the-art performance in accuracy and scalabil-
ity based on the synchronization clustering theory [29]–[33].
Furthermore, the disjoint SC focuses on segmenting the entire
space into a union of subspaces that are disjoint or even inde-
pendent. Among these research directions of SC, the disjoint
SC methods are closely related to our work in this article.
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Meanwhile, the disjoint SC methods are accepting worldwide
attention due to their wide application in machine-learning
fields. Therefore, in the following, SC refers to disjoint SC
methods unless otherwise stated. Currently, the RBSC methods
utilizing the self-expressiveness property of data have become
the state-of-the-art methods in the field of SC. The main idea
of RBSC methods is to first learn an affinity graph for the data
points (subspace recovery) and then apply spectral clustering
to the graph (subspace segmentation) [14]. The RBSC algo-
rithms can be divided into two categories: 1) static ones and
2) online ones.

Definition 1 (Self-Expressiveness Property): For a collec-
tion of N high-dimensional data points X = [x1 . . . xN]d×N ∈
R

d×N , with each point from a union of independent linear or
affine subspaces, each data point xi can be represented as a
linear or affine combination of other points, that is

xi = Xci (1)

where ci = [ci1ci2 . . . ciN]� ∈ R
N×1 and cii = 0.

Static RBSC: If we have a static dataset X, then we have

X = XC, diag(C) = 0 (2)

where C = [c1c2 . . . cN] ∈ R
N×N and diag(C) is the vec-

tor of the diagonal elements of C. C is referred to as the
representation matrix.

For a system of equations such as (2) with infinitely
many solutions [1], one can restrict the set of solutions by
minimizing an objective function, that is

min f (C) s.t. X = XC, diag(C) = 0 (3)

where f (·) denotes the objective function.
Generally, static RBSC approaches vary from their objective

functions in (3) and there exists two popular objective func-
tions, that is, norm-based and low-rank-based ones. Typical
approaches that utilize the two objective functions are SSC [1],
LSR [47] (norm-based objective functions), and LRR (low-
rank-based objective functions) [16], respectively. For SSC,
f (C) = ‖C‖0, where ‖ · ‖0 denotes the 0-norm. For LSR,
f (C) = ‖C‖F , where ‖·‖F denotes the Frobenius norm. While
for LRR [16], f (C) = rank(C). That is, SSC enforces C to
be sparse, LSR tends to group highly correlated data together,
while LRR encourages C to be low rank [47]. Actually, most
RBSC algorithms so far are static SC algorithms and actually
are variants or extensions of SSC, LSR, LRR, or a combina-
tion of them (e.g., LSS [48]). The optimal C∗ obtained by (3)
will then be utilized to build an affinity matrix that is denoted
as W. The SC results will be obtained after applying spectral
clustering algorithms [49]–[52] to W.

Now, we take LRR as an example to briefly introduce the
solving of (3). Generally, considering that real-world datasets
may contain noise corruption, (3) is usually converted to the
following optimization problem:

min
Z,E

rank(C)+ λ‖E‖� s.t. X = XC+ E (4)

where λ > 0 is a balance parameter, E is an additional error
matrix that is assumed to be sparse, and ‖·‖� denotes a certain
regularization strategy. However, (4) is hard to optimize due

to the rank function. In practice, one can solve (4) by using
the �2,1-norm to regularize the second term and the nuclear
norm as a surrogate to replace the rank function

min
C,E
‖C‖∗ + λ‖E‖2,1 s.t. X = XC+ E (5)

where ‖ · ‖∗ means the nuclear norm, which is the best con-
vex envelope of the rank [24]. The optimization problem (5)
is convex and can be solved by several methods. In this arti-
cle, we utilize a state-of-the-art approach, called the inexact
augmented Lagrange multiplier (IALM), for its accuracy and
efficiency [53], [54]. Then, the skinny SVD of C is obtained

C∗ = U∗S∗
(
V∗
)�

. (6)

An affinity matrix W can be built as follows:

[W]ij =
([

ŨŨ�
]

ij

)2

(7)

where Ũ = U∗(S∗)(1/2). Finally, one can get the clustering
(segmentations) of the data by applying spectral clustering
algorithms (e.g., normalized cuts (NCuts) method [16]) to W.

Online RBSC: Popular online RBSC includes SSSC, SLSR,
SLRR [23], and online LRR [24]. However, these online SC
algorithms, in general, fail to process evolving data streams as
analyzed in Section I.

Here, we comprehensively summarize the architectures of
state-of-the-art online RBSC algorithms in a unified frame-
work depicted in Fig. 2. There are two distinct phases, that
is, static phase and online phase, as well as four main steps
included (i.e., steps 1–4 in Fig. 2): first, the input data are
divided into two parts, that is, static data and online data.
The static data and online data are used for static learning
and online clustering, respectively. Second, a certain static
SC approach, such as SSC, LSR, LRR, is performed over the
static data to obtain the static result, which could be regarded
as a preparation work for the following online clustering.
Then, the representation matrix or representation coefficients
are obtained based on the static data, which relies on the pro-
cessing manner of the algorithm. Finally, the online data points
will be assigned to the corresponding subspaces that are found
in the static results.

III. PROBLEM FORMULATION

A high-dimensional data stream is a sequence of times-
tamped high-dimensional data points that lie in a union of
low-dimensional subspaces. Assume that at each timestamp t,
we receive one data point xt, xt ∈ R

d×1. We arrange t points
which we have received in total in a matrix Xt = [x1 . . . xt]d×t.

Note that data streams have two features that are signifi-
cantly different from static datasets: the first distinctive feature
is the extremely limited number of accesses to the received
points (most of the points should be immediately discarded
after being accessed once or a few times for decreasing com-
puting and storage consumption). The second main difference
to static data is the potentially evolving property, that is, the
evolving data streams.
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The goal of this article is to perform DSC on the evolving
high-dimensional data streams, that is, providing a time-
varying SC result S

t at each timestamp t which reflects the
partition of received points Xt such that the points belonging
to the same subspace can be assigned to the same cluster.

The first feature of data streams aforementioned results in
which we could not expect to obtain S

t by repeatedly perform-
ing static clustering on Xt. Instead, the incremental learning
manner should be applied to process data streams, that is

S
t = g

(
S

t−1, xt
)

(8)

where g(St−1, xt) denotes a certain function that updates S
t−1

with xt at timestamp t.
The evolving feature of the data streams requires that no

assumption should be made that the subspace structure remains
unchanged over time. Generally, the evolution can be caused
by three types of subspace evolution [55]–[58], that is, sub-
space emergence, disappearance, and recurrence, which are
formulated as follows.

Subspace Emergence: It refers to the occurrence of a new
subspace at timestamp t. In particular, a subspace S emerges
at timestamp t if S /∈ S

1 ∪ S2 ∪ · · · ∪ St−1 and S ∈ S
t.

Subspace Disappearance: It is defined as an existing sub-
space that is not visited by the recently arrived data points.
Formally, a subspace S disappears if S ∈ S

t1∩St1+1∩· · ·∩St−1

and S /∈ S
t, where 1 ≤ t1 < t.

Subspace Recurrence: It means the situation where a
previously disappeared subspace recurs at timestamp t.
Formally, a subspace S recurs at timestamp t if S ∈ S

t2 ∩
S

t2+1 ∩ · · · ∩ St3−1, S /∈ S
t3 ∪ St3+1 ∪ · · · ∪ St−1, and S ∈ S

t,
where 1 ≤ t2 < t3 < t.

IV. PROPOSED EDSSC APPROACH

Even though the self-expressiveness property has been suc-
cessfully used to perform SC on static datasets, it is quite
challenging to achieve dynamic SC on data streams based on
the property because it is hard to balance two conflicting goals:
1) saving points for good SC performance and 2) discarding
points for low computational complexity. In this section, an
efficient algorithm, EDSSC, is proposed for balancing the two
competing goals and addressing (8), that is, performing DSC
on evolving data streams.

EDSSC consists of the following two phases: 1) static learn-
ing and 2) online clustering, which are presented in detail in
Sections IV-A and IV-B, respectively. The subspace evolution
problem is solved in Section IV-C where the subspace evolu-
tion detection strategy is given. Finally, the pseudocode and the
complexity analysis of EDSSC are provided in Section IV-D.

A. Static Learning and EDSSC Summary Structure

As indicated in (8), the previous clustering result is needed
to identify the clustering result at the current timestamp.
Therefore, the ultimate goal of static learning is to learn an
initial subspace structure based on a certain amount of points
initially received to initialize the EDSSC model.

In the static learning phase, we mainly address two chal-
lenges: 1) proposing a method to know the number of

subspaces lying in the data used in the static learning and
2) designing a data structure, called the EDSSC summary, for
storing statistic summaries of the data stream. In a broad sense,
the EDSSC summary here is the clustering result. Hence, we
continue using S

t to denote the EDSSC summary.
Specifically, we denote the EDSSC summary as S

t =
{S t}kt

l=1. Each S t
l = {nt

l, Rt
l, T t

l ,�t
l} summarizes the

information of the lth subspace, where:
1) nt

l is the total number of data points assigned to subspace
l up to timestamp t;

2) Rt
l is referred to as a reserved data matrix of subspace

l, which saves selected points from subspace l up to t;
3) T t

l records the timestamps of all the points that are
assigned to subspace l up to t;

4) �t
l records the ASCI (which will be described in

Section IV-B) of all the points belonging to subspace
l up to t.

EDSSC needs to be initialized at the static learning phase
where the first batch of T0(T0 > d) data points XT0 is pro-
cessed, namely, EDSSC needs to cluster XT0 to obtain the
representation matrix C∗T0 first, which can be solved via the
optimization problem in (5).

The affinity matrix at timestamp T0, denoted as WT0 , is
then built by (7). The clustering result will be obtained after
applying spectral clustering algorithms on WT0 . Note that the
number of subspaces, that is, kT0 , is required to be input for
most spectral clustering algorithms.

Generally, estimating the number of subspaces underlying
the data matrix is still one of the most challenging problems in
clustering [59]–[61]. This is partly because it is quite subjec-
tive to definite what a subspace is. Subsequently, most state-of-
the-art online RBSC methods (including SSSC, SLRR, SLSR,
OLRSC, etc.) assume that kT0 is defined by users as prior,
which limits their usage in real-world applications.

Currently, singular-based Laplacian matrix decomposition is
one of the main techniques to solve the problem. Liu et al. [16]
estimated the number of clusters by counting the small sin-
gular values of a normalized Laplacian matrix that should be
smaller than a given cut-off threshold. However, the method is
extremely sensitive to the selection of the threshold. This arti-
cle proposes a new method that uses singular-based Laplacian
matrix decomposition to automatically estimate the number
of subspaces without requiring any input threshold. Assume
we have obtained the similarity matrix W of the data matrix
Xd×N [via (6) and (7)]. Then, we can obtain the normalized
Laplacian matrix L as follows:

L = I− D−1/2WD−1/2 (9)

where D = diag(
∑N

j=1 [W]1j, . . . ,
∑N

j=1 [W]Nj). Then, the
eigenvalues of L are obtained, which are denoted as {σi}Ni=1.
Here, assume that the eigenvalues have been sorted in an
increasing order, that is, 0 = σ1 ≤ σ2 ≤ · · · ≤ σN . Note
that 0 is one of the eigenvalues.

Then, the estimation of kT0 could be obtained by

k̂ = max
i
{|φi|}N−1

i=2 − k0 (10)
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where

φi = loga

(
σ 2

i /σi+1σi−1

)
, (a is a constant and a > 1) (11)

and

k0 =
{

0, when σi−1σi+1 ≥ σ 2
i

1, otherwise.
(12)

After estimating the number of subspaces underlying XT0 ,
we can further pursue the eigenvectors corresponding to the
smallest kT0 eigenvalues. The clustering result of XT0 can be
then obtained by performing a basic clustering (e.g., k-means
clustering) on the eigenvectors matrix. Note that T T0

l and �
T0
l

are empty for l ∈ [1, kT0 ]. Limited by the storage space, it
is unwise to have all the points of each subspace in their
respective Rt

l. Therefore, it is reasonable to only select and
save a small part of points as representatives of each sub-
space. Actually, representative selecting is another challenging
topic that has not been well solved. There are a few algo-
rithms designed to accomplish the task, such as DS3 [62] and
ESC [14]. However, these methods are inefficient for large-
scale data processing. Here, for each subspace, we adopt a
uniform random sampling approach of which the time com-
plexity is only O(1) and the performance are comparable with
the other complex sampling techniques [23]. We call the points
processed in the static learning phase and online clustering as
supporting points and streaming points, respectively. Since the
number of supporting points in each subspace may vary signif-
icantly, we design a logarithmic function to control the number
of points reserved in each subspace as follows. Assume that
we have nsup supporting points and nres points will be reserved
in R, then nres can be decided by the following:

nres =
{

nsup, when nsup < N0

min
{

nsup, logc0

(
a0
(
nsup

)1/n0 + b0

)}
, otherwise

(13)

where N0, a0, b0, c0, and n0 are constants and can be
predefined by the users for different tasks. Our recommended
setting for n0 and N0 is n0 = 2 and N0 = d. The basic principle
for (13) is when nsup < N0, all the nsup will be reserved. While
when nsup ≥ N0, a subset of the supporting points will be
reserved and the larger the nsup, the lesser the ratio nres/nsup.
Generally, we expect that when nsup = d, nres = d and when
nsup = 4d, nres = 2d (d is the dimension of the data point).
This can be easily achieved by setting a0 and b0 according to
the following equations:

{
a0 = c2d

0 −cd
0

d1/2

b0 = 2cd
0 − c2d

0 .
(14)

It should be noted that we use (13) to balance the contra-
diction between the saving points for accuracy and discarding
points for efficiency. Note that we set n0 = 2, N0 = D, and
c0 = 1.005 in this article. In specific, the initialization of the
EDSSC summary is summarized in Algorithm 1.

B. Online Clustering Based on Sparse Representation

After the static learning phase, the EDSSC is ready to
cluster the following points in an online manner, that is, the

Algorithm 1 Initialization of EDSSC Summary

Input: Data stream x1, . . . , xt, . . .; Initial batch size T0;
Output: The initialization of EDSSC summary.

1: Obtaining C∗T0 by solving Eq. (5) and Eq. (6).
2: Building the affinity graph by solving Eq. (7).
3: Estimating the number of subspaces k̂T0 by solving Eq. (10).
4: Obtaining the clustering results by performing spectral clustering

algorithms on WT0 .
5: Applying the uniform random sampling approach to the points

of each subspace.
6: Getting the EDSSC summary initialized.

online clustering phase. For each arriving data point in the
online clustering phase, EDSSC must decide if it is a nor-
mal point first (if the point belongs to one of the subspaces
we have found in the EDSSC summary). The abnormal points
are called outliers and should be rejected. Generally, the out-
lier detection is one of the most important research topics
in the DSC research community [63], [64]. Here, with the
help of the self-expressiveness property, EDSSC is capable of
automatically accepting the normal points and rejecting the
outliers.

Depending on whether the subspaces can effectively repre-
sent the current pattern of data streams, EDSSC divides the
found subspaces into two states, that is, active and inactive,
at each timestamp. The inactive state means the correspond-
ing subspaces have expired. Both states can be converted to
each other over time. Section IV-C will demonstrate how they
convert to each other under the subspace evolution detection
strategy of EDSSC. Note that only the active subspaces are
stored in the EDSSC summary. For the inactive subspaces,
EDSSC does not directly delete them but stores them to
another reservoir D

t = {Dt
m}ht

m=1 which we refer to as the
remove reservoir. Here, we assume that at timestamp t, there
are ht inactive subspaces in D

t. The inactive subspace can
be denoted as Dt

m = {̃nt
m, R̃t

m, T̃ t
m, �̃t

m}. Meanwhile, we define
Zt = [Rt

1 · · ·Rt
kt R̃t

1 · · · R̃t
ht ] here. Zt is made up by all reserved

data matrix of active and inactive subspaces at timestamp t.
For a new arriving data point xt(t > T0), we first get its

representation coefficients under Zt, that is

min
∥∥ct
∥∥

0 s.t. xt = Ztct. (15)

We can also use ‖·‖1 norm to relax (15) to obtain the solution
c∗t, referred to as representation coefficients. Considering xt

could be either an outlier or a normal point, it is necessary
to identify xt before we assign xt into a subspace. According
to the self-expressiveness property, we know that c∗t has the
block sparsity property if xt is a normal point. That is, nonzero
elements of c∗t are concentrated on a certain part (this part
corresponds to the reserved matrix of its own subspace). While
for outliers, their solutions c∗t do not have the block sparsity
property. Without loss of generality, we further demonstrate
the difference between the results of outlier and normal point
in the following example.

Example 1 (Normal Points Versus Outliers): The Cropped
Extended Yale B [65]1 database is utilized to demonstrate

1The Cropped Extended Yale B database can be accessed via
http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html.
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(a)

(b)

(c)

Fig. 3. Illustration of Example 1 and Example 2. (a) Example 1: Matrix
Z consists of 60 images of three subjects (20 images/subject) from Cropped
Extend Yale B. Then, we obtain the representation coefficients of a normal
image and an outlier image. The nonzero coefficients of the normal image
show a concentrate feature while those of the outlier image are dispersed.
(b) Example 2: When Z is imbalanced, the nonzero coefficients of a normal
point from the under-represented subject (Sub2) will not just correspond to the
images from the same subject in Z. The SCI index in this case is not effective
anymore with almost equivalent sums of nonzero coefficients between Sub1
and Sub2. However, ASCI is still valid. (c) Comparison of the accuracy of
the experiments performed in Example 2 being identified as normal points
under ASCI and SCI indexes with different τ settings.

the difference of the coefficients of a normal and an out-
lier. The Cropped Extended Yale B database contains 2432
images from 38 subjects (64 for each subject) and the size of
each image is 192× 168 cropped from the original Extended
Yale B database [66]. We further downsize each image to
48 × 42 for computational efficiency. Here, the 38 subjects
are referred to as Sub1, Sub2, . . . , Sub38, respectively. The
first four subjects (Sub1–Sub4) are utilized in this example.
We randomly select 20 images from Sub1, Sub2, and Sub3,
respectively, (60 images in total) and treat each image as a
column to form matrix Z2016×60. Obviously, for Z, the new
arriving images to be assigned will be normal points if they
are from Sub1–Sub3. Otherwise, they would be outliers. We
select one image from the remaining images of Sub2, which
is denoted as xnormal. Then, an image, denoted as xoutlier, is
randomly selected from Sub4. The representation coefficients
for xnormal and xoutlier are obtained by (15) and are illustrated
in Fig. 3(a). For the coefficients of the normal point xnormal,
the nonzero coefficients only correspond to the images from
the same subspace (Sub2) of xnormal. However, the nonzero
coefficients for the outlier are very different.

In order to quantitatively measure the sparse concentration
of c∗t, we propose the ASCI to quantify how concentrated the
coefficients are on a single subspace.

Definition 2 [Average Sparsity Concentration Index
(ASCI)]: The ASCI of a coefficient vector c ∈ R

n is defined as

ASCI(c) �
k ·maxj

( ∥∥δj(c)
∥∥

1/ζj
∑k

i=1‖δi(c)‖1/ζi

)

− 1

k − 1
∈ [0, 1] (16)

where k is the number of internal subparts which c can
be divided into. The function δj(·) : R

n → R
n selects the

coefficients associated with the jth (j ∈ [1, k]) subpart in c
and keeps its elements which correspond to other subsparts
in c as 0. ζj is the length of the jth subspart in c. ASCI(c)
∈ [0, 1] and a higher ASCI(c) means the coefficients of c is
more likely to concentrate on a single subpart.

Proposition 1: The ASCI index is equivalent to the SCI
index2 [15] when the length of all the subsparts of the vector
to be measured is equal.

Proof of Proposition 1: Suppose we have a q×1 coefficient
vector c containing k sequentially concatenated but disjoint
subparts {ci}ki=1 (i.e., for ∀i, j ∈ [1, k], ci ∩ cj = ∅ and c1 ∪
c2 · · · ∪ ck = c) and the length of each subpart ci is denoted
as ζi. When all the subparts are of equal length, we have
ζi = q/k for ∀i ∈ {1, . . . , k}. Then, the ASCI (16) can be
further derived as

ASCI(c) =
k ·maxj

(
(q/k) · ∥∥δj(c)

∥∥
1

(q/k) ·∑k
i=1‖δi(c)‖1

)

− 1

k − 1

= k ·maxj
(∥∥δj(c)

∥
∥

1/‖c‖1
)− 1

k − 1
.

Therefore, the SCI index can be viewed as a special form
of the ASCI index. For more general cases when the subparts
of the vector are of different length, the ASCI index takes
the length of each subpart into consideration. We contend this
could ensure that ASCI is more suitable to evaluate the spar-
sity concentration of a coefficient vector than the SCI index,
especially when the length of subparts is highly imbalanced,
as illustrated in Example 2.

Example 2 (ASCI Versus SCI): For ease of demonstration,
we assume that Z consists of two subparts, Z1 and Z2 and the
length of the two subparts are imbalanced. Without loss of gen-
erality, we assume ζ1 is obviously larger than ζ2. Accordingly,
Z1 and Z2 are referred to as over-represented subject and
under-represented subject, respectively. We randomly select
60 and six images from Sub1 and Sub2, respectively, to
form Z2016×66. Then, an image, denoted as xtest, is ran-
domly selected from the rest images from Sub2. After being
taken into (15), the representation coefficients c∗ are obtained
and demonstrated in Fig. 3(b). Interestingly, as can be found
in Fig. 3(b), the coefficients do not ideally concentrate on
the second subpart (which corresponds to the images from
Sub2) as expected. The main reason is when there is an
imbalance among internal subparts of Z, the representation

2The definition of SCI is SCI(c) � (k ·maxj ‖δj(c)‖1/‖c‖1 − 1)/(k − 1).
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coefficients c∗ is more likely to have nonzero entries cor-
responding to the columns in Z from the over-represented
subject. Actually, a similar phenomenon is found recently
in [14] which demonstrates that the imbalanced case is pretty
common in practice. In this experiment, ASCI(c∗) = 0.9021
while SCI(c∗) = 0.1002. Obviously, under the SCI index, the
test xtest (which should be identified as a normal point) is
easier to be wrongly identified as an outlier.

We perform additional experiments by selecting other
subjects as over-represented and under-represented subjects.
Specifically, we sequentially select each of the 38 subjects as
the over-represented subject and select one from the remaining
subjects as the under-represented subject. The other settings
are equal to the experiment above. We perform 40 774 experi-
ments (38×37×58) in total and we obtain the corresponding
ASCI(c∗) and SCI(c∗). Note that under a given τ , these
ASCI(c∗) and SCI(c∗) will be compared to τ and then iden-
tified to be normal points or outliers. Here, with different
τ , we further depict the accuracy of these 40 774 test sam-
ples being identified as normal points under ASCI and SCI
indexes [see Fig. 3(c)]. As shown in Fig. 3(c), the ASCI index
dramatically outperforms than SCI under different τ with a
significant improvement on the accuracy. Even though it has
been observed that such imbalanced case are quite more com-
mon in real life [14], fortunately, the imbalanced case can be
better handled by ASCI because the length of each subpart in
c∗ is accounted in (16). Then, for the under-represented sub-
ject, the influence of the imbalanced case will be dramatically
mitigated or even eliminated.

It should be noted that we denote ASCI(c) as ω(c) for
brevity. For c∗t obtained by (15), we can then calculate the
corresponding ω(c∗t). Here, we choose a threshold τ ∈ [0, 1]
and accept xt as a normal point if

ω
(
c∗t
) ≥ τ (17)

and otherwise reject as an outlier. The outlier will be saved in
an outlier reservoir, denoted as O

t. Precisely, Ot = {Oi}nt
o

i=1
and Ot = {xi, ωi, ti}. nt

o is the number of outliers at times-
tamp t. While for a normal point, it can be either from an active
subspace or from an inactive subspace. There are kt active sub-
spaces and ht inactive subspaces whose reserved data matrix
corresponds to the kt + ht subparts in Zt. We then assign the
normal point xt based on the following optimization function:

min
j

rj
(
xt) �

∥∥xt − Ztδj
(
c∗t
)∥∥

2 (18)

where rj(·) is the residual if xt is assigned into the jth subspace.
The optimal j∗ will be obtained by (18) which corresponds to
the j∗th subpart in Zt. If j∗ ≤ kt, the corresponding active sub-
space Sj∗ would be updated, otherwise the inactive subspace
Dj∗−kt would be updated.

C. Online Subspace Evolution Detection

In real-world application, most data streams have nonsta-
tionary properties, commonly known as concept drift [55].
The concept drift leads to a time-varying subspace structure,
that is, subspace evolution. Depending on the drift speed, such

subspace evolution can be further divided into abrupt and grad-
ual subspace evolution. It should be pointed out that here we
mainly focus on the abrupt case because it is relatively more
ubiquitous and easy to be detected in unsupervised tasks [67].
Therefore, in this article, the subspace evolution mainly refers
to the abrupt case unless otherwise stated. Concretely, three
specific types of subspace evolution are considered, that is,
subspace emergence, disappearance, and recurrence. An online
subspace evolution detection strategy is designed to ensure that
EDSSC can deal with these evolving cases. Specifically, the
subspace emergence and recurrence detection are based on the
PH test [26], [68].

The PH test is a scalar change point detection (CPD) test
method and has been successfully proved and verified in [7].
Compared with other concept drift detection methods, such
as PCA-based approaches [34], the PH test allows us to not
directly detect the changes of data stream Xt, to avoid increas-
ing the computational cost and complicating the algorithm.
Here, inspired by [7], we detect the emergence and recur-
rence through observing the variation tendency of the outlier
rate and the recurring points rate, respectively. The subspace
disappearance detection is based on a fading function.

1) Subspace Emergence and Recurrence Detection Based
on PH Test: Considering high-dimensional DSC is an unsuper-
vised task, we employ the PH test, which is one of the classical
statistical hypothesis testing methods to detect the concept
drift. We first give a brief demonstration of how the PH test
works [7], [26], [68].

Assume the observed random variable is p. At each times-
tamp t, we get the empirical average of p

p̄t = 1

t

t∑

i=1

pi (19)

and the sum of differences between p and p̄t

γt =
t∑

i=1

(pi − p̄i + δ) (20)

during the time interval [1, t]. δ is a positive real value which
controls the test model. Meanwhile, �t records the historical
maximum value of γ up to current timestamp t, that is, �t =
max{γ1, . . . , γt}.

At each timestamp, the gap PHt between �t and γt is
obtained and the PH test is triggered if the gap is above a
threshold η, that is

PH test triggered iff PHt = �t − γt > η. (21)

The PH test has been theoretically verified to detect a negative
drop in the mean of the Gaussian distribution [7]. Obviously,
η controls the flexibility of the detection and an appropriate
η setting should depend on the stream itself. In [7], a proper
way about setting η is proposed and employed in our work.
η can be set as

η =
{

0, if PHt = 0
f ∗ p̄t0 , otherwise

(22)

where f is a constant that controls the sensitivity of the
detection and t0 is the first timestamp when PHt �= 0.
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Algorithm 2 EDSSC Algorithm

Input: Data stream x1, . . . , xt, . . .; Initial batch size T0;
Thresholds β, ,τ ,f ; S←∅, D← ∅, O← ∅

Output: The online cluster membership of the data stream.
1: Apply Algorithm 1 to get the initial EDSSC summary S

T0 .
2: Compute ω(c∗t) for each arriving point xt (t > T0) via

Eq. (15)-Eq. (16).
3: Decide to accept xt as a normal point or reject xt as an outlier

via Eq. (17). For the normal point, compute the residual and
j∗ by Eq. (18) and update S or D accordingly. For the outlier,
update O.

4: Perform subspace evolution detection: compute ṗt
m, pt and detect

the subspace recurrence, emergence via Eq. (21). If Eq. (21) is
triggered, update S, D, O accordingly. Compute p̈t

l and detect
the subspace disappearance via p̈t

l ≥ 0.5. If triggered, update S

and D.

Now, we consider the subspace emergence. Subspace emer-
gence will result in an obvious feature in the data stream, that
is, a large number of outliers found in the data stream within
a short time interval. Hence, we define a variable p which can
quantitatively reflect whether outliers appear in large quantities
in a short time. That is

pt =

√√√√√ 1

nt
o

nt
o∑

i=1

(1+ log(ti − ti−1))

⎛

⎝ωti −
1

nt
o

nt
o∑

k=1

ωtk

⎞

⎠

2

. (23)

pt is monitored under the PH test at each timestamp. When
outliers appear in large quantities in a short time, pt will show
a downward trend which can be detected by the PH test. It
should be pointed out that when the subspace emergence is
detected, the points in O will be taken into (5) to find the
clustering result. The points will also be randomly sampled
then. The new added subspaces summary S∗ will be updated
into the EDSSC summary finally.

Subspace recurrence is the case that once disappeared sub-
spaces are active again, that is, their points are observed
again in the data streams during the very recent timestamps.
Actually, in this sense, subspace recurrence has a common
evolving feature with subspace emergence. That is, subspace
recurrence is equivalent to the emergence of the second time
or even higher time. Hence, for each inactive subspace Dt

m in
the remove reservoir Dt, we define a variable ṗt

m, that is

ṗt
m =

√√√√
√ 1

ñt
m

ñt
m∑

i=1

(1+ log(ti − ti−1)). (24)

2) Subspace Disappearance Detection Based on Fading
Function: The data points of data streams are potentially
infinite which implies that many of the previously active
subspaces will gradually expire. These subspaces should be
detected in time to ensure that the clustering results are more
suitable to reflect the current patterns of data streams. EDSSC
defines a variable p̈t

l for each active subspace, that is

p̈t
l = 1− 1

1+ e−(t−max{T t
l }−β)

(25)

where max{T t
l } is the last timestamp when a data point was

assigned to subspace l and β is a preset parameter which

controls the sensitivity of the EDSSC model to subspace dis-
appearance detection. As can be inferred from (25), p̈t

l is
based on a sigmoid function and p̈t

l will drop sharply when
t > max{Tl}+β. Hence, EDSSC monitors p̈t

l for all active sub-
space at each timestamp and accept the subspace as an active
subspace if p̈t

l ≥ 0.5. Inactive subspaces will be removed from
the EDSSC summary to avoid the summary being redundant.

D. Algorithm Flow and Complexity Analysis of EDSSC

We summarize the complete procedure of EDSSC in
Algorithm 2. Precisely, the EDSSC involves four main steps.

First, the first bunch of data is collected and processed to
initialize the EDSSC summary (Section IV-A).

Second, for each of the arriving points, its ASCI value will
be calculated by (15) and (16). Then, the point will be accepted
as a normal point or rejected as an outlier according to (17).
For normal points, they will be updated in the EDSSC sum-
mary or the remove reservoir by (18). While the outliers will
be put into the outlier reservoir Ot (Section IV-B).

Third, the PH test will be utilized to check if subspaces
recur in remove reservoir D

t and new subspaces emerge in
outlier reservoir Ot (Section IV-C1).

Finally, all active subspaces in EDSSC summary S
t will be

checked if they are still active at timestamp t. The inactive
subspaces will be removed from S

t to the remove reservoir Dt

(Section IV-C2).
Since the variables used for change detection consume

ignorable memory, the memory usage of EDSSC is mainly
dominated by the saving of representatives. According to (13),
the number of saved points is approximately logarithmic
to the total number of points. Therefore, for n points, the
approximate space complexity will be O(d log2(n)), which
is comparable to the state-of-the-art online RBSC algorithms
(e.g., SSSC, SLSR, and SLRR) and much less than those of
the static RBSC algorithms [e.g., O(dn2) of SSC and LRR].

In the static learning phase, the time complexity of EDSSC
is mainly determined by the solving of (5), which is approxi-
mately O(T3

0 ) [23]. While in the second phase, EDSSC needs
to compute (15) for the following n − T0 points and (5)
if subspace emergence is detected, which is approximately
O(ζn3

o + (n − T0) log2(n)). Here, ζ denotes the number of
times that subspace emergence detection is triggered and no is
the number of points in the outlier reservoir when the emer-
gence detection is triggered. Due to T0, no � n, the time
complexity of EDSSC is much smaller than those of LRR
(O(d2n + n3)) and SSC (O(dn3)) [23] and relatively larger
than those of SSSC, SLRR and online LRR due to the ζ times
computing of (5). However, such an additional computational
cost, that is, O(ζn3

o), is inevitable to find the new subspaces
which are not learned in the static phase instead of assuming
all the subspaces having been learned in the first phase. The
time complexity of EDSSC would be comparable with the
other algorithms when processing data streams without any
new subspaces emergence.

V. EXPERIMENTS

In this section, experiments are performed on publicly
available datasets to evaluate the performance of EDSSC.
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TABLE I
EVOLUTIONARY DATA STREAMS USED IN EXPERIMENTS

Moreover, the state-of-the-art online SC algorithms, that is,
SSSC [23], SLRR [23], SLSR [23], and OLRSC [25], as
well as DSC algorithms CEDAS [9] and STRAP [7], are
selected as baseline algorithms. Section V-B demonstrates the
influence of parameters on the performance of the proposed
algorithm. Section V-C compares the results of all the eval-
uated algorithms on small-scale evolving data streams. In
Section V-D, we investigate the performance of these eval-
uated algorithms on medium-scale evolving data streams. In
addition, the performance of EDSSC, as well as other baseline
algorithms on evolving large-scale data streams, are reported
in Section V-E.

A. Datasets and Experimental Setup

The experiments are performed on seven evolutionary
streams generated from seven public datasets. Particularly, they
are divided into three categories according to their scales, that
is, small scale, medium scale, and large scale, as shown in
Table I. For computational efficiency, some datasets have been
preprocessed. For AR datasets, we select 1400 images equally
from 100 persons and the dimension of each sample has been
reduced from 19 800 to 167. Similar to AR, we also use a sub-
set of the MPIE dataset which consists of 4400 images from
100 persons of the MPIE dataset. EMNIST-letter consists of
13 000 samples of 26 English letters and MNIST 30K is a
subset whose samples are randomly selected from the MNIST
dataset. In order to generate the evolutionary data stream, in
the initial stage, we only select some samples from some of
the classes and the samples of classes that are not selected
emerge in the online phase.

We compare the proposed algorithm with four state-of-the-
art online RBSC algorithms, that is, SSSC [23], SLRR [23],
SLSR [23], OLRSC [25], and two state-of-the-art related DSC
algorithms, CEDAS [9] and STRAP [7]. All the algorithms are
implemented with MATLAB. For SSSC, SLRR, SLSR, and
OLRSC, there exists a common and vital parameter λ which
is utilized to balance the data fidelity and the regularization
term when solving the �1-minimization problem. For CEDAS
and STRAP, a parameter r is required as an input to control
the radius of a cluster. For a fair comparison, the parameters
of all algorithms are tuned for obtaining the best performance,
as summarized in Table II.

All the algorithms are measured using accuracy and NMI
between the results given by the algorithms and the ground
truth. The values of accuracy and NMI are real numbers
between 0 and 1. Particularly, larger values mean the given
result matches the ground truth more. In our experiments, the

TABLE II
PARAMETER SETTINGS FOR DIFFERENT ALGORITHMS

(a) (b)

Fig. 4. Parameter sensitivity of EDSSC on parameters. (a) Influence of τ ,
where f = 25. (b) Influence of f = 25, where τ = 0.5.

accuracy and NMI are the average values obtained by running
each program ten times on each data stream.

B. Impact of Parameters

Before comparing the performance of all algorithms, we
would like to investigate the influence of parameters in
EDSSC. There are two key parameters, that is, τ and f , which
would impact EDSSC. Precisely, τ is used to identify the nor-
mal points from outliers and f in (22) controls the threshold η

in (21) for change detection in PH tests. To study how these
parameters impact on EDSSC, we chose different parameters
settings of τ and f and run the EDSSC on the PenDigits
stream. The corresponding results are illustrated in Fig. 4, from
which the following observation could be obtained.

Fig. 4(a) depicts the clustering quality (accuracy and NMI)
of EDSSC under different τ settings (we keep f = 25). When
the τ is relatively small (e.g., τ < 0.5) or large (e.g., τ >

0.75), the clustering quality is lower. The reason is a smaller
τ results in that more outliers are accepted as normal points
and a larger τ gets more normal points rejected as outliers.
Moreover, a larger τ is easier to trigger PH detection getting
clustering quality decreased.

We report the results of the effect of f on the EDSSC method
(we fix τ = 0.5) in Fig. 4(b) from which we find that f will
impact the clustering quality. If f is set too large for the PH
test to get triggered, then the new emerging subspaces would
not be found timely.

C. Online Subspace Clustering on Small-Scale and Evolving
Data Streams

In this section, we focus on studying the performance of
EDSSC and baseline algorithms on small-scale and evolving
data streams. We report their performance in Table III from
which we can find the following.

Our EDSSC succeeds in achieving high clustering accuracy
and NMI in processing the three small-scale and evolving data
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TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS ON

THREE SMALL-SCALE DATA STREAMS (AR, EXYALEB, AND MPIE)

streams. For example, on the ExYaleB data stream, EDSSC
achieves 75.01% accuracy and 86.47% NMI compared with
57.14% accuracy and 74.43% NMI of OLRSC which has
the best performance among all baseline algorithms. It proves
the feasibility of our EDSSC algorithm, especially the effec-
tiveness of the detection strategy of subspace evolution, the
estimation algorithm of the number of subspaces, and the
proposal of the ASCI index.

It can be observed that our EDSSC achieves much higher
clustering quality than the state-of-the-art RBSC algorithms,
that is, SSSC, SLRR, SLSR, and OLRSC. Such superior-
ity of EDSSC is more obvious on the ExYaleB and MPIE
data streams. The reason is that these RBSC algorithms are
based on the assumption that the subspace structure should be
unchanged. This assumption leads to that they fail to detect
and adapt the evolving subspace, which naturally results in
the failure in the clustering. It should be pointed out that
for the AR stream, the NMI value of EDSSC is slightly less
than that of SLSR. One possible reason is that the spatial
distribution of data points in the AR datasets is rather com-
plex. Hence, it is relatively difficult to accurately estimate the
number of subspaces underlying the AR stream without any
prior information (EDSSC estimates 126 subspaces). However,
SLSR, SSSC, SLRR, and OLRSC need an accurate number of
subspaces as prior information. In the experiments of this arti-
cle, we provide them with the accurate number of subspaces,
which will promote their NMI values.

Compared with the two state-of-the-art DSC algorithms,
that is, STRAP and CEDAS, EDSSC is more suitable in
processing these high-dimensional evolutionary data streams.
This is mainly because STRAP and CEDAS are based on
traditional distance measurements which are not effective in
high-dimensional space to indicate the aggregation of the
points belonging to the same subspace. However, our EDSSC
fully exploits the self-expressiveness property of the data
points, thus achieves better performance in high-dimensional
space.

D. Online Subspace Clustering on Medium-Scale and
Evolving Data Streams

This section investigates the proposed method as well
as baseline algorithms on three medium-scale handwrit-
ten digit (or character) streams, that is, USPS, PenDigits,
EMNIST-letter. Table IV reports the accuracy and NMI of the
tested algorithms, from which the following could be observed.

TABLE IV
PERFORMANCE COMPARISON DIFFERENT ALGORITHMS OVER

THREE MEDIUM-SCALE DATA STREAMS (USPS, PENDIGITS, AND

EMNIST-LETTER) AND ONE LARGE-SCALE

DATA STREAM (MNIST 30K)

The proposed EDSSC achieves the best performance on the
USPS and PenDigits streams among all the performed algo-
rithms. For example, on the USPS data stream, the accuracy
and NMI of EDSSC can reach 67.01% and 78.65% followed
by SLRR whose accuracy and NMI only 60.43% and 67.20%.
For the EMNIST-letter stream, EDSSC achieves the highest
accuracy with 67.62%. The NMI of EDSSC on EMNIST-letter
is 75.58%, which is less than SLSR (83.50%). However, as
discussed before, it is mainly because the spatial distribution
of the EMNIST-letter stream is complex. The number of sub-
spaces estimated by EDSSC is 32, which is slightly larger than
the actual.

It can be observed that the performance of our EDSSC
is more stable when handling different kinds of evolving
data streams. Nevertheless, the performance of the baseline
algorithms fluctuates. For example, SLSR performs relatively
acceptable on processing the EMNIST-letter stream with accu-
racy = 65.60% and NMI = 83.50%. However, it achieves
only accuracy = 50.43% and NMI = 59.60% in USPS stream
processing. The performance of SSSC on the USPS stream
as well as the EMNIST-letter stream is not comparable to the
other RBSC algorithms but its performance becomes relatively
acceptable on the PenDigits stream processing. The possible
reason is that these baseline algorithms are based on different
theory to capture the subspace structure. For example. SSSC
is based on sparse restriction while our EDSSC is based on
the low-rank restriction in (3). The latter is more powerful to
capture the structure among different kinds of streams [23].

E. Online Subspace Clustering on Large-Scale and Evolving
Data Stream

We further evaluate the proposed and the baseline algo-
rithms on a large-scale and evolving data stream. The the
MNIST 30K stream is used in this experiment which consists
of 30000 data points randomly selected from 10 classes in the
MNIST database. Besides subspace emergence, we further add
subspace disappearance, recurrence in the data stream to test
the performance of the algorithms. The temporal distribution
and evolving property of MNIST 30K are shown in Fig. 5.

As can be seen from Fig. 5, we divide the data stream
into five phases denoted as P1–P5, respectively. There are
five subspaces emerging in P1 followed by three subspaces
and two subspaces emerging in the second and third phases,
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Fig. 5. Temporal distribution and the evolving property of MNIST 30K.

respectively. Then, in P4, five subspaces disappear and two of
them recur in the next phase.

The performance of the algorithms on the MNIST 30K
stream has been reported on the right side of Table IV. As
shown in Table IV, the proposed EDSSC outperforms the base-
line algorithms in the accuracy and NMI value of the result.
Furthermore, in order to study the performance of each algo-
rithm for subspace evolution, we depict the real-time number
of subspace recovered by each algorithm on MNIST 30K in
Fig. 6. From Fig. 6(a), it can be observed that EDSSC is effec-
tive in detecting and adapting the subspace evolution with
the three types of subspace evolution being detected accu-
rately. However, in Fig. 6(b), it can be found that the number
of subspaces keeps as equal to 5 during the entire process.
The reason is that SSSC, SLRR, SLSR, and OLRSC cannot
deal with the subspace evolution and assume all the subspaces
should be covered in the static learning phase. Therefore, the
number of subspaces is unchanged. In addition, these four
algorithms actually cannot estimate the number of subspaces
in the static phase and they require the number of the sub-
space must be input as prior information. In Fig. 6(c), we
can find that the CEDAS has the potential to deal with the
subspace emergence and disappearance. However, it cannot
recover the subspace accurately because CEDAS is based on
traditional distance measurement which is not effective in
high-dimensional space. Meanwhile, note that the subspace
recurrence cannot be detected at all. As shown in Fig. 6(d),
STRAP can only detect subspace emergence. Therefore, the
number of subspaces can reach 9 from 5 around t = 14 000.
But after that, the number of subspaces keeps unchanged. This
is because the subspace disappearance and recurrence can not
be detected or acted by STRAP.

VI. CONCLUSION

In this article, we focused on one unsolved but vital
problem, that is, how to cluster the evolving and high-
dimensional data streams. To this end, a novel DSC algorithm,
called EDSSC, was proposed which can perform online SC
on the evolving and high-dimensional data streams. EDSSC
is a two-phase algorithm, including a static learning phase
and an online clustering phase. Compared with the state-of-
the-art algorithms, EDSSC satisfactorily handles the follow-
ing issues. First, in the static learning phase, our EDSSC
was capable of estimating the number of subspaces by the
proposed method (10). Second, by proposing a data structure,
called EDSSC summary, EDSSC perfectly reached a balance
between the two competing goals: saving more points for
the accuracy or discarding more points for efficiency. Third,

(a) (b)

(c) (d)

Fig. 6. Real-time number of the subspace recovered by algorithms
on MNIST 30K. (a) EDSSC. (b) SSSC/SLRR/SLSR/OLRSC. (c) CEDAS.
(d) STRAP.

EDSSC does not make the assumption that the subspace struc-
ture of the data streams must be unchanged. Instead, EDSSC
can detect and act subspace evolution properly by the proposed
subspace detection strategy based on the PH test. Finally, in
the learning phase, the arriving point can be assigned to the
proper subspace with the help of the proposed ASCI index. We
have proved that ASCI is better than the commonly utilized
SCI index.

In future studies, we will concentrate on exploring a proper
strategy enabling EDSSC to detect gradual subspace evolution.
In addition, we will focus on the automatic optimization of
relevant parameters affecting the performance.
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