
Information Sciences 370–371 (2016) 428–445

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Random projections and Single BoW for fast and Robust

texture segmentation

Li Liu

a , ∗, Liansheng Wang

b , ∗∗, Lingjun Zhao

c , Paul Fieguth

d

a College of Information System and Management, National University of Defense Technology, 109 Deya Road, Changsha, Hunan, 410073,

China
b Department of Computer Science, Xiamen University, Xiamen, Fujian, 361005, China
c College of Information System and Management, National University of Defense Technology, 109 Deya Road, Changsha, Hunan, 410073,

China
d Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

a r t i c l e i n f o

Article history:

Received 1 May 2016

Revised 19 July 2016

Accepted 6 August 2016

Available online 8 August 2016

Keywords:

Texture segmentation

Texture classification

Random projection

Bag of words

Sparse representation

a b s t r a c t

This paper develops a theoretically simple, efficient yet robust approach to supervised tex-

ture segmentation based on local radial difference features and a Bag-of-Words (BoW)

model. We make the following contributions: (1) we propose an approach to optimally

learn new compact single BoW histogram models from the entire training set, with the

single histogram providing benefits of efficiency in both memory and computation costs;

(2) we show that BoW histograms computed from local simple radial difference features

can provide an accurate pixel-wise segmentation of a textured image; and (3) we investi-

gate whether sparse reconstruction, very successful in texture classification, assists in tex-

ture segmentation, with our study demonstrating the surprising conclusion that sparse re-

construction methods actually do not improve segmentation performance.

Extensive experiments on composite natural texture images demonstrate the superior-

ity of the proposed approach over multiple state of the art texture segmentation methods.

Our experimental evaluation demonstrates a significant superiority over recent popular

sparse reconstruction segmentation methods in terms of computational efficiency, while

outperforming or comparable in terms of segmentation accuracy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Texture is a fundamental property of images and is a key visual cue, with consequent significant research activity. In

general, texture research may be divided into five canonical problem areas [40] :

1. Segmentation;

2. Classification;

3. Synthesis;

4. Compression; and

5. Shape from texture.
∗ Corresponding author. Fax: + 86 731 84574531.
∗∗ Corresponding author. Tel.: + 86 592 2580033.

E-mail addresses: liuli_nudt@nudt.edu.cn (L. Liu), lswang@xmu.edu.cn (L. Wang), nudtzlj@163.com (L. Zhao), pfieguth@uwaterloo.ca (P. Fieguth).

http://dx.doi.org/10.1016/j.ins.2016.08.014

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.08.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.08.014&domain=pdf
mailto:liuli_nudt@nudt.edu.cn
mailto:lswang@xmu.edu.cn
mailto:nudtzlj@163.com
mailto:pfieguth@uwaterloo.ca
http://dx.doi.org/10.1016/j.ins.2016.08.014

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 429

The focus of this paper is on the first problem, that of supervised texture segmentation. As a fundamental problem

in computer vision and image analysis, texture segmentation has a wide range of applications, including content based

image retrieval, medical diagnosis, analysis of satellite or aerial images, industrial inspection, and document segmentation

[34,35,40,45] . Texture segmentation has been attempted in numerous ways, normally involving two major steps: texture

feature extraction and a segmentation algorithm [35] . Despite years of extensive study, surveys of which may be found in

[34,35,40,45] , the problem of texture segmentation remains challenging.

Texture segmentation is closely related to, but different from, texture classification [40] : the goal of texture segmenta-

tion is to obtain a texture boundary map, not necessarily estimating the class membership. Recent research on texture clas-

sification [18,22,23,42,46,51] focuses on estimating the class membership of an entire texture image photographed under

unknown viewing and illumination conditions, given a number of texture classes and a set of training samples. The bag of

visual words (BoW) paradigm [18,22,23,51] , which represents texture images statistically as histograms over a dictionary of

local features, has proved effective for image level texture classification. Although significant progress [18,22,23,42,46,51] has

been made recently for image level texture classification, the question whether these approaches are suitable for texture

segmentation demands further investigation.

Recently the theories of compressed sensing and sparse representation [7,8,13] have given new life to a variety of prob-

lems in computer vision, pattern recognition and image analysis, including image denoising [2] , image classification [47–49] ,

face recognition [15,44,50] , and texture classification [25,26,31,33,39] . The goal of many such methods has been to exploit

the underlying sparsity in the problem, either explicitly or implicitly, in order to improve the robustness, speed or accuracy

with which classification might be performed. Inspired by the theories of compressed sensing and sparse representation,

there are two main threads of research investigation: the sparse coding with over-complete dictionaries from a generative

point of view [25,26,29,31,33,39] , and the K Means clustering for textons from a discriminative point of view [22,23] .

The former approach applies sparse coding ideas inspired by the work from the neuroscience community [29] , in which

class specific dictionaries are trained using labeled data and then each testing signal is assigned to the class for which

the best reconstruction is obtained [25,26,31,39,44] . The performance of sparse coding relies on the quality of the learned

over-complete dictionary, however there is no guarantee that the subspace built on a learned dictionary is optimal for

classification, as it targets the representational power (best sparse representation for the training images) but not necessarily

class separability. Furthermore there are concerns of the time-complexity of dictionary construction when there are a large

number of classes.

In contrast to sparse generative models based on image patches, other approaches which implicitly leverage the spar-

sity nature of textures have been presented [22,23] for image level texture classification. In [22] , Liu and Fieguth made an

important innovation by introducing the use of random projections (RP), a universal, information-preserving dimensionality-

reduction technique, to project the patch vector space to a compressed patch space without a loss of salient information,

with further development in [23] for rotation invariance.

Despite the successes of these methods in texture segmentation and classification, the following three fundamental ques-

tions remain unanswered:

1. Is it of great importance to enforce sparsity constraints when extracting features for texture segmentation, despite the

time costs?

2. Do the RP features presented by Liu et al. [22] , which yielded excellent performance in classification, offer improvements

to the pixel-wise texture segmentation task?

3. The BoW model has proved effective in region or image level classification, based on sparse or dense descriptors

[18,27,43,46,51] , representing each texture class by a set of histograms of textons. However the number of pixel-wise

BoW histograms for texture segmentation would be quite large; is there a way to select texture class models for efficient

and effective pixel-wise segmentations?

In this paper we extend our earlier work on image-level texture classification [22,23] to now represent a texture class by

a single histogram of textons, and investigate the effectiveness of this representation for texture segmentation.

Our contributions in this paper are threefold:

1. We propose an approach to optimally learn new compact single BoW histogram models from a training set, with the

single histogram providing benefits of efficiency in both memory and computation.

2. We show that BoW histograms computed from local simple radial-difference features can provide an accurate pixel-wise

segmentation of a textured image.

3. Finally, we investigate whether sparse reconstruction, very successful in texture classification, assists in texture seg-

mentation, with our study demonstrating the surprising conclusion that sparse reconstruction methods actually do not

further improve segmentation performance.

Extensive experiments on composite natural texture images demonstrate the superiority of the proposed approach over

multiple state-of-the-art texture segmentation methods. Our experimental evaluation demonstrates a significant superiority

over recent popular sparse reconstruction segmentation methods in terms of computational efficiency, while outperforming

or comparable in terms of segmentation accuracy.

The remainder of this paper is organized as follows. In Section 2 we give a brief review of background and related

work. Section 3 develops a basic segmentation algorithm, followed by a detailed presentation of our proposed segmentation

430 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

framework. In Section 4 we provide extensive experimental evaluation of the proposed approach against multiple state of

the art alternatives on natural texture images.

2. Background and related work

2.1. Local texture features

Many methods have been proposed to describe texture in a quantitative way, leading to “a galaxy of texture features”

[45] , broadly lying in four categories: statistical methods [35,40] , model-based methods [19,35] , filtering methods [34,35,40] ,

and structural methods [41] . As texture classification and segmentation are highly related problems, we are motivated to

follow up on recent work in the classification literature, in which the BoW approach has emerged to become the domi-

nant paradigm for texture classification [18,22,42,43] . In the BoW approach, texture images are represented statistically as

histograms over a discrete dictionary of local features. Texture images are described locally by vectors of local texture de-

scriptors, and a dictionary is defined as a partition of the local feature space, typically based on clustering. This distribution

is represented by the frequency histogram of cluster centers (i.e. textons or dictionary atoms). Local highly discriminative

yet robust texture features play a key role and many kinds of local texture descriptors have been proposed, both sparse

[18,51] and dense [22,23,27,42,43] , the latter extracting local features at each pixel. Sparse descriptors such as SIFT [51] , RIFT

[18] and SPIN [18] produce a sparse output and might miss important texture primitives. They are generally not used for tex-

ture segmentation. It is therefore the dense descriptors which have been widely studied for segmentation [25,26,31,39,44] .

Among the most popular dense descriptors are the LM filter bank [20] , MR8 [43] , Gabor wavelets, LBP [27] , Patch [42] , RP

[22] and SRP [23] .

2.2. Dictionary learning

Dictionary learning aims to learn from training samples a good dictionary capable of concise representation. In the con-

text of texture segmentation, the research in dictionary learning has followed two main directions of discriminative and

generative learning.

The discriminative family of dictionary learning is based on vector quantization / K Means clustering. Leung and Malik

[20] were amongst the first to apply the K Means approach for dictionary learning. Their algorithm optimizes a dictionary

given a set of filter responses by first grouping patterns such that their distance to a given atom is minimal, and then by

updating the atom such that the overall distance in the group of patterns is minimal. The implicit assumption here is that

each feature point can be represented by a single atom.

In contrast, the generative approach models an image generated by linearly combining a set of dictionary atoms (i.e.,

sparse coding). The underlying assumption here is that the signals being studied, such as natural images, admit sparse

representations, an idea which has been used for learning features for image classification and has recently led to state-of-

the-art results in classification tasks [25,26,31,39,44] .

A common approach when using dictionaries for classification is to train class-specific dictionaries using labeled data and

then to assign each testing signal to the class for which the best reconstruction is obtained [25,26,31,39,44] . A local texture

feature x ∈ R

n ×1 is approximately represented as a linear combination of a small number of items from an overcomplete

dictionary D ∈ R

n ×K having K atoms, but where the representation x = D α is sparse, such that ‖ α‖ 0 ≤ τ � K where ‖·‖ 0
denotes the l 0 norm counting the number of nonzero entries in a vector. Learning an over-complete dictionary with a fixed

number K of atoms, that is adapted to M patches of size n from texture images, is addressed by solving the following

minimization problem:

min

D , α

M ∑

i =1

‖ x i − D αi ‖

2
2 , s.t. ‖ αi ‖ 0 ≤ τ, ∀ i, ‖ d j ‖ ≤ 1 , ∀ j (1)

where τ is a sparsity constraint factor, and where the sum measures the reconstruction error. The computation of D and

{ αi } typically requires solving either an NP hard problem or an alternative problem that still involves a costly iterative

optimization [2] . A given test texture is decomposed into overlapping patches (one patch per pixel), and one has to compute

the sparse coefficient α of each patch vector x in terms of dictionary D via sparse coding. The texture classification task itself

is then performed based on the reconstruction error

R (x , D) = ‖ x − D α‖

2
2 . (2)

The attractiveness of the sparse approach is its robustness to noise and simplicity in both implementation and interpretation,

but with significant drawbacks in terms of computational complexity.

2.3. Random projection

Random projection has become a widely-used method for dimensionality reduction, and has been shown to have promis-

ing theoretical properties: it is a general data reduction technique, such that the choice of random projection matrix does

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 431

not depend upon the data in any way, and random projections have been shown to have special promise for high dimen-

sionality data clustering.

The key idea of random projection arises from the JL lemma [10,16] , which states that a point set in R

n ×1 with n typically

large can be linearly projected into a lower-dimensional Euclidean space R

m using a random orthonormal matrix while

approximately preserving the relative distances between any two of these points. Subsequent research [1,3] simplified the

proof by showing that such a projection can be generated using an m × n matrix �, whose entries are randomly drawn from

certain probability distributions [1] , specifically including the Gaussian distribution [1,3] . The Johnson–Lindenstrauss lemma

(JL lemma) has found numerous applications that include compressed sensing [44] , dimensionality reduction in databases

[1] , and learning mixtures of Gaussians [10] .

The information-preserving and dimensionality-reduction power of RP is firmly demonstrated by the theory of com-

pressed sensing (CS) [8,13] , which has grown out of the surprising realization that for sparse and compressible signals, a

small number of nonadaptive linear measurements in the form of random projections can capture most of the salient infor-

mation in the high-dimensional signal and allow for accurately reconstruction. Furthermore, Baraniuk et al. [3] give a simple

technique for verifying the Restricted Isometry Property (RIP) for random matrices that underlies CS, meaning that random

Gaussian projections approximately preserve pairwise distances in the data set.

3. Methodology

We wish to address the supervised texture segmentation problem. Given a test image I obs consisting of C texture classes,

with each class having a training image, we wish to classify each pixel in the test image as belonging to one of the texture

classes. The segmentation task aims at finding a label field configuration C by correctly determining the class to which each

pixel in I obs belongs. The obtained label field configuration C partitions image I obs into disjoint subregions.

Our texture segmentation architecture is shown in Fig. 2 , which is related to the image level texture classification frame-

work used in our recent work [22,23] . We describe below the components of our framework.

3.1. Local texture features

Based on the work by Liu et al. [22,23] , who demonstrated the advantages of local random features for texture classi-

fication obtained under unknown viewpoint and illumination, a natural choice here is therefore to exploit the potential of

random features for texture segmentation.

The local sorted random projection (SRP) features were first proposed by Liu et al. [23] for rotation-invariant texture

classification, where the SRP radial-difference (SRP RadDiff) descriptor was shown to be the most discriminative and robust.

However the texture segmentation problem, the focus of this paper, requires texture features to have high discrimination

power but does not require rotation invariance, therefore we do not apply the sorting strategy of [23] and just use RP

RadDiff, having the following strengths:

1. It is conceptually simple and computationally efficient, in contrast to SIFT, RIFT and SPIN descriptors [18,51] .

2. The signed difference space is more compact and even sparser than the intensity space and allows the use of random

projection.

3. Pairwise pixel interactions carry important structural information, and both short-range and long-range interactions are

relevant.

It is noteworthy that local simple radial differences have been explored for face recognition and very good performance

has been achieved [12,24] .

Formally, given a pixel x 0 in the image, the radial difference vector x for a patch of size (2 R + 1) × (2 R + 1) pixels cen-

tered at x 0 is defined as follows:

x = [(�Rad
1 , 8)

T , · · · , (�Rad
R, 8 R)

T] T (3)

�Rad
r,p = x r,p − x r−1 ,p (4)

where x r,p represents the neighboring vector consisting of p neighboring pixels

x r,p = [x r,p, 0 , . . . , x r,p,p−1]
T

that were evenly distributed in angle on a circle of radius r centered on x 0 , as shown in Fig. 1 . Relative to the origin x 0 at

(0, 0), the coordinates of the neighbor x r , p , u are given by −r sin (2 πu/p) , r cos (2 πu/p) . The intensity values of neighbors not

lying on a pixel location were estimated by interpolation.

When the RP technique is applied, given a feature vector x of radial differences in a circular neighborhood, the regular

radial difference feature vector x is transformed as a random one via

y = �x (5)

432 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

Fig. 1. A central pixel x 0 , with p circularly and evenly spaced neighbors on circles of radius r and r − 1 .

Fig. 2. Overview of the proposed texture segmentation architecture, building on texture classification work in [22] .

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 433

by a random projection matrix � whose entries are independently sampled from a zero-mean, unit-variance normal dis-

tribution. The random measurement matrix � serves the function of nonadaptive, information-preserving, universal dimen-

sionality reduction and projects the high dimensional radial difference vector x to a much lower random feature vector y

without losing salient information. Readers are referred to [22,23] for details of the development of the basic RP and SRP

classifiers.

3.2. Classification by K means

We first develop an efficient baseline classifier. Assume that we have a training image I c for each texture class, c ∈
{ 1 , . . . , C} . A set S c = { x ci } i , x ci ∈ R

n −1 of radial difference features is extracted from training image I c , where n denotes the

size (in pixels) of a local patch used for extracting a radial difference feature. A simple strategy is to learn C dictionaries

D c = [d c1 , d c2 , . . . , d cK c
] ∈ R

n ×K c , (6)

one for each class learned from set S c , where d c j ∈ R

n ×1 is a dictionary atom, and K c is the number of atoms in dictionary

D c .

One simple and fast dictionary learning technique is the K Means clustering algorithm. The implicit assumption here is

that each vector x ci ∈ S c can be approximated by a single atom d c j which has the minimal distance to x ci . Then one can

introduce

d

�

ci (x ci , D c) = arg min ‖ x ci − d c j ‖

2
2

d c j ∈ D c

R

� (x ci , D c) = ‖ x ci − d

�

ci (x ci , D c) ‖

2
2

(7)

Ideally, we want to learn each D c from S c to model the texture image I c well. This can be found by choosing D c such

that it minimizes the residual error

D c = arg min

D c
R

� (S c , D c) (8)

R

� (S c , D c) =

|S c | ∑

i =1

R

� (x ci , D c)

where |S c | is the number of training vectors in each class. This clustering problem is commonly solved with the K Means

algorithm.

At the pixel-wise classification stage, given the C dictionaries { D c } C c=1
learned from the previous dictionary learning stage,

one approximates each patch vector x with a dictionary atom and the C different dictionaries provide C different residual

errors, which can then be used for deciding the class membership of a pixel. We then classify each pixel based on these

residual errors by assigning it to the texture class that minimizes the residual error:

ˆ c (x) = arg min R

� (x , D c) .
c=1 , ... ,C (9)

The final segmentation is obtained by applying a post smoothing algorithm (Section 3.4) on the output label map.

3.3. Proposed classifier: classification by a single BoW

Given a learned texton dictionary { D c } C c=1
, it is possible to associate each pixel in the training images with the closest

texton in the dictionary. In this way, we can compute a texton label map, T c , for each training texture image I c . Similarly,

one can also compute the texton label map T obs of the test image I obs . However in the baseline classifier described in

Section 3.2 , the spatial information contained in the texton label maps { T c } C c=1
of all the training images was not utilized. In

order to leverage this information, we consider evaluating the dissimilarity of the training and testing BoW histograms. For

this purpose, we propose the texture segmentation framework introduced in Fig. 2 .

Let T c (x, y) be the texton label of a pixel (x , y); for each such pixel a texton label patch of size w × w is extracted to

compute a BoW histogram vector h xy of length N his via

h xy (k) =

(w −1) / 2 ∑

a,b= −(w −1) / 2

δ(T c (x + a, y + b) − k) , (10)

where k is limited to the size of the universal texton dictionary

0 ≤ k ≤
C ∑

c

K c = N his . (11)

Thus the model h xy is the normalized frequency histogram of pixel texton labelings, i.e. , an N his -vector of texton proba-

bilities.

434 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

For simplicity of notation, h xy will be denoted as h i , where i is the lexicographic index of pixel (x , y). Each

texture class c is represented by some number of models H c = { h c j } corresponding to the training image of that

class.

Given the C set of BoW histogram models {H c } C c=1
computed from the training textures, the pixel-wise texture classi-

fication is the problem of estimating the true class label of each pixel in the image to be segmented: the local descrip-

tors of the test image are generated and the pixels labeled with texton labels from the learned texton dictionary, then

the normalized BoW histogram set H

obs is computed densely, and the class membership of each pixel in the test image

is decided by comparing its BoW histogram feature with the training models using a suitable classifier. Multiple classifi-

cation schemes have been explored for this task, most commonly nearest-neighbor matching [22,42,43] and kernel-based

SVMs [46,51] .

The key drawback of this BoW approach is its high dimensionality. Typically, due to the way that the BoW vectors are

formed, even a moderately sized texton dictionary can lead to thousands of dimensions. For example, for a 16-class texture

segmentation problem, the BoW feature has a dimensionality of 1600 if 100 textons per texture class are trained. Moreover,

the sizes of the test model set H

obs or a training model set H c is equal to the number of pixels in the testing or training

images, respectively, which is usually tens of thousands to millions. In order to estimate the class membership of a BoW

model h

new ∈ H

obs , one needs to compute the pairwise distance between any h

new ∈ H

obs and any h i ∈

⋃ C
c=1 H c . This high

dimensionality of the BoW feature and the large number of training and testing BoW models can be a severe obstacle for

classification.

Therefore, we clearly wish to consider reducing the number of training models required to characterize each texture

class. As discussed previously, the number of training models H c for each texture class was the same as the number of

pixels in training image I c . Ideally, we wish to reduce the number of models to that appropriate for each class, independent

of the number of pixels in the training images.

To be sure, there are methods of model reduction in machine learning [14] , to select a subset of the models while

maximizing some criteria of classification and generalization, where the number of different models needed to characterize

a texture is a function of how much the texture changes in appearance with imaging conditions, i.e. it is a function of

the material properties of the texture. For example, textures may be modeled by a Markov Random Field (MRF) [9] , which

models a texture as a realization of a local and stationary random process. Each pixel of a textured image is characterized

by a small set of spatially neighboring pixels (locality), and this characterization is the same for all pixels (stationarity). We

imagine that a viewer is given a textured image, but is only allowed to observe it through a small movable window. As the

window is moved the viewer can observe different parts of the image; the image is stationary if, under a proper window

size, the observable portion always appears similar, and the image is local if each pixel is predictable from a small set of

neighboring pixels and is conditionally independent of the rest of the image. In this case, the intrinsic number of effective

BoW models could be significantly less than the number of pixels.

Based on these locality and stationarity assumptions, we want to select models for the express purpose of pixel-wise

classification. Researchers have proposed to use K Medoids [43] , K Means [14] or greedy search [43] methods to select sig-

nificant models from the training set. However all three methods are highly computationally complex, for K Medoids and

K Means due to the extremely high dimension of the BoW feature, and for greedy because of the exhaustive search which is

undertaken.

Our goal, instead, is to develop a simple, efficient and general algorithm to texture segmentation, with few tunable input

parameters. To this end, we propose to use compact single BoW models estimated optimally from the entire training BoW

model set of each texture class. The key advantages of the single BoW histograms are that they are much more efficient

both in terms of memory and computational resources.

The key question then is how to compute such single-histogram models. Let h c,i ∈ H c be one of the exemplar histograms

from texture class c and h

opt
c the single histogram model that we intend to seek. The optimal class histogram is the one

which minimizes the overall distance to all of the |H c | exemplar histograms h c,i , as this minimizes intraclass variability,

and, for best discrimination, one would also like to maximize the inter-class variability.

The optimal solution h

opt
c depends on the histogram distance function d(h i , h j) used during classification. In this pa-

per we analyze and compare the three most common alternatives [37] : the Kullback–Leibler (KL) divergence, the Jensen–

Shannon (JS) divergence, and the Chi-Square χ2 distance. KL and JS are two important examples of information-theoretically

motivated divergences.

The KL divergence is not a true metric since it is not symmetric and does not obey the triangle inequality, it is non-

negative but can be unbounded. In contrast, the JS divergence between two normalized histograms is a measure that is

symmetric, bounded, and numerically stable when comparing two empirical distributions. The χ2 distance has been shown

to be suitable for measuring the distance between two histogram features [22,42] .

Given a class c we want to seek the model ˆ h which minimizes the cost

R (H c , h) =

|H c | ∑

i =1

d(h i , h) s.t. ‖ h ‖ = 1 , h (k) ≥ 0 , ∀ k. (12)

for some distance function d KL , d JS , or d χ2 . In the KL case, the global minimum of (12) is found as [11]

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 435

h

opt
c =

1

|H c |
|H c | ∑

i =1

h i (13)

Motivated by the KL result, we use (13) to find the estimated model for the JS and χ2 cases also.

With a distance metric and single BoW histogram defined, we are in a position to perform pixel wise segmentation of

a given test texture image, as illustrated in Fig. 2 . After the single BoW learning stage, an optimal BoW histogram h

opt
c is

learned from the training sample for each texture class c , resulting in a set of histograms H

opt = { h

opt
c } C

c=1
. Each pixel in the

test image is labeled with a texton from the learned texton dictionary. Next, a v × v pixel window, centered on the pixel

i being classified, is used to compute a normalized frequency histogram of texton labelings to define a N his -feature vector

h

new

i for the pixel. A nearest neighbor classifier is then used to assign the pixel to the class whose optimal model is most

similar to h

new

i , where the distance between two normalized frequency histograms is measured using one of the KL, JS, χ2

dissimilarity measures.

Near the image boundaries we apply a symmetric boundary condition. In terms of the w × w window size for the com-

putation of the BoW histogram, a large window size will be computationally more expensive and may not able to localize

texture boundaries well. The selection of w will be discussed in the experiments.

3.4. Post processing

Because adjacent pixels are very likely to belong to the same texture class, a strong prior clumping model can be as-

serted, and the classification performance can be improved with post smoothing. Clearly the manner in which a smoothing

technique affects the error rate depends on the size and shape of the uniformly textured regions: more aggressive smoothing

offers better classification within uniformly textured regions, with a cost of greater classification errors along the borders

between regions.

Randen and Husøy [34] concluded that a separable Gaussian low-pass filter is the better choice, and it has also been used

in [25,28,39] . However its non-uniformity makes it fairly expensive to evaluate. In our case we aim at filtering segmentation

maps consisting of texture class indices, not residual error maps like those in [34,39] . Since the numerical ordering of indices

normally has no physical meaning, using Gaussian smoothing may not be appropriate.

We propose to use a simple smoothing method, called a local mode filter (LMF) [30] , based on the histogram of the

indices in a local window centered at a pixel, and to also compare to a graph cut (GC) α-expansion algorithm [4,5,17] .

3.4.1. Local mode filter

Given a class label map C

obs of a textured image, the LMF filter [30] proceeds by smoothing on a pixel-by-pixel basis,

based on a window of v × v centered on each pixel. The feature response at location (i , j) is the probability of pixel labels

in a window of size v centered at location (i , j):

f
i j
(k) =

(v −1) / 2 ∑

a,b= −(v −1) / 2

δ(C

obs (i + a, j + b) − k) , k = 1 , . . . , C. (14)

with a symmetric condition at the image boundaries, and where C is the number of texture classes. The histogram f
i j

is

essentially the occurrence frequency histogram of pixel class.

The class of pixel (i , j) is replaced to be the one that occurs the most frequently in a square neighborhood centered at

location (i , j):

ˆ c (i, j) = arg max k ∈{ 1 , ... ,C} f i j
(k) . (15)

3.4.2. Graph cut

A GC α-expansion algorithm [4,5,17] based on a classical Potts model with an 8-neighborhood system is used as post

processing, which closely follows the procedure described in [25] . Since each expansion move step consists essentially of the

resolution of a max-flow problem on a suitable graph, a computationally efficient max-flow algorithm is needed. Therefore,

we use the efficient algorithm introduced by Boykov in [4] . The constant regularization cost between two adjacent patches

is denoted by parameter λGC .

4. Experiments

We wish to demonstrate the performance of the proposed approach for supervised texture segmentation with compre-

hensive experiments on a number of test images of varying complexity, summarized in Table 1 . As the quality criterion, we

use the classification error, based on the number of pixels misclassified. All texton dictionary learning and classifier training

are performed on 256 × 256 sub-images of the texture images that are not in common with the test images.

436 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

Table 1

Summary of texture mosaics used in our experiments.

Experiment # 1

Test number Image size Texture classes Texture database Texture classes in the mosaic for segmentation Shown in

1 512 × 512 4 Brodatz D1, D11, D15, D16 Fig. 3 (a1)

2 512 × 512 4 Brodatz D21, D22, D24, D25 Fig. 3 (a2)

3 512 × 512 4 Brodatz D17, D20, D26, D31 Fig. 3 (a3)

4 512 × 512 4 Brodatz D34, D36, D37, D49 Fig. 3 (a4)

5 512 × 512 4 Brodatz D38, D50, D51, D52 Fig. 3 (a5)

6 512 × 512 4 Brodatz D6, D53, D55, D56 Fig. 3 (a6)

7 512 × 512 4 Brodatz D64, D65, D68, D70 Fig. 3 (a7)

8 512 × 512 4 Brodatz D76, D77, D78, D80 Fig. 3 (a8)

9 512 × 512 4 Brodatz D79, D81, D82, D83 Fig. 3 (a9)

10 512 × 512 4 Brodatz D95, D101, D103, D105 Fig. 3 (a10)

11 512 × 512 16 Brodatz D6, D15, D16, D21, D22, D34, D49, D52, D53, D55, D77,

D78, D95, D103, D104, D105

Fig. 3 (b1)

12 512 × 512 16 Brodatz D1, D11, D17, D20, D24, D26, D31, D36, D38, D50, D51,

D56, D64, D65, D68, D76

Fig. 3 (b2)

13 512 × 512 16 Brodatz D1, D9, D37, D56, D70, D76, D79, D80, D81, D82, D83,

D85, D92, D94, D96, D101, D102, D106

Fig. 3 (b3)

14 512 × 512 16 Brodatz D6, D21, D34, D36, D49, D50, D51, D52, D53, D55, D56,

D64, D65, D68, D76, D77

Fig. 3 (b4)

15 512 × 512 16 Brodatz D15, D22, D37, D49, D52, D53, D55, D68, D77, D82,

D83, D85, D94, D96, D103, D101, D104, D106

Fig. 3 (b5)

16 512 × 512 16 Brodatz D3, D4, D5, D9, D19, D29, D54, D57, D84, D85, D87,

D92, D94, D104, D106, D112

Fig. 3 (c1)

17 256 × 512 8 Brodatz D10, D18, D23, D28, D33, D46, D74, D102 Fig. 3 (d1)

18 256 × 512 8 Brodatz D8, D47, D66, D71, D72, D73, D75, D109 Fig. 3 (d2)

19 256 × 512 8 Brodatz D12, D32, D86, D93, D96, D98, D110, D111 Fig. 3 (d3)

Experiment # 2

Mosaic number Image size Texture classes Texture database Texture classes in the mosaic for segmentation Used by

1 256 × 512 2 Brodatz D4, D84 [21,25,28,34,39]

2 256 × 512 2 Brodatz D12, D17 [21,25,28,34,39]

3 256 × 512 2 Brodatz D5, D92 [21,25,28,34,39]

4 256 × 256 5 Brodatz D77, D84, D55, D53, D24 [21,25,28,34,39]

5 256 × 256 5 VisTex Fabric.0 0 0 0, Fabric.0 017, Flowers.0 0 02, Leaves.0 0 06,

Leaves.0013

[21,25,28,34,39]

6 256 × 256 5 VisTex Fabric.0 0 09, Fabric.0 016, Fabric. 0019, Flowers.0005,

Food.0 0 05

[21,25,28,34,39]

7 256 × 256 5 VisTex Fabric.0 0 07, Fabric.0 0 09, Leaves.0 0 03, Misc.0 0 02,

Sand.0 0 0 0

[21,25,28,34,39]

8 256 × 256 5 Meastex Asphalt.0 0 0 0, Concrete.0 0 01, Grass.0 0 02, Misc.0 0 02,

Rock.0 0 05

[21,25,28,34,39]

9 256 × 640 10 Brodatz D4, D9, D19, D21, D24, D28, D29, D36, D37, D38 [21,25,28,34,39]

10 256 × 640 10 VisTex Fabric.0 0 09, Fabric.0 016, Fabric. 0019, Flowers.0005,

Food.0 0 05, Leaves.0 0 03, Misc.0 0 0 0, Misc.0 0 02,

Sand.0 0 0 0, Stone.0 0 04

[21,25,28,34,39]

11 512 × 512 16 Brodatz D3, D4, D5, D6, D9, D21, D24, D29, D32, D33, D54,

D55, D57, D68, D77, and D84

[21,25,28,34,39]

12 512 × 512 2 Vistex Fabric.0 0 07, Fabric.0 0 09, Fabric. 0013, Fabric.0014,

Fabric.0 016, Flowers.0 0 05, Food.0 0 05, Grass.0 0 01,

Leaves.0 0 03, Leaves.0 0 08, Leaves.0 012, Metal.0 0 0 0,

Metal.0 0 02, Misc.0 0 02, Sand.0 0 0 0, and Stone.0 0 04

[21,25,28,34,39]

13 512 × 512 4 Brodatz D84, D54, D112, D22 [32]

14 512 × 512 4 Brodatz D81, D85, D82, D80 [32]

15 512 × 512 4 Brodatz D6, D19, D55, D84 [32]

The presentation of the experimental results is divided into two groups with corresponding objectives:

1. Section 4.2 provides thorough testing on Experiment #1 in Table 1 , to examine the selection of the parameters in the

proposed approach, summarized in Table 2 . Our specific experimental goal is to compare the proposed approach with

the state of the art sparse reconstruction based approach in [25] .

2. Section 4.3 compares the proposed approach against the state of the art on the texture mosaics of Experiment #2.

4.1. Image data

Experiment #1 : Over the last thirty years the evaluation of texture segmentation algorithms has been dominated by the

Brodatz database [6] , which has typically been used to provide single images of approximately 100 texture classes. We have

used the reference images with boundaries of varying complexity, shown in Fig. 3 .

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 437

Table 2

Summary of parameters involved in the proposed method.

Parameter name Symbol Default value Description

Global image normalization N/A Apply normalization Whether to apply global image normalization.

Patch size
√

n 11 Size of a local patch used for local feature extraction.

RP dimension m 40 Number of RP Measurements for different local patch sizes.

Texture classes no. L N/A Number of texture classes in the test image to be segmented.

Number of textons per class K 100 Number of textons learned from each texture class.

BoW feature dimension N his K × L Number of bins in the BoW histogram feature.

Window size for BoW w 35 The sliding window size used for BoW histogram computation.

LMF filter size v 45 The window size used for Local Mode Filter (LMF) smoothing.

Fig. 3. Test texture mosaics from Experiment #1 in Table 1 , and corresponding ground truth images for: (a) Test 1–10, (b) Test 11–15, (c) Test 16, and

(d) Test 17–19. The texture classes used to generate the test mosaics are given in Table 1 . The horizontal boundaries in (c) are straight, with vertical

boundaries generated by a random walk. All textures are selected from the Brodatz database. The texture classes within each texture mosaic are listed in

Table 1 .

Fig. 4. Ground truth images for Mosaics (a) 1–3, (b) 4–8, (c) 9–10, (d) 11–12, and (e) 13–15. Due to space limitations only two mosaics (d1, d2) are shown.

The texture classes used to generate the test mosaics are given in Table 1 .

We have 19 texture mosaics (Tests 1–19), detailed in Table 1 and illustrated in Fig. 3 , which are generated from a set

of 82 textures from the Brodatz database. Some textures in the Brodatz database essentially belong to the same class but

at different scales (D1 and D6, D25 and D26), while others are so inhomogeneous that a human observer would arguably

be unable to group their samples correctly (e.g. , D43, D44, D45, D91 and D97). Based on these considerations, we selected

82 texture classes from the Brodatz album by visual inspection because the remaining 29 textures may not be suitable for

texture segmentation.

For each texture present in a test mosaic there is a 256 × 256 training image that is extracted from a different area in

the source image so that an unbiased error estimate is obtained. No additional processing of the source images is applied.

Experiment #2 : We employed the twelve texture mosaics used in the supervised segmentation problems of the com-

parative study of Randen and Husøy [34] and in [21,25,28,39] , and the three texture mosaics from the recent work by Qin

438 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

Table 3

Comparison of segmentation error rates (%) obtained by different dissimilarity measures: KL, JS and χ 2 . The RadDiff descriptor and the

single BoW classifier are used. All involved parameters are set to the defaults in Table 2 . The LMF filter is used for post processing.

Test no. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19

KL 2 .44 2 .00 6 .25 3 .00 3 .08 2 .41 16 .44 2 .73 1 .56 1 .72 8 .30 13 .29 6 .88 14 .05 8 .42 12 .87 23 .92 20 .06 16 .23

JS 0 .77 0 .36 1 .91 1 .07 2 .47 0 .67 3 .08 0 .62 1 .36 0 .61 3 .15 7 .60 3 .84 5 .38 3 .44 6 .89 7 .18 11 .19 6 .29

χ2 0 .76 0 .36 1 .89 0 .93 2 .41 0 .65 3 .08 0 .65 1 .35 0 .61 3 .04 7 .56 3 .82 5 .22 3 .41 6 .84 7 .05 11 .08 6 .24

and Clausi [32] , shown in Fig. 4 . In their comparative study, Randen and Husøy reviewed dozens of filtering approaches to

texture segmentation and also included two classical nonfiltering approaches: co-occurrence and autoregressive features.

We will also compare the proposed approach with the recent pure sparse reconstruction based work of [25,39] . The pa-

rameters that we used for the sparse reconstruction method are those recommended by the work of [25] : a patch of size

n = 121 (11 × 11) , dictionaries of size K = 256 , a sparsity factor τ = 4 , and the K SVD dictionary learning algorithm with 20

iterations. We use the publicly available Matlab codes of K SVD. The sparse reconstruction algorithm used here is Orthog-

onal Matching Pursuit (OMP) [25] , which is already a computationally simpler algorithm among all of the reconstruction

algorithms presented in the literature.

This dataset involves images from three different sources: Brodatz [6] , MIT Vision Texture [52] , and the MeasTex

[34] databases. In order to get comparable results we followed the experimental setup of Randen and Husøy as closely

as possible.

Implementation details: To make the comparisons as meaningful as possible, we follow the same training and testing

methodology as in [21,25,28,34,39] . Each of the patches of the training images were used as a training set; each image

(training or testing) is normalized to be zero mean and unit standard deviation, and the extracted local feature vector is

normalized to have unit norm. Because of this normalization the gray level mean and deviation are roughly equal between

the training and testing images. However, since the training and testing portions were extracted from different locations in

the large source image, there are a few notable, even visible, differences in the gray level properties between the training

and testing portions of some texture classes in certain mosaics.

4.2. Implementation evaluation

4.2.1. Evaluation of different dissimilarity measures

Table 3 shows the classification results on the dataset of Experiment #1. We can see that KL divergence always performs

more poorly than either of the χ2 and JS measures, similar to the findings given in [37] . The χ2 and JS behave more stably

than the KL divergence, as expected. The classical χ2 statistic and the JS divergence yield nearly identical results on all test

mosaics, with the χ2 distance performing slightly better. Therefore the χ2 distance will be used in the remainder of this

paper.

The reason for KL weakness stems from empty histogram bins. The model histograms are estimated from the training

images, which contain a certain percentage of pixels which do not occur in the ideal or perfect class models, possibly due to

quantization effects of either clustering or histogram binning, a result of an inadequate amount of training data, or due to

outliers or noise. As a consequence, the learned (training or testing) BoW histogram models have some zero bins, a standard

pitfall in histogram based density estimation. These zero bins have a much greater influence on the KL measure than on JS

or χ2 .

4.2.2. Evaluation of BoW and LMF window sizes

Figs. 5 and 6 plot the pixel wise classification error as a function of window size; for visualization purposes, we plot

the results for all 19 test mosaics in different panels since the classification accuracies vary significantly for different test

mosaics. The behavior is clearer in the averaged result, in Fig. 5 (d) and Fig. 6 (d), where some intermediate optimum is

visible, where larger v values result in oversmoothing and larger w in more mislabeled pixels along texture boundaries.

We also design a set of experiments to investigate whether the optimal window size can be decided via cross validation

(CV) on both datasets in Experiment #1 and #2. Table 4 shows the classification results: a fixed window size of w = 35

yields results as good as CV, and nearly as good as the result produced by the optimum choice of w in each test. Therefore

CV is not pursued, and a fixed window size of w = 35 will be used for the K means+BoW approach.

4.2.3. Evaluation of different approaches

The performance of the proposed method is assessed in Table 5 : the proposed K Means + single BoW approach performs

significantly better than K Means on its own, however the random projection approach, so effective in texture recognition,

offers no significant improvement.

We have undertaken extensive experiments, reported in Table 6 , in which the best classification error rates are high-

lighted. Each part (a,b,c) of the table compares random, dense and sparse coding approaches, and the dense approach

slightly outperforms the random projection (RP) and sparse (KSVD) ones, the weakness of the latter already observed in

[36,38] , which noted that a sparse reconstruction based method is not necessarily required for image classification.

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 439

Fig. 5. Segmentation error rate of the Basic Classifier (RadDiff + KMeans) as a function of the LMF window size v .

Table 4

Comparison of the segmentation error rates (%) for three different training strategies regarding the BoW window size w : fixed w = 35 ,

cross validation over w, or the best (minimum) result over w . A fixed value of w produced results as good as cross validation, and nearly

as good as the optimum.

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Average

Fixed w = 35 0 .76 0 .36 1 .90 0 .93 2 .40 0 .65 3 .05 0 .65 1 .36 0 .61 3 .05 7 .57 3 .82 5 .22 3 .40 6 .76 7 .06 11 .14 6 .22 3 .52

CV over w 0 .67 0 .42 1 .58 0 .48 1 .79 0 .52 3 .10 0 .61 1 .16 0 .81 2 .09 8 .12 3 .90 7 .13 2 .74 6 .79 7 .48 10 .72 6 .72 3 .52

Min over w 0 .66 0 .36 1 .27 0 .47 1 .69 0 .52 2 .19 0 .59 1 .16 0 .58 2 .09 7 .57 3 .50 5 .22 2 .74 6 .74 6 .84 10 .74 5 .92 3 .20

Table 6 (a) and (b) compare patch-based versus radial-difference-based features, with the radial-difference approach, on

average, outperforming. The results shown in Table 6 (b) are also plotted in Fig. 7 (a). Similar to Fig. 7 (a), Fig. 7 (b) plots

the results on the test mosaics in Experiment # 2. We do expect the RadDiff descriptor to be the more powerful, as it

incorporates the more discriminative power of the cooccurring differences than that of the intensities in an image patch.

Furthermore the RadDiff descriptor is inherently gray-scale invariant, a very useful property when the gray-scale properties

of the unknown test sample differ from the training data, which is the case in most of the 19 test mosaics used in this

study.

4.2.4. Evaluation of postprocessing methods

Our pixel wise classification results have been post-processed by smoothing to obtain the final segmentation, which

closely follows the procedure described in the work by Mairal et al. [25] . We have implemented two alternatives, either

using a simple LMF filtering, or applying a GC α-expansion algorithm of Kolmogorov and Zabih [4,5,17] , based on a classical

Potts model with an 8-neighborhood system. A constant regularization cost between two adjacent pixels is denoted as λ .
GC

440 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

Fig. 6. Segmentation error rate of the Proposed Classifier (RadDiff + KMeans + BoW) as a function of the BoW histogram computation window size w .

Fig. 7. Segmentation error rates (%) for the tests and mosaics in Experiments #1 and #2. The proposed Kmeans + BoW methods generally outperform sparse

KSVD.

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 441

Table 5

Comparing the basic KMeans and proposed KMeans-BoW classifiers. Also comparing regular and random-projection features. The proposed KMeans-BoW

approach offers a significant improvement, however randomized features do not.

Experiment # 1 Experiment # 2

Descriptor RadDiff RP RadDiff Descriptor RadDiff RP RadDiff

Classifier K Means K Means + BoW K Means K Means + BoW Classifier K Means K Means + BoW K Means K Means + BoW

Window size v = 37 v = 45 v = 37 v = 45 Window size v = 43 v = 45 v = 43 v = 45

Test # 1 0 .86 0 .76 1 .20 0 .78 Mosaic # 1 0 .29 0 .50 0 .34 0 .48

Test # 2 0 .53 0 .36 0 .67 0 .35 Mosaic # 2 0 .39 0 .60 0 .37 0 .58

Test # 3 2 .07 1 .90 2 .33 1 .90 Mosaic # 3 1 .59 1 .37 1 .77 2 .77

Test # 4 0 .74 0 .93 0 .89 1 .03 Mosaic # 4 2 .36 2 .23 3 .37 2 .89

Test # 5 10 .77 2 .40 7 .52 2 .99 Mosaic # 5 11 .68 11 .55 9 .19 16 .63

Test # 6 0 .44 0 .65 0 .40 0 .60 Mosaic # 6 10 .88 9 .43 12 .24 11 .53

Test # 7 5 .14 3 .05 8 .25 2 .94 Mosaic # 7 7 .08 6 .40 11 .94 7 .05

Test # 8 1 .10 0 .65 1 .35 0 .56 Mosaic # 8 6 .04 4 .73 8 .35 5 .57

Test # 9 1 .31 1 .36 1 .30 1 .48 Mosaic # 9 13 .80 8 .88 18 .13 9 .91

Test # 10 1 .00 0 .61 0 .84 0 .57 Mosaic # 10 17 .88 7 .88 24 .07 9 .97

Test # 11 2 .49 3 .05 3 .23 2 .86 Mosaic # 11 15 .92 6 .94 21 .24 7 .82

Test # 12 11 .46 7 .57 10 .82 5 .99 Mosaic # 12 19 .65 12 .61 28 .46 13 .88

Test # 13 6 .11 3 .82 8 .11 4 .12 Mosaic # 13 1 .74 0 .85 2 .39 0 .90

Test # 14 7 .85 5 .22 7 .84 4 .35 Mosaic # 14 1 .68 1 .44 2 .15 2 .04

Test # 15 3 .08 3 .40 3 .91 3 .22 Mosaic # 15 0 .71 0 .56 1 .05 0 .72

Test # 16 12 .75 6 .76 18 .35 6 .75

Test # 17 9 .91 7 .06 10 .48 8 .61

Test # 18 12 .49 11 .14 12 .39 10 .13

Test # 19 7 .39 6 .22 8 .93 6 .53

Average 5 .13 3 .52 5 .73 3 .46 Average 7 .5 5 .06 9 .67 6 .18

Table 6

Comparison of segmentation error rates (%) for three different feature extractions: random, dense, and sparse. The three tables test patch-based approaches

and radial-difference methods with LMF and GC filtering. The inferiority of the sparse reconstruction approach (KSVD) is clear. Similar performance is seen

with and without random projection (RP). Overall, the best results are found by the radial differences (RadDiff) with the proposed SingleBoW approach,

using GC filtering.

Test #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19

(a) LMF filtering on patches, no image normalization

RP Patch + SingleBoW 0 .82 0 .38 3 .31 0 .67 17 .08 0 .58 1 .79 1 .71 1 .28 0 .46 3 .21 7 .50 7 .32 4 .31 3 .20 13 .42 10 .24 14 .06 7 .76

Patch + SingleBoW 0 .68 0 .39 2 .29 0 .99 13 .42 0 .61 1 .59 1 .19 0 .96 0 .61 3 .28 7 .83 5 .98 4 .51 3 .55 13 .38 9 .63 15 .67 6 .61

Patch + KSVD 0 .97 0 .55 2 .59 0 .69 5 .41 0 .37 26 .64 1 .23 0 .72 0 .69 2 .30 10 .26 8 .44 9 .35 3 .35 15 .63 12 .38 18 .07 10 .08

(b) LMF filtering on RadDiff, image normalization applied

RP RadDiff + SingleBoW 0 .78 0 .35 1 .90 1 .03 2 .99 0 .60 2 .94 0 .56 1 .48 0 .57 2 .86 5 .99 4 .12 4 .35 3 .22 6 .75 8 .61 10 .13 6 .53

RadDiff + SingleBoW 0 .76 0 .36 1 .90 0 .93 2 .40 0 .65 3 .05 0 .65 1 .36 0 .61 3 .05 7 .57 3 .82 5 .22 3 .40 6 .76 7 .06 11 .14 6 .22

RadDiff + KSVD 1 .20 1 .14 6 .24 1 .48 13 .64 0 .44 2 .39 1 .20 0 .98 1 .46 7 .57 11 .59 22 .68 8 .18 8 .67 18 .22 25 .18 23 .70 15 .95

(c) GC smoothing on RadDiff, image normalization applied

RP RadDiff + SingleBoW 0 .58 0 .24 2 .06 0 .94 2 .34 0 .40 1 .22 0 .19 0 .95 0 .41 2 .65 5 .41 4 .89 3 .94 3 .07 4 .25 7 .38 8 .51 7 .07

λGC (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (10) (10) (10) (10) (10) (30) (15) (15) (15)

RadDiff + SingleBoW 0 .65 0 .15 1 .77 0 .96 2 .16 0 .62 1 .46 0 .49 0 .95 0 .45 2 .83 6 .86 4 .22 4 .66 3 .12 4 .52 6 .93 9 .90 6 .59

λGC (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (10) (10) (10) (10) (10) (30) (15) (15) (15)

RadDiff + KSVD 0 .41 0 .40 1 .59 1 .19 25 .40 0 .40 1 .77 0 .17 0 .50 0 .50 8 .56 5 .74 21 .28 3 .89 6 .36 10 .37 20 .11 22 .81 12 .09

λGC (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (5) (5) (5) (5) (5) (3) (3) (3) (3)

Table 6 (b) and (c) compares the results for the two post-processing approaches, with GC outperforming LMF. Nevertheless

the window size parameter v in LMF was fixed, in contrast the selection of GC parameter λGC was a function of the textures

in the test image. On the whole, the conclusion is that the proposed radial-difference with a Kmeans/SingleBoW approach

with GC filtering outperforms the other variations tested.

4.2.5. Evaluation of running time

The implementation of our texture segmentation framework consists of the following major stages: local simple feature

computation, K Means clustering, and single BoW model training. All components of our system are implemented in Matlab

and run on a computer with a 2.7 GHz Intel Core2 Duo CPU and 2 GB of RAM. Table 7 reports running times obtained

for the representative set of tests. We can see clearly from the tables that the proposed approach is very fast relative to

sparse reconstruction; the computational simplicity of the proposed approach lies in the simple and efficient single-BoW

strategy.

442 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

Table 7

Comparisons of computation times, in seconds; all methods implemented in Matlab . Parameter settings for KSVD are kept as in [25] ; the number of

iterations in each dictionary learning method is set to 20, as in [2,25] . All results are obtained with a two-core, 2G memory and 2.7 GHz GPU desktop.

The random projection approach offers slightly faster processing because of dimensionality reduction, however all of the proposed radial-difference

(RD) approaches are much faster than sparse KSVD.

Run time in Matlab (seconds) (with both training and testing included.)

Size Classes RPRD + KMeans RPRD + KMeans + BoW RD + KMeans RD + KMeans + BoW RD + KSVD

Test # 1 512 × 512 4 21 .7 82 .7 38 .9 99 .6 4315 .1

Test # 11 512 × 512 16 73 .8 292 .3 138 .8 366 .9 17363 .1

Test # 16 512 × 512 16 73 .7 334 .7 138 .9 398 .4 17388 .9

Test # 17 256 × 512 8 34 .6 104 .8 66 .8 138 .7 7791 .9

Mosaic # 1 256 × 512 2 10 .9 37 .3 19 .3 45 .7 1967 .4

Mosaic # 4 256 × 256 5 22 .0 49 .7 42 .3 72 .2 4600 .4

Mosaic # 9 256 × 640 10 46 .4 154 .4 87 .2 202 .4 9850 .9

Mosaic # 11 256 × 512 16 77 .4 338 .9 142 .4 417 .9 17338 .2

Fig. 8. Visualization of the final segmentation error maps for the proposed segmentation, with GC post processing.

Fig. 9. Segmentation error maps for the proposed segmentation with GC post processing.

The segmentation results most of the tests in Experiment #1 are visualized in Figs. 8 and 9 . We can observe that the seg-

mentation results are very good, even those of the sixteen-class texture mosaics, with the misclassified pixels concentrated

at the region boundaries.

4.3. Comparative evaluation

Motivated by the comprehensive experimental evaluation and the striking classification performance of the proposed

approach in the previous section, in this section we wish to evaluate our proposed approach on the benchmark datasets

which have been used by several researchers to evaluate the performance of texture segmentation. Specifically we will

focus on the test mosaics in Experiment #2.

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 443

Table 8

Texture segmentation performance compared to existing state of the art segmentation algorithms on Mosaics # 1 – # 12. Results are error rates in

percentage. The “Best of [34] ” column lists some of the best classification results from [34] , where dozens of texture features were evaluated. For the

proposed method with LMF, all of the parameters are just set to their defaults, nevertheless nearly outperforming nearly every other method. The

results obtained with GC post processing do have parameter λGC varying with mosaic.

Mosaic #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 Average

Best of [34] 0 .7 0 .2 2 .5 7 .2 18 .9 20 .6 16 .8 17 .2 32 .3 27 .8 34 .7 41 .7 18 .38

LBP [28] 0 .3 1 .0 10 .6 6 .0 18 .0 12 .1 9 .7 11 .4 22 .7 19 .4 17 .0 20 .7 12 .41

FTCM [39] NA NA NA 5 .5 7 .3 13 .2 5 .6 10 .5 18 .9 21 .4 17 .1 17 .2 NA

[21] 0 .36 1 .33 1 .14 3 .37 16 .05 13 .03 6 .62 8 .15 21 .96 9 .61 18 .66 21 .67 10 .16

R (Gaussian) [25] 0 .35 0 .58 1 .36 2 .22 24 .66 10 .20 6 .66 5 .26 13 .27 18 .85 16 .88 19 .32 9 .97

R (GC) [25] 0 .17 0 .73 0 .37 1 .69 36 .5 5 .49 4 .60 4 .32 11 .80 21 .88 15 .50 21 .89 10 .41

D (Gaussian) [25] 0 .20 0 .41 1 .97 1 .89 16 .38 9 .11 3 .79 5 .10 14 .77 10 .12 12 .91 11 .44 7 .34

D (GC) [25] 0 .17 0 .60 0 .78 1 .61 16 .42 4 .15 3 .67 4 .58 2 .24 2 .04 9 .04 8 .80 4 .51

Proposed: RadDiff (LMF) 0 .50 0 .55 1 .37 2 .23 11 .55 9 .43 6 .40 4 .73 8 .88 7 .88 6 .54 11 .88 5 .96

Proposed: RadDiff (GC) 0 .19 0 .60 0 .20 1 .36 5 .20 9 .17 5 .55 3 .71 2 .24 2 .94 5 .78 9 .90 3 .90

Fig. 10. The mislabeled pixels in the segmentation of some mosaics in Experiment # 2. The RadDiff feature with GC post processing are used.

Table 8 shows the classification errors, given as a percentage of wrongly classified pixels, comparing our proposed ap-

proach with published results on Mosaics #1 to #12. The best classification results from [34] 1 are shown in the first row

of Table 8 . The same mosaics were also used in other work [21,25,28,39] , and results from these are also included as com-

parison. As can be seen from Table 8 , our proposed approach “RadDiff (GC)” performs very well, the best overall averaged

result.

Even the improvement of the proposed approach (“RadDiff (LMF)”) over the methods presented in [21,25,28,39] and the

pure sparse reconstruction methods “R (Gaussian)” and “R (GC)” [25] is noteworthy, particularly because they have utilized

filtering methods more sophisticated than LMF. That is, “RadDiff (LMF)” is using a single feature extraction method (radial

differences), a single, constant set of parameters, and a very simple post smoothing method (LMF), and nevertheless outper-

forming most of the compared approaches, showing the strength of the underlying RadDiff+ K Means+SingleBoW approach.

Regarding to the relative performance of our proposed approach and discriminative sparse reconstruction (“D (Gaussian)”

and “D (GC)”) [25] , of the simpler post-filtering approaches, Table 8 shows that “RadDiff (LMF)” outperforms “D (Gaussian)”,

whereas with GC filtering, “RadDiff (GC)” outperforms “D (GC)”. Note that the discriminative reconstruction approaches do

depend on some parameters tuning for each test mosaic [25] , including the complexity of the sparse model, the required

sparsity level, the properness of a sparse reconstruction algorithm and the trade-off between the reconstruction and dis-

criminative terms. Moreover, the computational complexity of the discriminate sparse approach is higher than that of the

pure sparse reconstruction, whose computational complexity was shown in Table 7 .

The results of our experiments suggest that no advantage is gained by imposing sparsity at run-time, and that a compu-

tationally expensive reconstruction procedure via optimization can therefore be replaced by our proposed efficient approach.

Although RadDiff GC slightly outperforms D (GC), on average, the results for the individual test mosaics can vary signif-

icantly. One can observe that the proposed approach significantly improves the classification rate for mosaics #5 and #11,

but that D (GC) performs better on mosaics #6 and #7. A few qualitative results for the proposed approach are visualized

in Fig. 10 .

Finally, in terms of the images Mosaics #13 to #15, Table 9 compares our proposed approach with those of the state

of the art approach proposed in [32] . The table shows that both RadDiff-LMF and RadDiff-GC significantly outperform the

method proposed in [32] .
1 These best results for all the twelve test mosaics are achieved by different approaches, not achieved by a single feature extraction method. For Mosaics

#1 through #12, the best result was achived, respectively, by the following: “Opt. repr. Gabor filter bank”, “f16b (d) (full rate)” “F_2_1_smpl (d) (full rate)”,

“f32d (d) (full rate)”, “f16b (d) (full rate)”, “JMS”, “JU”, “JF”, “f32d (a) (full rate)”, “DCT”, “Dyadic Gabor filter bank”, “F_2_1_smpl (d) (full rate)”, “Prediction

error filter” and “f16b (d) (full rate)”.

4 4 4 L. Liu et al. / Information Sciences 370–371 (2016) 428–445

Table 9

Texture segmentation performance compared to the recent work of [32]

on Mosaics # 13 – # 15.

Method Mosaic #13 Mosaic #14 Mosaic #15

Rad-Diff (λGC = 50) 0 .10 0 .20 0 .30

Rad-Diff + BoW (LMF) 0 .85 1 .44 0 .56

MIRGS [32] 1 .09 1 .89 4 .86

5. Conclusions

We have proposed a conceptually simple and highly efficient BoW approach that can effectively segment natural texture

images having complex content.

Compared to multiple state of the art segmentation methods, the proposed method produces superior segmentations,

with modest complexity. The low computational complexity of the proposed method is due to the following factors: (1) a

local radial difference feature which is very fast to compute; (2) efficient K Means dictionary learning compared with the

K SVD method; (3) the new single BoW histogram learning method which significantly reduces the computational burden,

compared with traditional model selection such as k medoids or greedy methods.

There is no theoretical or empirical reason to expect that sparse reconstruction approaches will improve texture seg-

mentation accuracy or robustness, and indeed the extensive experiments carried out in this paper clearly demonstrate this

point. Given the high computational burden involved in sparse coding, this conclusion may impact design strategies for

texture descriptors.

Possible ways of effectively extending the proposed approach to object recognition and scene segmentation is the topic

of future work.

Acknowledgments

This work has been supported by the National Natural Science Foundation of China under contract No. 61202336 .

References

[1] D. Achlioptas , Database-friendly random projections, in: Proceedings of the Twentieth ACM Symposium on Principles of Database Systems, 2001,
pp. 274–281 .

[2] M. Aharon , M. Elad , A. Bruckstein , K SVD: an algorithm for designing overcomplete dictionries for sparse representation, IEEE Trans. Signal Process. 54
(1) (2006) 4311–4322 .

[3] R. Baraniuk , M. Davenport , R. DeVore , M. Wakin , A simple proof of the restricted isometry property for random matrices, Constructive Approximation

28 (3) (2008) 53–263 .
[4] Y. Boykov , V. Kolmogorov , An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Trans. Pattern Anal.

Mach. Intell. 26 (9) (2004) 1124–1137 .
[5] Y. Boykov , O. Veksler , R. Zabih , Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell. 23 (11) (2001) 1222–1239 .

[6] P. Brodatz , Texture: A Photographic Album for Artists and Designers, Dover, New York, 1966 .
[7] E.J. Candés , T. Tao , Decoding by linear programming, IEEE Inform. Theory. 51 (12) (2005) 4203–4215 .

[8] E.J. Candés , T. Tao , Near-optimal signal recovery from random projections: universal encoding stratigies? IEEE Inform. Theory. 52 (12) (2006)

5406–5425 .
[9] G. Cross , A.K. Jain , Markov random field texture models, IEEE Trans. Pattern Anal. Mach. Intell. 5 (1) (1983) 25–39 .

[10] S. Dasgupta , Learning mixture of gaussians, University of California at Berkeley, 20 0 0 Ph.D thesis .
[11] I. Dhillon , S. Mallela , R. Kumar , A divisive information-theoretic feature clustering algorithm for text classification, J. Mach. Learn. Res. 3 (1) (2003)

1265–1287 .
[12] C. Ding , J. Choi , D. Tao , L. Davis , Multi-directional multi-level dual-cross patterns for robust face recognition, IEEE Trans. Pattern Anal. Mach.Intell. 38

(3) (2016) 518–531 .

[13] D.L. Donoho , Compressed sensing, IEEE Inform. Theory. 52 (4) (2006) 1289–1306 .
[14] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, Second ed., John Wiley and Sons, 2001 .

[15] Z. Jiang , Z. Lin , L.S. Davis , Learning a discriminative dictionary for sparse coding via label consistent k-svd, in: International Conference on Computer
Vision and Pattern Recognition (CVPR), 2011, pp. 1697–1704 .

[16] W.B. Johnson , J. Lindenstrauss , Extensions of lipschitz mappings into a hilbert space, in: International Conference on Modern Analysis and Probability,
1984, pp. 189–206 .

[17] V. Kolmogorov , R. Zabih , What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26 (2) (2004) 147–159 .

[18] S. Lazebnik , C. Schmid , J. Ponce , A sparse texture representation using local affine regions, IEEE Trans. Pattern Anal. Mach. Intell. 27 (8) (2005)
1265–1278 .

[19] F. Lehmann , Turbo segmentation of textured images, IEEE Trans. Pattern Anal. Mach. Intell. 30 (1) (2011) 16–29 .
[20] T. Leung , J. Malik , Representing and recognizing the visual appearance of materials using three-dimensional textons, Int. J. Comput. Vision 43 (1)

(2001) 29–44 .
[21] A. Lillo , G. Motta , J. Storer , Texture classification based on discriminative features extracted in the frequency domain, Int. Conf Image Process.(ICIP) 2

(2007) 53–56 .

[22] L. Liu , P. Fieguth , Texture classification from random features, IEEE Trans. Pattern Anal. Mach. Intell. 34 (3) (2012) 574–586 .
[23] L. Liu , P. Fieguth , G. Kuang , D. Clausi , Sorted random projections for robust rotation invariant texture classification, Pattern Recognit. 45 (6) (2012)

2405–2418 .
[24] L. Liu , P. Fieguth , G. Zhao , M. Pietikäinen , D. Hu , Extended local binary patterns for face recognition, Inf. Sci. 358 (1) (2016) 358–359 .

[25] J. Mairal , F. Bach , J. Ponce , G. Sapiro , A. Zisserman , Discriminative learned dictionaries for local image analysis, in: International Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2008a, pp. 1–8 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0026

L. Liu et al. / Information Sciences 370–371 (2016) 428–445 445

[26] J. Mairal , F. Bach , J. Ponce , G. Sapiro , A. Zisserman , Supervised dictionary learning, Neural Information Processing Systems (NIPS), 2008b .
[27] T. Ojala , M. Pietikäinen , T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans.

Pattern Anal. Mach. Intell. 24 (7) (2002) 971–987 .
[28] T. Ojala , K. Valkealahti , E. Oja , M. Pietikäinen , Texture discrimination with multidimensional distributions of signed gray-level differences, Pattern

Recognit. 34 (3) (2001) 727–739 .
[29] B.A. Olshausen , D.J. Field , Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37 (1997) 3311–3325 .

[30] M. Petrou , C. Petrou , Image Processing: The Fundamentals, Wiley, 2010 .

[31] G. Peyré, Sparse modeling of textures, J. Math. Imaging Vis. 34 (1) (2009) 17–31 .
[32] A. Qin , D. Clausi , Multivariate image segmentation using semantic region growing with adaptive edge penalty, IEEE Trans. Image Process. 19 (8) (2010)

2157–2170 .
[33] I. Ramirez , P. Sprechmann , G. Sapiro , Classification and clustering via dictionary learning with structured incoherence and shared features, in: Inter-

national Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3501–3508 .
[34] T. Randen , J. Husøy , Filtering for texture classification: a comparative study, IEEE Trans. Pattern Anal. Mach. Intell. 21 (4) (1999) 291–310 .

[35] T.R. Reed , J.M.H.D. Buf , A review of recent texture segmentation and feature extraction techniques, CVGIP: Image Understanding 57 (3) (1993) 359–372 .
[36] R. Rigamonti , M. Brown , V. Lepetit , Are sparse representations really relevant for image classification? in: International Conference on Computer Vision

and Pattern Recognition (CVPR), 2011, pp. 1545–1552 .

[37] Y. Rubner , J. Puzicha , C. Tomasi , J.M. Buhmann , Empirical evaluation of dissimilarity measures for color and texture, Comput. Vis. and Image Und. 84
(2001) 25–43 .

[38] Q. Shi , A. Eriksson , A. Hengel , C. Shen , Is face recognition really a compressive sensing problem? in: International Conference on Computer Vision and
Pattern Recognition (CVPR), 2011, pp. 553–560 .

[39] K. Skretting , J. Husøy , Texture classification using sparse frame-based representations, EURASIP J. Appl. Signal Process. 2006 (1) (2006) 1–11 .
[40] M. Tuceryan , A.K. Jain , Texture analysis, in: C. Chen, L. Pau, P. Wang (Eds.), Handbook Pattern Recognition and Computer Vision, World Scientific,

Singapore, 1993, pp. 235–276 . Ch. 2

[41] M. Tuceryan , A. Jain , Texture segmentation using voronoi polygons, IEEE Trans. Pattern Anal. Mach. Intell. 12 (2) (1990) 211–216 .
[42] M. Varma , A. Zisserman , A statistical approach to material classification using image patches, IEEE Trans. Pattern Anal. Mach. Intell. 31 (11) (2009)

2032–2047 .
[43] M. Varma , A. Zisserman , A statistical approach to texture classification from single images, Int. J. Comput. Vision. 62 (1–2) (2005) 61–81 .

[44] J. Wright , A.Y. Yang , A. Ganesh , S.S. Sastry , Y. Ma , Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009)
210–227 .

[45] X. Xie , M. Mirmehdi , A galaxy of texture features, in: M. Mirmehdi, X. Xie, J. Suri (Eds.), Handbook of Texture Analysis, Imperial College Press, 2008,

pp. 375–406 .
[46] Y. Xu , X. Yang , H. Ling , H. Ji , A new texture descriptor using multifractal analysis in multi-orientation wavelet pyradmid, in: International Conference

on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 161–168 .
[47] J. Yu , R. Hong , M. Wang , J. You , Image clustering based on sparse patch alignment framework, Pattern Recogn. 47 (11) (2014a) 3512–3519 .

[48] J. Yu , Y. Rui , Y. Tang , D. Tao , High-order distance-based multiview stochastic learning in image classification, IEEE Trans. Cybern 44 (12) (2014b)
2431–2442 .

[49] J. Yu , Y. Rui , D. Tao , Click prediction for web image reranking using multimodal sparse coding, IEEE Trans. Cybern. 23 (5) (2014c) 2019–2032 .

[50] Q. Zhang , B. Li , Discriminative KSVD for dictionary learning in face recognition, in: International Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2010, pp. 2691–2698 .

[51] J. Zhang , M. Marszalek , S. Lazebnik , C. Schmid , Local features and kernels for classification of texture and object categories: a comprehensive study,
Int. J. Comput. Vision 73 (2) (2007) 213–238 .

[52] The vistex database, http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html .

http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0049
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30585-0/sbref0052
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

	Random projections and Single BoW for fast and Robust texture segmentation
	1 Introduction
	2 Background and related work
	2.1 Local texture features
	2.2 Dictionary learning
	2.3 Random projection

	3 Methodology
	3.1 Local texture features
	3.2 Classification by Kmeans
	3.3 Proposed classifier: classification by a single BoW
	3.4 Post processing
	3.4.1 Local mode filter
	3.4.2 Graph cut

	4 Experiments
	4.1 Image data
	4.2 Implementation evaluation
	4.2.1 Evaluation of different dissimilarity measures
	4.2.2 Evaluation of BoW and LMF window sizes
	4.2.3 Evaluation of different approaches
	4.2.4 Evaluation of postprocessing methods
	4.2.5 Evaluation of running time

	4.3 Comparative evaluation

	5 Conclusions
	 Acknowledgments
	 References

