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Abstract
The recently proposed multiple kernel k-means
with incomplete kernels (MKKM-IK) optimally in-
tegrates a group of pre-specified incomplete ker-
nel matrices to improve clustering performance.
Though it demonstrates promising performance in
various applications, we observe that it does not
sufficiently consider the local structure among da-
ta and indiscriminately forces all pairwise sample
similarity to equally align with their ideal similar-
ity values. This could make the incomplete ker-
nels less effectively imputed, and in turn adverse-
ly affect the clustering performance. In this paper,
we propose a novel localized incomplete multiple
kernel k-means (LI-MKKM) algorithm to address
this issue. Different from existing MKKM-IK, LI-
MKKM only requires the similarity of a sample to
its k-nearest neighbors to align with their ideal sim-
ilarity values. This helps the clustering algorith-
m to focus on closer sample pairs that shall stay
together and avoids involving unreliable similari-
ty evaluation for farther sample pairs. We careful-
ly design a three-step iterative algorithm to solve
the resultant optimization problem and theoretical-
ly prove its convergence. Comprehensive experi-
ments demonstrate that our algorithm significantly
outperforms the state-of-the-art comparable algo-
rithms proposed in the recent literature, verifying
the advantage of considering local structure.

1 Introduction
Multiple kernel clustering (MKC) aims to optimally combine
a group of pre-specified base kernels to perform clustering,

which has been intensively studied during the past several
years [Yu et al., 2012; Li et al., 2014; Gönen and Margolin,
2014; Liu et al., 2016; Li et al., 2016; Liu et al., 2017b;
Zhang et al., 2015; Cao et al., 2015; Gao et al., 2015;
Nie et al., 2014; Cai et al., 2013; Xu et al., 2015a]. A com-
mon assumption adopted by these MKC algorithms is that all
the pre-specified base kernel matrices are complete. How-
ever, it is not uncommon to see that some views of a sam-
ple are absent in practical applications [Xiang et al., 2013;
Kumar et al., 2013]. Consequently, this will cause the cor-
responding rows and columns of related base kernel matrices
unfilled.

The presence of incomplete base kernel matrices makes it
more challenging to utilize the information of all views for
clustering. Many efforts have been devoted to address this
issue [Ghahramani and Jordan, 1993; Trivedi et al., 2010;
Yin et al., 2015; Xu et al., 2015b; Shao et al., 2015;
Bhadra et al., 2016; Liu et al., 2017b]. They can rough-
ly be grouped into two categories. The first one firstly fill-
s the incomplete kernels with an imputation algorithm and
then applies a standard MKC algorithm with these imput-
ed kernels. The widely used imputation algorithms include
zero-filling, mean value filling, k-nearest-neighbor filling and
expectation-maximization (EM) filling [Ghahramani and Jor-
dan, 1993]. In contrast, the other category proposes to inte-
grate the imputation and clustering into a single optimization
procedure, leading to a clustering-oriented imputation [Liu et
al., 2017a]. By this way, these two procedures are seamlessly
connected to achieve better clustering performance.

Although the aforementioned algorithms demonstrate
promising clustering performance in various applications, we
observe that they, no matter separately or jointly optimizing
imputation and clustering, do not sufficiently consider the lo-
cal structure among data, which is crucial for unsupervised
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learning tasks like clustering [Li et al., 2016]. As a conse-
quence, this could make the incomplete kernels less effec-
tively imputed, and in turn adversely affect the clustering per-
formance. To address this issue, we propose to integrate the
local structure among data into incomplete multiple kernel
clustering tasks, with the aim to further improve the cluster-
ing performance. As an instantiation, we design a localized
incomplete multiple kernel k-means (LI-MKKM) algorithm
and build it upon the latest incomplete multiple kernel cluster-
ing framework developed in the literature [Liu et al., 2017a].
Our algorithm inherits the advantage of [Liu et al., 2017a]
that unifies the imputation and clustering into a single opti-
mization procedure. The clustering result at the last iteration
guides the imputation of absent kernel elements, and the latter
is used in turn to conduct the subsequent clustering. These t-
wo learning processes negotiate with each other to achieve
the optimal clustering. More importantly, different from [Liu
et al., 2017a] which rigidly forces closer and farther sample
pairs to be equally aligned to the same ideal similarity, our
algorithm only requires that the similarity of a sample to its
k-nearest neighbours be aligned with the ideal similarity ma-
trix. Such an alignment helps the clustering algorithm to bet-
ter focus on closer sample pairs that shall stay together and
avoids involving unreliable similarity evaluation for farther
sample pairs. The optimization objective of our algorithm
is carefully designed and an efficient algorithm with proved
convergence is developed to solve the resultant optimization
problem. Extensive experimental study is carried out on eight
multiple kernel learning (MKL) benchmark data sets to evalu-
ate the clustering performance of the proposed algorithm. As
demonstrated, our algorithm significantly outperforms exist-
ing two-stage imputation methods and the recently proposed
algorithm [Liu et al., 2017a], validating the advantage of in-
corporating the local structure of data.

The main contributions of this paper are briefly summa-
rized as follows. i) We, for the first time, identify the global
kernel alignment issue in incomplete multiple kernel cluster-
ing and propose an effective solution; ii) We develop a gener-
al parametrization model to impute incomplete kernel matri-
ces with theoretically proved feasibility; and iii) We conduct
extensive experiments to validate our identification of this is-
sue and the effectiveness of our solution.

2 Related Work
Multiple advanced algorithms have recently been proposed to
address incomplete multiple kernel clustering [Trivedi et al.,
2010; Xu et al., 2015b; Shao et al., 2015; Yin et al., 2015;
Bhadra et al., 2016]. With the help of one complete view, the
work in [Trivedi et al., 2010] constructs a complete kernel
matrix for the other incomplete view. The work in [Xu et
al., 2015b] proposes an algorithm to accomplish multi-view
learning with incomplete views by exploiting the connections
of multiple views, where different views are assumed to be
generated from a shared subspace. A multi-incomplete-view
clustering algorithm is proposed in [Shao et al., 2015]. It
learns latent feature matrices for all the views and generates a
consensus matrix by minimizing the difference between each
view and the consensus. In addition, the approach in [Bhadra

et al., 2016] proposes to predict missing rows and columns
of a base kernel by modelling both within-view and between-
view relationships among kernel values.

One drawback shared by the above-mentioned “two-stage”
algorithms is that the processes of imputation and clustering
are disconnected, and this prevents the two learning processes
from negotiating with each other to achieve the optimal clus-
tering. To overcome this drawback, some pioneering work
are proposed to integrate imputation and clustering into a s-
ingle optimization procedure [Liu et al., 2017a]. These two
procedures are interacted to achieve better clustering perfor-
mance. In the following, we give an introduction to the newly
proposed MKKM with incomplete kernels [Liu et al., 2017a]
upon which we develop a novel algorithm.

Let sp denote the available sample indices from the p-
th (1 ≤ p ≤ m) view and K

(cc)
p ∈ Rnp×np be a kernel

sub-matrix computed with these observed samples, where np
is the length of sp. The recently proposed MKKM-IK [Liu et
al., 2017a] optimally integrates these incomplete kernel ma-
trices {K(cc)

p }mp=1 to improve clustering performance. It uni-
fies the imputation and clustering procedure into a single op-
timization objective and alternately optimizes each of them,
which is mathematically fulfilled as follows,

minH, β, {Kp}mp=1
Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k,H>H = Ik, β>1m = 1, βp ≥ 0,

Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p,

(1)
where Kβ =

∑m
p=1 β

2
pKp, H is the clustering matrix, and n

and k are the number of samples to be clustered and clusters.
The constraint Kp(sp, sp) = K

(cc)
p is imposed to ensure that

Kp maintains the known entries during the course. MKKM-
IK develops a three-step alternate optimization algorithm to
solve Eq.(1), which simultaneously imputes the missing en-
tries of base kernels and clustering. Interested readers are
referred to [Liu et al., 2017a].

Although the unification of clustering and imputation in-
to a single procedure is elegant, it is implemented via glob-
ally maximizing the alignment between the combined kernel
matrix Kβ and the ideal kernel matrix HH>, as shown in
Eq.(1). This criterion inappropriately exploits the local distri-
bution of data and indiscriminately forces closer and farther
sample pairs to be equally aligned to the same ideal simi-
larity. As a result, this could make these base kernels less
effectively utilized, and in turn adversely affect the cluster-
ing performance. In the following, we design a novel algo-
rithm, termed localized incomplete multiple kernel k-means
(LI-MKKM) to address these issues.

3 The Proposed LI-MKKM
Although it is well recognized that preserving the local struc-
ture of data is crucial in unsupervised learning tasks such as
clustering analysis [Liu et al., 2014], it is not sufficiently con-
sidered in MKKM with incomplete kernel matrices. In light
of this, we propose to incorporate the local structure of da-
ta by locally aligning the similarity of each sample to its k-
nearest neighbours with corresponding ideal kernel matrix,
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which is flexible and able to well handle the intra-cluster vari-
ations.

Let N (i) ∈ {0, 1}n×τ (1 ≤ i ≤ n) denote the neighbor-
hood indication matrices of the i-th sample. For example,
N (i)
jv = 1 denotes xj is the v-th nearest neighbor of xi,

where 1 ≤ v ≤ τ and τ is the number of nearest neigh-
bors. The local kernel alignment for the i-th sample is calcu-
lated as 〈(N (i))>KβN (i), (N (i))>(I−HH>)N (i)〉. As seen,
this local kernel alignment takes a sub-matrix corresponding
to its neighbors from the whole Kβ, and let it align with the
ideal sub-matrix. By taking over the local kernel alignment
for each sample and defining B(i) = N (i)N (i)>, we obtain
the objective of localized incomplete MKKM (LI-MKKM) as
follows,

min
β, {Kp}mp=1,H

∑n

i=1
Tr(Kβ(B

(i) −B(i)HH>B(i)))

s.t. H ∈ Rn×k, H>H = Ik, β>1m = 1, βp ≥ 0,

Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p.

(2)
In the following, we carefully design a three-step algorithm

to solve the optimization problem in Eq.(2).

Optimizing H with fixed β and {Kp}mp=1

Given β and {Kp}mp=1, the optimization w.r.t H in Eq.(2)
reduces to
max
H

Tr(H>
∑n

i=1
(B(i)KβB

(i))H) s.t. H>H = Ik,

(3)
which is a conventional kernel k-means optimization problem
and readily solved by existing off-the-shelf packages.

Optimizing {Kp}mp=1 with fixed β and H

Given β and H, the optimization w.r.t {Kp}mp=1 in Eq.(2) is

min
{Kp}mp=1

∑m

p=1
β2
pTr(Kp

∑n

i=1
Tr(B(i) −B(i)HH>B(i)))

s.t. Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p,

(4)
Directly solving the optimization problem in Eq.(4) appears
to be computationally intractable because it involves multiple
kernel matrices. Looking into this optimization problem, we
can find that the constraints are separately defined on each Kp

and that the objective function is a sum over each Kp. There-
fore, the problem in Eq.(4) can be equivalently rewritten as
m independent sub-problems, as stated in Eq.(5),

min
Kp

Tr(KpT) s.t. Kp(sp, sp) = K(cc)
p , Kp � 0. (5)

where T =
∑n
i=1(B

(i) −B(i)HH>B(i)).
At the first glance, it seems that the equality and PSD con-

straints imposed on Kp make Eq.(5) be difficult to solve. To
efficiently solve this problem, we propose to parameterize
each Kp as

Kp =

[
K

(cc)
p K

(cc)
p Wp

W>
p K

(cc)
p W>

p K
(cc)
p Wp

]
, (6)

where Wp ∈ Rc×m. The missing kernel entries are assumed
to be represented by the observed ones. The following Theo-
rem 3.1 shows that Kp in Eq.(6) satisfies both constraints by
this parametrization.

Theorem 3.1 Kp in Eq.(6) is a feasible set of the optimiza-
tion problem Eq.(5).

Proof 1 Firstly, it is not difficult to check that the equality
constraint is satisfied. For any vector x ∈ Rn, we have x =
[x>c ,x

>
m]>. We have

x>Kpx =[x>c ,x
>
m]

[
K

(cc)
p K

(cc)
p Wp

W>
p K

(cc)
p W>

p K
(cc)
p Wp

]
[x>c ,x

>
m]>

=(xc +Wpxm)>K(cc)
p (xc +Wpxm) ≥ 0.

(7)
This verifies the parametrization of Kp is PSD. It completes
the proof.

Based on Theorem 3.1, the optimization problem in Eq.(5)
is equivalent to the following unconstrained one,

min
Wp

Tr

([
K

(cc)
p K

(cc)
p Wp

W>
p K

(cc)
p W>

p K
(cc)
p Wp

][
T(cc) T(cm)

T(cm)> T(mm)

])
,

(8)
where the matrix T is expressed in a blocked form as[

T(cc) T(cm)

T(cm)> T(mm)

]
.

By taking the derivative of Eq.(8) with respect to Wp and
letting it vanish, we can obtain

Wp = −T(cm)(T(mm))−1. (9)

By substituting Wp in Eq.(9) into Eq.(6), we have a closed-
form expression for the optimal Kp. It is worth pointing out
that Theorem 3.1 provides a general parametrization model to
impute incomplete kernel matrices. In fact, the imputation in
MKKM-IK [Liu et al., 2017a] can be treated as a special case
of Eq.(6). Some regularization such as low-rank constraint
on Wp in Eq.(6) will be incorporated to further improve the
clustering performance in the future work.

As observed, Eq.(5) exploits the local structure of data vi-
a T to guide the imputation of each base kernel matrix. It
locally aligns the similarity of each sample to its τ -nearest
neighbors with corresponding ideal kernel matrix, which is
flexible and able to well handle the intra-cluster variations.
By this way, the incomplete kernels could be more effective-
ly imputed, leading to improved clustering performance.

Optimizing β with fixed {Kp}mp=1 and H

Given {Kp}mp=1 and H, it is not difficult to show that Eq.(2)
w.r.t. β is as follows,

min
β

∑m

p=1
zpβ

2
p s.t. β>1m = 1, βp ≥ 0, (10)

where zp = Tr(KpV) and V =
∑n
i=1(A

(i) −
A(i)HH>A(i)).

The optimization in Eq.(10) has a closed-form solution if
zp ≥ 0 (1 ≤ p ≤ m). The following Theorem 3.2 shows that
this optimization problem can be analytical solved.
Theorem 3.2 The optimization in Eq.(10) has a closed-form
solution as follows,

βp = wp/
∑m

p=1
wp, ∀p, (11)

where wp = 1/zp.
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Algorithm 1 Proposed LI-MKKM

1: Input: {K(cc)
p , sp}mp=1, k, τ and ε0.

2: Output: H, β and {Kp}mp=1.

3: Initialize β(0) = 1m/m, {K(0)
p }mp=1 and t = 1.

4: Generating S(i) for i-th samples (1 ≤ i ≤ n) by Kβ(0) .
5: repeat

6: Kβ(t) =
∑m
p=1

(
β
(t−1)
p

)2
K

(t−1)
p .

7: Update H(t) by solving Eq.(3) with Kβ(t) .

8: Update {K(t)
p }mp=1 with H(t) and β(t) by Eq.(5).

9: Update β(t) by solving Eq.(10) with H(t) and
{K(t)

p }mp=1.
10: t = t+ 1.
11: until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

Proof 2 By denoting H = [h1, · · · ,hk], we can see that
HH>hc = hc( 1 ≤ c ≤ k) since H>H = Ik. This mean-
s HH> has k eigenvalue with 1. Meanwhile, its rank is no
more than k, which implies its has n − k eigenvalue with 0.
Correspondingly, In−HH> has n−k and k eigenvalue with
1 and 0. As a result, A(i)(In −HH>)A(i) is PSD, and this
guarantees that V =

∑n
i=1(A

(i) −A(i)HH>A(i)) is PSD.
Therefore, we have zp = Tr(KpV) ≥ 0, ∀p since both Kp

and V are PSD. The proof is completed by taking the deriva-
tive of the Lagrangian function of Eq.(10) on βp and letting it
vanish.

In sum, our algorithm for solving Eq.(2) is outlined in Al-
gorithm 1, where the absent elements of {K(0)

p }mp=1 are ini-
tially imputed with zeros and obj(t) denotes the objective val-
ue at the t-th iteration. It is worth pointing out that the neigh-
borhood of each sample is kept unchanged during the opti-
mization. The τ -nearest neighbors of each sample are mea-
sured by Kβ(0) . By doing so, the objective of Algorithm 1
is guaranteed to be monotonically decreased when optimiz-
ing one variable with the others fixed at each iteration. At
the same time, the objective is lower-bounded by zero. As a
result, our algorithm is guaranteed to converge to a local min-
imum. Also, as shown in the experimental study, it usually
converges in less than 10 iterations.

We end up this section by discussion the computational
complexity of the proposed algorithm. Specifically, the com-
plexity of our algorithm is O(n3 +

∑m
p=1 n

3
p) per iteration,

where np (np ≤ n) is the number of observed samples of Kp.
It is comparable to the case of existing MKKM-IK [Liu et al.,
2017a]. Furthermore, it is worth pointing out that Kp can be
trivially calculated in a parallel way, because each of them is
independent. In this way, our algorithm can scale well with
respect to the number of base kernels. Meanwhile, although
the kernel alignment is optimized in a localized way, the re-
sultant computational complexity is not altered significantly
and brings not much extra computation when compared with
existing MKKM-IK [Liu et al., 2017a], as validated by the
running time comparison in Table 3.

Dataset #Samples #Kernels #Classes

Flower17 1360 7 17
Flower102 8189 4 102
Calt102-5 510 48 102
Calt102-10 1020 48 102
Calt102-15 1530 48 102
Calt102-20 2040 48 102
Calt102-25 2550 48 102
Calt102-30 3060 48 102

Table 2: Datasets used in our experiments.

4 Experiments
4.1 Experimental Settings
The proposed algorithm is experimentally evaluated on eight
widely used MKL benchmark data sets shown in Table 2.
They are Oxford Flower17 and Flower1021 and Caltech1022.
For these datasets, all kernel matrices are pre-computed and
can be publicly downloaded from the above websites. Mean-
while, Caltech102-5 means the number of samples belonging
to each cluster is 5, and so on. We compare the proposed
algorithm with several commonly used imputation method-
s, including zero filling (ZF), mean filling (MF), k-nearest-
neighbor filling (KNN) and the alignment-maximization fill-
ing (AF) proposed in [Trivedi et al., 2010]. The widely
used MKKM [Gönen and Margolin, 2014] is then applied
with these imputed base kernels. These two-stage method-
s are termed MKKM+ZF, MKKM+MF, MKKM+KNN and
MKKM+AF, respectively. In addition, we compare with the
newly proposed MKKM-IK [Liu et al., 2017a], which jointly
optimizes the imputation and clustering. We donot incorpo-
rate the algorithms in [Xu et al., 2015b; Shao et al., 2015;
Zhao et al., 2016] into our experimental comparison since
they only consider the absence of input features while not the
rows/columns of base kernels. For all data sets, it is assumed
that the true number of clusters is known and it is set as the
true number of classes. We follow the approach in [Liu et al.,
2017a] to generate the missing vectors {sp}mp=1. The param-
eter ε, termed missing ratio in this experiment, controls the
percentage of samples that have absent views, and it affects
the performance of the algorithms in comparison. In order to
show this point in depth, we compare these algorithms with
respect to ε. Specifically, ε on all the four data sets is set as
[0.1 : 0.1 : 0.9].

The widely used clustering accuracy (ACC) and normal-
ized mutual information (NMI) are applied to evaluate the
clustering performance. For all algorithms, we repeat each
experiment for 50 times with random initialization to reduce
the effect of randomness caused by k-means, and report the
best result. Meanwhile, we randomly generate the “incom-
plete” patterns for 10 times in the above-mentioned way and
report the statistical results. The aggregated ACC and NMI
are used to evaluate the goodness of the algorithms in com-
parison. Taking the aggregated ACC for example, it is ob-
tained by averaging the averaged ACC achieved by an algo-
rithm over different ε.

1http://www.robots.ox.ac.uk/˜vgg/data/flowers/
2http://files.is.tue.mpg.de/pgehler/projects/iccv09/
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Figure 1: ACC and NMI comparison with the variation of missing ratios on Flower17, Flower102, Caltech102-25 and Caltech102-30. The
curves on other datasets are similar and omitted due to space limit.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK LI-MKKM
[Trivedi et al., 2010] [Liu et al., 2017a] Proposed

ACC
Flower17 36.9± 0.8 36.8± 0.6 37.8± 0.6 40.5± 0.7 44.6± 0.6 47.9± 0.3

Flower102 18.0± 0.2 18.0± 0.2 18.2± 0.1 19.2± 0.1 21.1± 0.2 23.1± 0.2
Calt102-5 26.1± 0.3 25.7± 0.3 27.3± 0.3 29.0± 0.3 28.9± 0.3 31.3± 0.3
Calt102-10 19.7± 0.2 19.7± 0.2 21.5± 0.2 22.6± 0.2 22.7± 0.2 27.1± 0.3
Calt102-15 17.1± 0.2 17.1± 0.2 18.9± 0.1 20.3± 0.2 20.8± 0.2 25.0± 0.2
Calt102-20 15.7± 0.1 15.7± 0.2 17.3± 0.2 18.9± 0.2 19.5± 0.2 24.0± 0.2
Calt102-25 14.7± 0.2 14.6± 0.1 16.2± 0.1 17.7± 0.2 18.3± 0.2 23.2± 0.2
Calt102-30 14.2± 0.1 14.1± 0.1 15.5± 0.2 17.1± 0.2 17.8± 0.2 22.1± 0.2

NMI

Flower17 37.3± 0.4 37.3± 0.5 38.2± 0.5 40.1± 0.4 43.7± 0.3 46.3± 0.2
Flower102 37.4± 0.1 37.4± 0.1 37.8± 0.1 38.4± 0.1 39.6± 0.1 41.7± 0.1
Calt102-5 64.3± 0.2 63.9± 0.1 65.9± 0.2 66.6± 0.1 66.5± 0.2 67.0± 0.1
Calt102-10 53.6± 0.1 53.7± 0.1 55.2± 0.1 55.7± 0.2 55.8± 0.1 58.6± 0.1
Calt102-15 47.4± 0.1 47.4± 0.1 48.8± 0.1 49.7± 0.1 50.1± 0.1 53.5± 0.1
Calt102-20 43.1± 0.1 43.1± 0.2 44.5± 0.1 45.6± 0.2 46.0± 0.1 50.3± 0.1
Calt102-25 40.0± 0.1 39.9± 0.1 41.5± 0.1 42.5± 0.2 43.0± 0.2 47.7± 0.1
Calt102-30 37.8± 0.1 37.7± 0.1 39.2± 0.1 40.3± 0.1 40.9± 0.1 45.6± 0.1

Table 1: Aggregated ACC and NMI comparison (mean±std) of different clustering algorithms on eight benchmark datasets.

Dataset MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK LI-MKKM
[Trivedi et al., 2010] [Liu et al., 2017a] Proposed

Flower17 2.5± 0.0 2.4± 0.1 3.4± 0.1 3.0± 0.1 7.3± 0.5 6.3± 0.1
Flower102 193.5± 4.5 210.2± 12.4 329.5± 27.6 240.0± 9.4 415.9± 7.7 418.1± 10.9
Calt102-5 3.8± 0.1 3.8± 0.1 6.4± 0.1 4.3± 0.2 31.9± 3.3 8.1± 0.1
Calt102-10 14.7± 0.3 14.8± 0.4 26.7± 0.5 16.4± 0.1 71.2± 16.3 36.8± 0.2
Calt102-15 58.6± 0.3 59.1± 0.2 86.5± 2.2 61.0± 2.7 202.3± 28.9 143.7± 0.7
Calt102-20 119.5± 7.3 118.3± 5.8 204.8± 18.2 130.8± 16.3 335.1± 42.0 290.6± 5.4
Calt102-25 235.5± 11.3 220.4± 7.9 395.5± 25.5 215.6± 6.3 599.4± 87.3 537.3± 1.6
Calt102-30 370.9± 17.2 367.8± 28.2 648.9± 36.6 360.9± 16.9 874.6± 28.6 837.7± 15.0

Table 3: Running time comparison of the aforementioned algorithms on all datasets (in seconds).

4.2 Experimental Results
Figure 1 presents the ACC and NMI comparison of the
above algorithms with different missing ratios on Flower17,

Flower102, Caltech102-25 and Caltech102-30 datasets. We
have the following observations: i) The recently proposed
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MKKM-IK [Liu et al., 2017a] (in blue) achieves compara-
ble or better clustering performance when compared with ex-
isting two-stage imputation methods. These results verify the
effectiveness of the joint optimization on imputation and clus-
tering. ii) The proposed LI-MKKM (in red) consistently and
significantly further improves the clustering performance of
MKKM-IK, as shown in all subfigures from Fig.1(a) to 1(h).
This clearly demonstrates the advantage of well utilizing the
local structure of data. iii) The improvement of our algorithm
is more significant with the decrease of missing ratios. For
example, it improves the second best algorithm (MKKM-IK)
by 5 percentage points on Caltech102-30 in terms of cluster-
ing accuracy when the missing ratio is 0.1 (see Figure 1(d)).

We attribute the superiority of our algorithm as two as-
pects: i) Well utilizing the local structure of data. Our lo-
cal kernel alignment criterion is flexible and allows the pre-
specified kernels to be aligned for better clustering, making
the pre-specified kernels be well utilized; and ii) The joint
optimization on imputation and clustering. On one hand, the
imputation is guided by the clustering results, which makes
the imputation more directly targeted at the ultimate goal.
On the other hand, this meaningful imputation is benefi-
cial to refine the clustering results. These two learning pro-
cesses negotiate with each other, leading to improved clus-
tering performance. In contrast, MKKM+ZF, MKKM+MF,
MKKM+KNN and MKKM+AF algorithms do not fully take
advantage of the connection between the imputation and clus-
tering procedures. This could produce imputation that does
not well serve the subsequent clustering as originally expect-
ed, affecting the clustering performance. Both factors bring
the significant improvements on clustering performance.

We also report the aggregated ACC and NMI, and the
standard deviation in Table 1, where the best and second
ones are marked in red and blue color, respectively. A-
gain, we observe that the proposed algorithm significant-
ly outperforms MKKM+ZF, MKKM+MF, MKKM+KNN,
MKKM+AF and MKKM-IK. For example, our algorith-
m exceeds the second best one (MKKM-IK) by nearly
2.3%, 4.4%, 4.2%, 4.5%, 4.9%, 4.3% in terms of clustering
accuracy on Caltech102, respectively. These results are con-
sistent with our observations in Figure 1. Meanwhile, we
observe that LF-MKKM is inferior to MKKM-IK in the p-
resence of intensive missing ratios. We conjecture that the
neighbors of each sample calculated by Kβ(0) may no longer
be reliable when the missing ratio is relatively intensive, and
this adversely affects the clustering performance. We plan to
further explore this point in the future work.

From the above experiments, we conclude that the pro-
posed algorithm well exploits the local structure of data,
bringing forth significant improvements on clustering perfor-
mance.

As aforementioned, LI-MKKM is with comparable com-
putational complexity with existing MKKM-IK [Liu et al.,
2017a]. In Table 3, we report their running time (in seconds)
on eight datasets. As observed, LI-MKKM slightly improves
the running time of MKKM-IK. This is because LI-MKKM
requires less iterations to achieve the same convergence cri-
terion compared with MKKM-IK. For example, LI-MKKM
needs five iterations to satisfy the criterion, while this number
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Figure 2: The sensitivity of LI-MKKM with the variation of τ and
its convergence on Flower17.

is 14 for MKKM-IK. This motivates us to study the impact of
incorporating the local structure of data on the algorithm con-
vergence in the future.

4.3 Parameter Sensitivity and Convergence
As can be seen in Eq.(2), LI-MKKM introduces the number
of neighbors τ as an extra parameter. In all the above ex-
periments, we empirically set τ = 0.1 for all datasets, and
observe that our algorithm demonstrate very promising per-
formance. In the following, we conduct experiments to show
the effect of this parameter on the performance of LI-MKKM
on Flower17 dataset.

Figure 2(a) plots the ACC of LI-MKKM by varying τ in a
large range [0.1, 0.2, · · · , 0.9] ∗ n on Flower17. The NMI of
MKKM-IK is also provided as a baseline. From the figure,
we observe that: i) the NMI monotonically decreases with
the increase of τ , clearly demonstrating the effectiveness of
preserving the local structure of data; and ii) LI-MKKM sig-
nificantly outperforms the recently proposed MKKM-IK and
shows stable performance across a wide range of τ . These
results demonstrate that LI-MKKM is stable across a wide
range of τ . The curves on other datasets are similar and omit-
ted due to space limit.

LI-MKKM is theoretically guaranteed to converge to a lo-
cal minimum. In the above experiments, we observe that the
objective value of our algorithm does monotonically decrease
at each iteration and that it usually converges in less than 10
iterations. One example of the evolution of the objective val-
ue on Flower17 are demonstrated in Figure 2(b).

5 Conclusion
While the recently proposed MKKM-IK is able to handle
multi-kernel clustering with incomplete kernels, it does not
sufficiently utilize the local structure of data, which is cru-
cial for clustering analysis. This paper proposes LF-MKKM
to calculate the kernel alignment in a local manner to ad-
dress this issue. LF-MKKM effectively solves the resultant
optimization problem, and demonstrates well improved clus-
tering performance via extensive experiments on benchmark
datasets. In the future, we plan to explore the parametrization
on incomplete kernel matrices in order to further improve its
computational complexity and clustering performance.
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