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ABSTRACT

This paper presents a local feature based shape matching algorithm for expression-invariant 3D face
recognition. Each 3D face is first automatically detected from a raw 3D data and normalized to achieve
pose invariance. The 3D face is then represented by a set of keypoints and their associated local feature
descriptors to achieve robustness to expression variations. During face recognition, a probe face is
compared against each gallery face using both local feature matching and 3D point cloud registration.
The number of feature matches, the average distance of matched features, and the number of closest
point pairs after registration are used to measure the similarity between two 3D faces. These similarity
metrics are then fused to obtain the final results. The proposed algorithm has been tested on the FRGC
v2 benchmark and a high recognition performance has been achieved. It obtained the state-of-the-art
results by achieving an overall Rank-1 recognition rate of 97.0 percent and an average verification rate
of 99.01 percent at 0.001 false acceptance rate for all faces with neutral and non-neutral expressions.

c⃝ 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The human face is considered to be one of the most impor-
tant biometrics due to its high accessibility, social acceptability,
and non-intrusiveness nature [31, 25]. Facial biometrics has a
number of applications including surveillance, security, enter-
tainment, commerce, and forensics [3, 39]. It is particularly
suitable for applications where other biometrics (including iris
images, retinal scans and fingerprints) are not available or de-
sirable [30].

Face recognition can be performed using 2D facial images,
3D facial scans or their combination [3, 27]. 2D face recog-
nition has been extensively investigated during the past few
decades [48, 35, 28]. However, 2D face recognition is still chal-
lenged by a number of factors including illumination variations,
scale differences, pose changes, facial expressions and makeup.
Moreover, affine transformations are introduced to 2D images
during acquisition, which make 2D face recognition even more
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difficult [6, 5]. With the rapid development of 3D scanners,
3D data acquisition is becoming increasingly cheaper and non-
intrusive [2]. Besides, 3D facial scans are more robust to light-
ing conditions, pose variations and facial makeup [6]. The 3D
geometry represented by a facial scan also provides a new clue
for accurate face recognition. 3D face recognition is therefore
believed to have the potential to overcome many limitations en-
countered by 2D face recognition [9], and has been considered
as an alternative or complementary solution to conventional 2D
face recognition approaches [6, 25].

Several approaches have been proposed to address various
aspects of a 3D face recognition system. According to the
facial representation types, the existing work can be classi-
fied into landmark-based, curve-based, patch-based, and holis-
tic algorithms [3]. The landmark-based algorithms represent
each face with a set of local features by calculating the rela-
tions (e.g., distances and angles) between a set of facial land-
marks (fiducial points), examples include the anthropometric
facial distance feature [22, 17, 34, 46]. The curve-based algo-
rithms represent each face with a set of curves, including iso-
depth curves, iso-radius curves, iso-geodesic curves and pro-
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files [40, 38, 4, 42, 26, 8]. The curve-based algorithms encode
more geometric information of the 3D facial surface and are
believed to be more discriminative than the landmark-based al-
gorithms [40]. The patch-based algorithms first extract several
patches from a 3D facial surface and then encode the geomet-
ric information of each patch with a feature descriptor. Exam-
ples of patch features include point signatures [12, 13], 3D ge-
ometric features [24], Mesh Scale-Invariant Feature Transform
(Mesh-SIFT) [41], and Mesh Histogram of Oriented Gradients
(Mesh-HOG) [47, 5]. The holistic algorithms use the informa-
tion of the entire face or large regions of the 3D face to perform
face recognition. Examples include Iterated Closest Point (ICP)
based surface matching algorithms [30, 33], extended Gaussian
images [45, 43], canonical forms [11], spherical harmonic fea-
tures [29], and the tensor representation [1]. A major limitation
of the holistic algorithms is that they require accurate normal-
ization of the 3D faces, and they are commonly more sensitive
to facial expressions and occlusions [31]. For a comprehensive
review on existing 3D face recognition algorithms, the reader
should refer to [40, 9, 10, 3].

For a face recognition system, high recognition accuracy and
a strong robustness are the two key considerations for many
practical applications [2]. Facial expression variation is one
of the major problems for face recognition, since the drastic
and complex geometric deformation of a human face caused
by facial expressions can dramatically deteriorate the recogni-
tion performance. Although the overall 3D shape of the face
will be deformed by facial expression dynamics, the shape of
several local facial surfaces (e.g., nose) can be well preserved.
Compared to the holistic algorithms, the local feature based al-
gorithms are more robust to various nuisances [31, 19].

Motivated by these considerations, we propose a fully auto-
matic and expression-invariant 3D face recognition algorithm
(called EI3D). The EI3D algorithm first detects the nosetip and
the 3D face is then cropped and normalized. A set of class-
specific keypoints are subsequently detected from each face.
The distribution of keypoints varies among individuals and is
highly related to the specific shape of the 3D face. Next, the
local surface around each keypoint is represented with a Ro-
tational Projection Statistics (RoPS) feature. Face recognition
is finally achieved using both RoPS feature matching and face
registration. The EI3D algorithm was tested on the Face Recog-
nition Great Challenge (FRGC) dataset. It achieved high ver-
ification rates at 0.1% False Acceptance Rate (FAR) of 99.9%
and 97.12% for probe faces with neutral and non-neutral ex-
pressions, respectively. It also achieved high Rank-1 identifica-
tion rates of 99.4% and 94.0% for probe faces with neutral and
non-neutral expressions, respectively.

The paper is organized as follows. Section 2 describes the
preprocessing and keypoint detection approach, followed by 3D
feature description and matching scheme in Section 3. Section
4 introduces the 3D face recognition approach. Section 5 gives
the experimental results and analyses. Finally, Section 6 con-
cludes this paper.
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Fig. 2: An illustration of 3D facial nosetip detection. (a) Horizontal planes for
3D facial scan slicing. (b) Horizontal facial profile. (Figure best seen in color.)

2. Preprocessing and Keypoint Detection

2.1. Facial Data Preprocessing

Due to the characteristics of 3D sensors, a raw 3D facial scan
acquired by a 3D sensor may suffer from many nuisances in-
cluding missing data, spikes, and small pose variations [25].
Therefore, the raw facial scan have to be preprocessed before
any further operations. Several preprocessing approaches can
be found in the literature [14, 30, 24, 25, 36, 3]. In this pa-
per, we use the work proposed in [30] to perform facial data
preprocessing. The method consists of three parts, i.e., nosetip
detection and face cropping, spike removal and hole filling, and
pose normalization and resampling. An illustration of 3D facial
data preprocessing is shown in Fig. 1.

2.1.1. Nosetip Detection and Face Segmentation
Given a raw facial scan acquired from the shoulder level up

(as shown in Fig. 1(a)), we first detect the nosetip to remove
undesired points outside the 3D facial region (as shown in Fig.
1(b)) [30]. First, a set of horizontal planes are used to slice the
3D facial scan, resulting in a set of horizontal profiles of the
3D face, as shown in Fig. 2(a). For each horizontal profile, the
points on that profile are then uniformly interpolated to fill in
holes. Then, a set of probe points are located on each profile
and a circle is placed at each point, resulting in two intersec-
tion points with the horizontal profile, as shown in Fig. 2(b). A
triangle is formed by the probe point and the two intersection
points. The probe point with the largest altitude h of its asso-
ciated triangle along the profile is considered to be a nosetip
candidate. This process is repeated for all horizontal planes to
obtain a set of nosetip candidates. These candidates are then
refined using the Random Sample Consensus (RANSAC) algo-
rithm [15]. The remaining candidates can then be considered
lying on the noise ridge and the one with the largest altitude is
considered to be the noisetip. Once the nosetip is detected, a
3D face is then cropped from the facial scan by eliminating the
points which are located more than 80mm from the nosetip (as
shown in Fig. 2(c)).

2.1.2. Spike Removal and Hole Filling
Once the 3D face is cropped from the facial scan, spikes are

then removed by eliminating outlier points. Once the spikes are
removed, the 3D face is uniformly resampled on the xy plane
with a square grid resolution of 1mm. However, the spike re-
moval process will result in undesired holes on the 3D face.
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Fig. 1: An illustration of 3D facial data preprocessing. (a) Raw facial scan. (b) Facial scan with detected nosetip. (c) Cropped 3D face. (d) 3D face after spike
removal, hole filling and smoothing.

Besides, the holes can also result from other factors including a
light absorption in the dark areas, specular reflection of the un-
derlying surface (e.g., the sclera, the pupil and the eyelashes),
open mouths, and self-occlusion [3]. For 3D faces, these holes
can be filled using cubic interpolation. Finally, noise is further
smoothed using a median filter (as shown in Fig. 2(d)).

2.1.3. Pose Normalization and Resampling
Given the point cloud P =

{
p1, p2, ..., pNp

}
∈ R3 of a 3D face,

where Np is the number of points of the 3D face, the Hotelling
transform is used to perform pose normalization [30]. First, the
mean p̄ and covariance matrix Cp of P is calculated as:

p̄ =
1

Np

Np∑
i=1

pi, (1)

Cp =
1

Np

Np∑
i=1

pi p
T
i − p̄p̄T. (2)

Then, an eigenvalue decomposition is performed on the co-
variance matrix Cp to produce two matrices Vp and Ep, where
each column in Vp corresponds to an eigenvector of Cp, and
each diagonal value in the diagonal matrix Ep corresponds to
an eigenvalue of Cp.

Next, P is aligned with the principal axes defined by Vp:

P̃ = Vp (P − p̄) . (3)

Consequently, the pose of the 3D face is normalized, result-
ing in a normalized point cloud P̃. The corrected 3D face is
further resampled with a uniform resolution of 1mm on the xy
plane, and the aforementioned pose normalization process is re-
peated for the resampled point cloud, until the resulting matrix
Vp is close to an identity matrix. For simplicity, we use P to
denote the normalized point cloud P̃ in the rest of this paper.

2.2. 3D Keypoint Detection

The task of 3D keypoint detection is to select a subset of
points with a high discriminative power and a high repeatability
from the point cloud of a 3D face [31, 19, 6]. The detected
3D keypoints should be highly robust to noise, pose variations,
and various facial expressions. Besides, the feature descriptors
extracted from the local surfaces around these keypoints should
be sufficiently discriminative for face recognition. In this paper,

we use a modified 3D keypoint detection algorithm based on the
work in [31].

Given a point cloud P =
{
p1, p2, ..., pNp

}
∈ R3 after prepro-

cessing, it is first uniformly resampled on the xy plane with a
resolution of 4mm, resulting in a set of sample points. For each
sample point ps, its neighboring points with distances less than
a radius rk are cropped from the 3D face to form a point set
Ps. In this paper, the radius rk is empirically set to 20mm. In
order to further select a few highly repeatable keypoints from
these sample points in Ps, we use the Hotelling transform to
calculate the principal axes of the points Ps. The point set Ps is
then aligned with its principal axes to produce an aligned point
set P̂s. Then, a shape variation index is calculated as the ratio
between the surface extensions along the x and y axes:

ϵ =
max
(
x|x ∈ P̂s

)
−min

(
x|x ∈ P̂s

)
max
(
y|y ∈ P̂s

)
−min

(
y|y ∈ P̂s

) . (4)

This shape variation index reflects the geometric variation
of the local surface around a keypoint, and it is different from
the one used in [31]. For a symmetric local surface (e.g., a
plane or a sphere), the index is 1. For an asymmetric local sur-
face, the index is larger than 1. We consider the sample points
with shape variation indices larger than a threshold τϵ as key-
points. The threshold τϵ determines both the repeatability and
quantity of keypoints. For a large threshold, the repeatability
of keypoints is high, but the number of detected keypoints is
small. Therefore, in practice, a tradeoff should be made to se-
lect the appropriate threshold (more results and discussions can
be found in Section 5.2.1).

In order to better illustrate the proposed keypoint detection
algorithm, the keypoints detected on 3D faces with different
expressions of two individuals are shown in Fig. 3. It can
be observed that most keypoints are detected from areas with
large shape variations, including nose and mouth. Although
a few keypoints (e.g., those around the mouth) are changed
due to facial expressions, the majority of keypoints can still
be repeatably detected from the 3D faces of the same individ-
ual. Besides, the distribution of keypoints detected from the
3D faces of different individuals varies significantly. For exam-
ple, most keypoints of the first individual lie around the nose
region. However, keypoints can be found in both the nose and
cheek regions for the second individual. Note that, the differ-
ence in the keypoint distribution among different individuals
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(a)

(b)

Fig. 3: 3D keypoint distribution on the faces of two individuals. (a) Keypoints
on faces of individual 1. (b) Keypoints on faces of individual 2.

can be employed to improve the face recognition performance,
as demonstrated in Sections 4 and 5.5.

We further analyze the 3D keypoint detection algorithm per-
formance following the same approach as [31]. The experi-
ments were conducted on the Face Recognition Grand Chal-
lenge (FRGC) v2 dataset, which contains 4007 3D faces of 466
individuals. Since the ground truth correspondence between 3D
faces is unknown, we first align all the faces belonging to the
same individual using the Iterative Closest Point (ICP) algo-
rithm [7, 21]. Given a pair of aligned 3D faces, for each key-
point on the first 3D face, we find its closest keypoint on the sec-
ond 3D face, if their distance is smaller than a threshold τk, then
the keypoint is considered to be repeatable. The repeatability of
3D keypoints is calculated as the ratio between the number of
repeatable keypoints and the total number of keypoints. Finally,
the average repeatability of 3D keypoints is calculated over all
3D faces. The repeatability with respect to varying thresholds
is shown in Fig. 4. It is clear that, the repeatability drops signif-
icantly when τk is less than 4mm. That is because the interval
between the sample points is 4mm, and it is difficult to detect re-
peatable keypoints with a distance less than the sampling inter-
val. When τk is set to 4mm, the repeatability values achieved on
neutral and non-neutral 3D faces are 92.9% and 83.2%, respec-
tively. To better understand the 3D keypoint detection perfor-
mance, the average number of keypoints detected on 3D faces
are presented in Table 1. It is clear that more keypoints can
be detected from non-neutral 3D faces than neutral 3D faces.
That is reasonable since more regions with significant geomet-
ric variations can be found on a non-neutral 3D face. Moreover,
although the repeatability of detected keypoints on non-neutral
3D faces is lower than the neutral 3D faces, the number of re-
peatable keypoints detected on non-neutral 3D faces is compa-
rable to that achieved on neutral 3D faces. The large number
of repeatable keypoints ensures that the face recognition algo-
rithm can produce a promising performance, even when tested
on 3D faces with large expressions (as shown in Section 5.5).

Fig. 4: Repeatability of 3D keypoints.

3. 3D Feature Description and Matching

3.1. 3D Feature Description
Once the keypoints are detected from the 3D facial scans,

a feature descriptor is generated from the local surface around
each keypoint. In this paper, the Rotational Projection Statistics
(RoPS) descriptor [18] is used to encode the geometric informa-
tion of the corresponding local surface. The RoPS descriptor
has been successfully used for 3D object recognition and 3D
modeling [18, 20]. In this paper, it is the first time that RoPS
is used for 3D face recognition, with promising performance
being achieved (Section 5.5).

Given a keypoint q and its support radius r, the neighboring
points around keypoint q with distances less than r are cropped
from the 3D face, resulting in a point set Q. The RoPS descrip-
tor is then generated following procedure below.

First, in order to record the geometric information of Q from
different viewpoints, the 3D point set Q is rotated around the x
axis by a set of angles {θk}. For each rotation, the rotated point
set Q′ is then projected on the xy, yz, and xz coordinate planes,
resulting in three 2D point sets Q̃′i , i = 1, 2, 3. By projecting the
3D point set onto three 2D planes, the geometric information
in Q under that particular viewpoint can be preserved, and the
dimensionality is significantly reduced.

Second, for each projected 2D point set Q̃′i , its geometric in-
formation have to be extracted. For this purpose, the bounding
box of Q̃′i is equally divided into Nb×Nb bins. For each bin, the
point number of Q̃′i falling into that bin is counted, resulting in a
distribution matrix D. The distribution matrix D is further nor-
malized to achieve invariance to point density variations. Since
the dimensionality of D is still too high (i.e., Nb × Nb) , the
information in D is further encoded with four central moments
{u11, u21, u12, u22} and the Shannon entropy e. That is:

umn =

Nb∑
i=1

Nb∑
j=1

(
i − i
) (

j − j
)

D (i, j) , (5)

e = −
Nb∑
i=1

Nb∑
j=1

D (i, j) log (D (i, j)) . (6)

Third, the central moments and Shannon entropy generated
from all rotations and projections are concatenated to form a
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Table 1: The average number of keypoints detected on 3D faces.

#Keypoints #Repeatable Keypoints Repeatability
Neutral 3D Faces 351 326 92.9%

Non-neutral 3D Faces 368 306 83.2%

sub-feature descriptor for the rotations around the x axis. In
order to encode more information of the local surface, Q is also
rotated around the y and z axes to generate another two sub-
feature descriptors. All these sub-feature descriptors are finally
combined to obtain the overall RoPS feature descriptor. Here,
the rotation number controls the computational efficiency, the
feature dimensionality and the feature descriptiveness. In this
paper, the rotation number is set to 3 to achieve a compromise
between these considerations. Consequently, the length of our
RoPS feature descriptor is 3 × 3 × 3 × 5 = 135.

Finally, the RoPS feature descriptor is further compressed us-
ing PCA [23]. Specifically, a set of training RoPS features are
selected and their covariance matrix C is calculated. An eigen-
value decomposition is then applied to C to obtain its eigen-
vectors. These eigenvectors are rearranged according to the de-
scending order of eigenvalues. The first Ns f eigenvectors are
used to form a matrix V s f . The number Ns f is determined such
that a ratio ϑ of the fidelity of the training RoPS features is pre-
served in the compressed features. ϑ is usually a positive num-
ber which is close to 1. For a RoPS feature f i, its compressed
RoPS feature f̂ i is calculated as

f̂ i = VT
s f f i. (7)

3.2. 3D Feature Matching
Assume that F i =

{
f i
n

}
and F j =

{
f j
m

}
are the sets of RoPS

features extracted from 3D faces Pi and P j, respectively. The
Nearest Neighbor Distance Ratio (NNDR) approach [32] is
used to perform feature matching. Specifically, each feature
f i
n in F i is matched against all the features in F j to obtain its

nearest feature f j
m′ and the second nearest feature f j

m′′ , that is:

f j
m′ = arg min

f j
m∈F j

∥∥∥∥ f i
n − f j

m

∥∥∥∥
2
, (8)

f j
m′′ = arg min

f j
m∈F j\ f j

m′

∥∥∥∥ f i
n − f j

m

∥∥∥∥
2
, (9)

where F j \ f j
m′ is the feature set F j excluding feature f j

m′ .
NNDR rdis is calculated as:

rdis =

∥∥∥∥ f i
n − f j

m′

∥∥∥∥
2∥∥∥∥ f i

n − f j
m′′

∥∥∥∥
2

. (10)

If the ratio rdis is less than a threshold τ f ,
(

f i
n, f j

m′
)

is con-
sidered as a potential feature match. To achieve robust feature
matching, f j

m′ is also matched against all the features in F i. If
f i
n is the nearest feature in F i for f j

m′ and satisfies the NNDR
criterion, then

(
f i
n, f j

m′
)

is finally confirmed as a feature match.
The threshold τ f controls both the number and accuracy of fea-
ture matches. A small threshold produces a limited number of

(a) (b)

(c) (d)

Fig. 5: An illustration of the feature matching results. (a) Faces of an individual
with a neutral expression. #feature matches: 85, #false matches: 4; (b) Faces of
two individuals with a neutral expression. #feature matches: 6, #false matches:
6; (c) Faces of an individual with different expressions. #feature matches: 42,
#false matches: 13; (d) Faces of an individual with different expressions and
hair occlusions. #feature matches: 41, #false matches: 8. (Figure best seen in
color.)

feature matches and is not sufficient for all accurate transforma-
tion estimation. In contrast, a large threshold results in a large
number of false positive matches, which also degrades the per-
formance of the transformation estimation. The face recogni-
tion performance with different thresholds is further analyzed
in Section 5.2.3. Figure 5 presents an illustration of the feature
matching for 3D faces of an individual with a neutral expres-
sion (Fig. 5(a)), 3D faces of two individuals with a neutral ex-
pression (Fig. 5(b)), 3D faces of an individual with different
expressions (Fig. 5(c)), and 3D faces of an individual with dif-
ferent expressions and hair occlusions (Fig. 5(d)). If the spatial
distance between two matched features is less than 4mm, the
feature match is considered correct, and is denoted by the green
lines in Fig. 5. Otherwise, the feature match is considered false,
and is denoted by the red lines in Fig. 5. It can be seen that a
number of features are correctly matched for two 3D faces from
the same individual, even with different facial expressions and
hair interference. However, the majority of features from two
different individuals cannot be correctly matched, even with a
neutral facial expression. Consequently, the feature matching
algorithm can be used to identify the same individual with dif-
ferent expressions, and to distinguish different individuals with
the same expression.

We match all of the features in F i against the features in F j,
resulting in a set of matched keypoints Ci j =

{
ci j

1 , c
i j
2 , . . . , c

i j
Nc

}
,

where ci j
n =
{
qi

n, q
j
n

}
is a pair of matched keypoints. It is sensi-

ble to use the feature matching results to measure the similarity
between two 3D faces. In this paper, both the number of fea-
ture matches n f c and the average distance of matched features
d f c are used as two metrics for 3D face similarity calculation.
Further, we used the Procrustes algorithm [16] to perform reg-
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istration between the two 3D faces Pi and P j. The number of
closest point pairs with distances less than 2mm are calculated,
as denoted by npc. Finally, n f c, d f c and npc are considered as
three metrics to measure the similarity between 3D faces. Note
that, the major task of this paper is to present a general frame-
work for automatic 3D face recognition, other feature similarity
metrics can also be integrated into the proposed framework, in-
cluding the graph matching approach [31] and the RANSAC
algorithm [5, 6]. In order to improve the computational effi-
ciency, we only consider the aforementioned three metrics in
this paper.

4. 3D Face Recognition

Face recognition includes two different tasks: face identifica-
tion and face verification [3]. For face identification, the probe
face is compared with all the gallery faces to obtain the iden-
tity of the probe face. Face identification has to calculate the
similarities between the probe face and all gallery faces, it is
therefore a one-vs-all matching process. For face verification,
the probe face is compared with the claimed face to determine
whether the two faces belong to the same person. Face veri-
fication has to calculate only the similarity between the probe
face and the claimed face, it is therefore a one-vs-one matching
process.

During offline processing, a gallery with Ng neutral faces
is constructed, with each face corresponding to an individual.
The 3D keypoints and compressed RoPS features are extracted
from each face and stored in the gallery. During online recog-
nition, the keypoints and compressed RoPS features are first
extracted. For face identification, the probe face is matched
against all the gallery faces using the RoPS feature matching
and point cloud registration, resulting in three similarity met-
rics n f c, d f c, npc. For each metric, a similarity vector sk can be
obtained (k = 1, 2, 3). The m-th element skm in sk represents
the similarity between the probe face and the m-th gallery face
using the k-th similarity metric. In order to further improve the
face recognition performance, the similarity results achieved by
these metrics are fused. For unbiased fusion, each similarity sk

have to be normalized to the range of [0,1] using the min-max
rule. That is,

ŝk =
sk −min (sk)

max (sk −min (sk)) −min (sk −min (sk))
. (11)

ŝ1 and ŝ3 have a positive polarity, i.e., a large value of ŝk

represents a high similarity. Since ŝ2 has a negative polarity, it
is further normalized to achieve a positive polarity, that is:

ŝ2 = 1 − ŝ2. (12)

Once these similarities have been calculated, a fused similar-
ity is calculated as:

s =
3∑

k=1

ωk̂ sk. (13)

where ωk is the weight for the k-th similarity metric, which can
be learned from the training stage (see Section 5.4).

The fused similarity is further normalized as:

ŝ =
s −min (s)

max (s −min (s)) −min (s −min (s))
. (14)

For face identification, the identity of the probe face is deter-
mined by the gallery face with the highest similarity. For face
verification, the probe face is considered to be from the claimed
individual if the similarity is above a set threshold.

Note that, our method uses local geometric features rather
than holistic features for 3D face recognition. Consequently,
the proposed method can cope with various facial expressions.
This advantage of our method is due to several factors. First,
for a 3D face with facial expressions, since a large number of
keypoints have been extracted from the 3D face, the keypoints
extracted from the unaffected areas (without occlusions) are
still sufficient for feature matching and face registration. There-
fore, the face with facial expressions can still be correctly rec-
ognized. Second, even if a part of the facial shape is deformed
by facial expressions, the features from the occluded part of the
3D face cannot be matched with the features from the gallery
face. Only the features from the unaffected areas of the 3D face
can contribute to the feature matching results. Therefore, fa-
cial expressions can be well handled by our method. Third, the
shape deformation of the rigid and semi-rigid regions (e.g., nose
and forehead) of a face is small under different facial expres-
sions, while the deformation of the other regions (e.g., month
and cheek) is relatively large. For a face with large expres-
sions, the features extracted from the rigid/semi-rigid areas can
still achieve a correct feature matching with the gallery faces.
Therefore, the effect of facial expressions can significantly be
reduced by our algorithm.

5. Experimental Results

5.1. Experimental Setup
5.1.1. Dataset Description

In this paper, we use the publically available FRGC dataset
[37] to test our proposed EI3D algorithm. The dataset in-
cludes 4950 3D facial scans with shoulder level up from 466
individuals. These facial scans were acquired using a Minolta
Vivid 900/910 scanner and are divided into three subsets, i.e.,
Spring2003, Fall2003, and Spring2004. The dataset is further
partitioned into a training dataset (FRGC v1) and a validation
dataset (FRGC v2). The training dataset (FRGC v1) includes
943 3D facial scans from the Spring2003 subset, while the val-
idation dataset (FRGC v2) includes 4007 3D facial scans from
the Fall2003 and Spring2004 datasets. The validation dataset
contains 2410 facial scans with neutral expression, and 1597
facial scans with various facial expressions including disgust,
happiness, sadness, surprise, and anger [6, 24]. Besides, other
nuisances can be found in the 3D facial scans, including noise,
spikes, holes, and hair occlusions.

In this paper, the first neutral facial scan was selected from
the scans of each individual to form a gallery of 466 facial
scans. The remaining 3541 facial scans were used to form the
test dataset. Consequently, the test dataset consists of 1944 neu-
tral facial scans and 1597 non-neutral facial scans.
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Table 2: The keypoint number and face verification performance under different
thresholds of the keypoint detection.

Threshold τϵ 1.04 1.06 1.08 1.10 1.12
#keypoints 360 241 170 125 97

VR@0.1% FAR (%) 98.33 98.07 97.58 96.31 93.27

5.1.2. Evaluation Criteria
For face identification, we adopt the frequently used Cumula-

tive Match Characteristic (CMC) and Rank-1 Recognition Rate
(R1RR) to measure the performance. The CMC curve presents
the percentage of correctly recognized probe faces with respect
to the rank number that is considered as a correct recognition,
while R1RR is the percentage of the probe faces that are cor-
rectly recognized using the first rank. For face verification, we
use the Receiver Operating Characteristic (ROC) and the ver-
ification rate (VR) at a false acceptance rate (FAR) of 0.1%
(VR@0.1%FAR) to measure the performance. The horizontal
axis of the ROC curve is the False Accept Rate (FAR) while the
vertical axis is the Verification Rate (VR). For more details on
these evaluation criteria, the reader should refer to [3].

5.2. Performance with Different Parameters

In this section, we tested our algorithm with respect to dif-
ferent settings of the threshold τϵ for keypoint detection, the
support radius r for feature description and the threshold τ f for
feature matching. The face verification results on the FRGC v1
dataset under different parameter settings are shown in Fig. 6.

5.2.1. The Threshold for Keypoint Detection
The threshold τϵ determines both the number and the re-

peatability of the detected keypoints. We tested our face ver-
ification algorithm with a set of threshold values for τϵ , namely
1.04, 1.06, 1.08, 1.10 and 1.12. The support radius r is set to
15mm, the threshold τ f is set to 0.7, and no feature compres-
sion is applied in this experiment. The ROC results are shown
in Fig. 6(a). It is clear that the face verification performance
drops as the threshold is increased. When τϵ is set to 1.04, the
VR@0.1%FAR value is 98.33%. Then, when τϵ is set to 1.08,
the VR@0.1%FAR value is 97.58%. When τϵ is further in-
creased to 1.12, the VR@0.1%FAR value is only 93.27%. It
can also be observed from Table 2 that, as the threshold τϵ in-
creases, the number of keypoints decreases, resulting in a low
feature matching accuracy. Note that, more keypoints is usually
beneficial for the improvement of the feature matching, espe-
cially for faces with expressions. Based on these analyses, τϵ
was set to 1.04 in this paper.

5.2.2. The Support Radius for Feature Description
The support radius determines both the discriminative power

and the robustness with respect to expressions. We tested our
face verification algorithm with a support radius set to 5mm,
10mm, 15mm, 20mm and 25mm. The threshold τ f was set to
0.7, and no feature compression was applied in this experiment.
The ROC results are shown in Fig. 6(b). It can be seen that
the face verification performance increases significantly as the
support radius is increased from 5mm to 10mm. That is because

Table 3: Face verification performance under different feature matching thresh-
olds.

Threshold 0.7 0.8 0.9 1.0
VR@0.1%FAR 98.47 98.22 98.22 97.2

when the support radius is small, the discriminative power of
the feature descriptor is insufficient. When the support radius is
further increased from 10mm to 15mm, the method achieves its
best performance. When the support radius is further increased,
the face verification performance is decreased. That is because
a trade-off has been made between the discriminative power and
the robustness when the support radius is set to 15mm. A large
support radius makes the extracted feature descriptor sensitive
to expressions, therefore, the overall verification performance
is degraded. In this paper, the support radius is set to 15mm.

5.2.3. The Threshold for Feature Matching
The threshold τ f determines both the number and accuracy

of matched features. A small τ f results in a high accuracy of
feature matching, but the number of matched features is small.
In this section, we tested the face verification performance with
a threshold τ f set to 0.7, 0.8, 0.9 and 1.0, and the results are
shown in Table. 3. It is clear that the best performance is
achieved when τ f is set to 0.7. When the threshold is increased,
the recognition performance decreases slightly. That is because
many false feature matches are encountered when the threshold
is large, and therefore the recognition performance is decreased
by these false matches. In this paper, the threshold τ f is set to
0.7 for the subsequent experiments.

5.3. Performance with Feature Compression

The PCA preservation rate ϑ determines both the length
of the compressed feature and the preserved information after
compression. In this section, we tested our face verification al-
gorithm on the FRGC v1 dataset with a preservation rate set to
86%, 88%, 90%, 92%, 94%, 96%, 98% and 100%. The thresh-
old τ f for feature matching was set to 0.7. The ROC results are
shown in Fig. 6(c). It can be observed that the face verification
performance increases steadily as the rate ϑ is increased from
86% to 98%. The performance is then decreased as the percent-
age ϑ is further increased above 98%. That is because for the
rate 98%, the useful discriminative information in the features
have been preserved, and the undesired information caused by
expression variations is discarded. Consequently, the best per-
formance can be achieved. It can also be noticed that the per-
formance achieved by uncompressed features is even inferior to
the compressed features with a preservation rate of 98%. This
observation clearly shows that feature compression can reduce
the unnecessary information contained in the features and im-
prove the accuracy of feature matching. From Table 4, it can
be seen that the feature length is reduced from 135 to 30 when
the rate ϑ is set to 98%, and the VR@0.1%FAR is as high as
98.47%. Based on the above analyses, the preservation rate ϑ
is set to 98% in this paper.
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(a) (b)

(c) (d)

Fig. 6: Face verification results on the FRGC v1 dataset under different parameter settings. (a) Results with different thresholds of keypoint detection. (b) Results
with different support radii for feature description. (c) Results with different preservation rates for feature compression. (d) Results with different similarity metrics.
(Figure best seen in color.)

Table 4: The feature length and face verification performance under different fidelity percentages.

Percentage ϑ 86 88 90 92 94 96 98 100
Feature length 12 13 14 16 19 22 30 135

VR@0.1% FAR (%) 97.73 97.67 98.11 98.20 98.29 98.33 98.47 98.33

5.4. Performance with Metric Fusion

In this section, we tested the face verification performance
on the FRGC v1 dataset using different similarity metrics
and their combinations, the results are reported in Fig. 6(d).
It is clear that metric n f c achieves the best performance
with a VR@0.1%FAR of 98.05%, followed by npc with a
VR@0.1%FAR of 96.42%. In contrast, metric d f c achieves
the worst performance, with a VR@0.1%FAR of only 42.17%.
We further tested the face verification system with a similar-
ity fusion (as defined in Eq. 13), the weight for each metric
is determined by its VR@0.1%FAR value using a single sim-
ilarity metric. It can be seen that the recognition performance
using both n f c and npc is the same as the one achieved using
all these three metrics, with a VR@0.1%FAR of 98.47%. It
can be inferred that fusing the information of n f c and npc is
beneficial to the improvement of face recognition performance.
However, adding d f c cannot improve the 3D face recognition
performance since the performance achieved by metric d f c is
very low. Consequently, we use the fusion results of n f c and
npc for face recognition in the rest of this paper.

5.5. Comparison with the State-of-the-Art
The FRGC v2 dataset was used to test the face verification

and identification performance of our proposed algorithm.

5.5.1. Face Verification
The 3D face verification results on the FRGC v2 dataset is

shown in Fig. 7 (b). It can be seen that the VR@0.1%FAR
achieved by our algorithm is as high as 99.9% for neutral faces.
This means that our algorithm is highly suitable for face verifi-
cation applications. Even for non-neutral faces, our algorithm
still achieves a high VR@0.1%FAR of 97.12%. This means that
our algorithm can cope with facial expressions and can perform
accurate face verification for non-cooperative individuals. Our
algorithm achieves an average VR@0.1%FAR of 99.01% on all
faces with neutral and non-neutral faces.

To compare our results with the state-of-the-art re-
sults achieved on the FRGC v2 dataset, we present the
VR@0.1%FAR results of existing algorithms in Table 5. It
can be seen that our algorithm achieves the best face verifica-
tion performance on neutral 3D faces, with a VR@0.1%FAR of
99.9%. For non-neutral 3D faces, our algorithm also achieves
a VR@0.1%FAR of 97.18%, which is close to the best results
reported in the literature (e.g., 97.8%). For the entire dataset
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containing both neutral and non-neutral 3D faces, our algorithm
is superior to all the existing algorithms, achieving a high veri-
fication rate of 99.01%.

5.5.2. Face Identification
The 3D face identification results on the FRGC v2 dataset is

shown in Fig. 7 (a). It can be seen that our algorithm achieved
a Rank-1 recognition rate of 99.4% for neutral faces, which
means that our algorithm can be used to accurately recognize
3D faces under neutral expressions. For 3D faces with vari-
ous expressions including disgust, happiness, sadness, surprise,
and anger, the performance of our algorithm decreases slightly.
However, its rank-1 recognition rate is still as high as 94.0%.
This clearly demonstrates that our algorithm is robust to non-
rigid deformations caused by facial expressions. The overall
Rank-1 recognition rate for all 3D faces is 97.0%.

The high recognition rate and strong robustness of our 3D
face recognition algorithm is due to several facts. First, the
3D keypoints detected by our algorithm has a high repeatability
(see Section 2.2). Although facial deformation will introduce
variations in the locations of the 3D keypoints, the majority
of the 3D keypoints can still be robustly detected. Therefore,
the final 3D face recognition performance is insensitive to fa-
cial expressions. Second, the extracted RoPS local feature de-
scriptor is highly discriminative and highly robust to nuisances
including facial expressions, which ensures the high accuracy
and strong robustness achieved by our proposed 3D face recog-
nition algorithm. Third, the face recognition performance is
further boosted through the fusion between two different simi-
larity metrics.

6. Conclusion

In this paper, we propose an accurate expression-invariant
face recognition algorithm based on local feature matching and
shape registration. A 3D face is represented by a set of class-
specific keypoints, and then described with their associated
RoPS local features. Face similarity is calculated using the fea-
ture matching and shape registration metrics to produce face
identification and verification results. The proposed algorithm
not only fully employs the global similarity information be-
tween faces using face registration, but also inherits the strong
robustness brought by the local features. Experimental results
on the FRGC dataset show that the proposed algorithm achieves
high face identification and verification rates. Moreover, our al-
gorithm is robust to expression variations.
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