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Polarimetric SAR Target Detection
Using the Reflection Symmetry

Na Wang, Gongtao Shi, Li Liu, Lingjun Zhao, and Gangyao Kuang, Member, IEEE

Abstract—This letter addresses the polarimetric synthetic aper-
ture radar target detection using the magnitude of the (2, 3) term
in the sample averaged coherency matrix. The theoretical analysis
demonstrates that such term reveals the difference between the
nonreflection symmetric targets and natural clutters. The statis-
tical models for such term are derived within different degrees
of homogeneity. Based on the statistical models, an automatic
constant-false-alarm-rate detection scheme is completed. The pa-
rameter estimation and the solution for the detection threshold are
given in detail. Experimental results demonstrate the capability of
the proposed approach for detecting ships, oil stores, buildings,
etc., in homogeneous and heterogeneous areas.

Index Terms—Constant false alarm rate (CFAR), detection,
reflection symmetry.

I. INTRODUCTION

THE problem of target detection using polarimetric syn-
thetic aperture radar (POLSAR) data has received a great

deal of attention in recent years. The studies on POLSAR
target detection mainly utilize the polarimetric statistical and
scattering information. Some of the excellent works include the
polarimetric whitening filter detector [1], ship detection using
polarization cross-entropy [2], and polarimetric target detector
using the Huynen fork [3].

Except for the aforementioned algorithms, reflection symme-
try is another important polarimetric scattering characteristic
for detection. The reflection symmetry often holds true for
natural clutters but rarely holds true for man-made targets [4].
The present studies mainly focus on polarimetric correlation
coefficients. Some examples are power line detection using
linear polarimetric correlation coefficients [5] and urban area
extraction using circular polarimetric correlation coefficients
[6]. The linear polarimetric correlation coefficients circumvent
the difficulties of radiometric calibration [5]; however, the
normalization of the mixed polarization term drops out the
radiometric information of channels. The circular polarimetric
correlation coefficient is effective in extracting urban structures
in the vegetation area [6]; however, it is not efficient in detecting
ships.
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In this letter, the magnitude of the (2, 3) term in the sample
averaged coherency matrix is used for detection. The theoretical
analysis demonstrates that such metric obviously reveals the
reflection symmetry difference between most of the man-made
targets and natural clutters. Moreover, it is easy for statistical
modeling and favorable for implementing automatic detection
using the constant-false-alarm-rate (CFAR) scheme. Of course,
there are several typologies of targets such as horizontal and
vertical wires or horizontal dihedrals, which are reflection sym-
metric. However, most of the man-made targets are composed
of many strong scattering centers with different orientations,
which make the whole structure of the targets not to be reflec-
tion symmetric. Therefore, the proposed detection method is
applicable for many man-made targets such as ships, buildings,
and oil stores.

II. METRIC USED FOR TARGET DETECTION

Referring to the conclusions in [7], we present the differences
between the nonreflection symmetric targets and reflection
symmetric clutters from two aspects.

The first aspect is focused on the azimuth symmetry. When
the elemental scatterer is oriented at 0◦ from the vertical po-
larization direction [8], the scattering matrix and the coherency
matrix can be written as

S =

[
Shh 0
0 Svv

]
→ T =

⎡
⎣T11 T12 0
T ∗
12 T22 0
0 0 0

⎤
⎦ . (1)

Most of the mediums are composed of numerous scatterers
with the orientation θ varying randomly. In such case, the
coherency matrix of the scatterer can be written as

T̃ =UTUT=

⎡
⎣ T11 T12 cos 2θ −T12 sin 2θ
T ∗
12 cos 2θ T22 cos

2 2θ −0.5T22 sin 4θ
−T ∗

12 sin 2θ −0.5T22 sin 4θ T22 sin
2 2θ

⎤
⎦

(2)

where the rotation matrix U is given in [7].
The azimuth slope may introduce orientation in the observed

medium [7]. For most natural clutters such as ocean, vegetation,
and forests, the orientation is generally assumed to be uniformly
distributed. Assume that the orientation distribution of the
scatterers is p(θ); then, p(θ) is considered to be centered at zero,
and the averaged coherency matrix over p(θ) is derived as [7]

T =

⎡
⎣ T11 μT12 0
μT ∗

12 ωT22 0
0 0 (1− ω)T22

⎤
⎦ (3)

where μ =
∫
cos 2θp(θ)dθ and ω =

∫
cos2 2θp(θ)dθ.
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Most man-made targets have regular shapes with determin-
istic orientation, which makes the orientation distribution of
the scatterers not to be centered at zero. Assuming that the
distribution p(θ) is centered at ϕ, the averaged coherency
matrix is derived as (4) [7], shown at the bottom of the page.

The helix scattering term, which is used to reflect the co-
and cross-polarized correlations in the four-component decom-
position [4], may also be present in man-made targets since it
can be generated by the combination of two or more coherent
scatterers (e.g., diplanes [9]). For the right helix, the coherency
matrix is

Trh =
1

2

⎡
⎣ 0 0 0
0 1 j
0 −j 1

⎤
⎦ . (5)

Due to the rotation invariance of (5), the averaged coherency
matrix of the right helix T rh is equivalent to Trh. This conclu-
sion still holds for the left helix.

Comparing (3) with (4) and (5), it can be seen that the
major differences between the reflection symmetric medium
and nonreflection symmetric medium are the off-diagonal terms
T 13 and T 23. For the reflection symmetric medium, both T 13

and T 23 are zero, as are shown in (3). For the nonreflection
symmetric medium, T 13 is −T12μ sin 2ϕ, as is shown in (4),
which is totally induced by the orientation of the scatterer. For
the nonreflection symmetric medium, T 23 is composed of two
parts. The real part of T 23 is 0.5T22(1− 2ω) sin 4ϕ [shown in
(4)], which is also induced by the orientation of the scatterer.
The imaginary part of T 23, induced by the (2, 3) term of
(5), corresponds to the helix scattering term. Compared with
T 13, it is obvious that T 23 contains both the orientation and
helicity information of the medium. Therefore, in this letter, the
magnitude of T 23 (denoted as |T 23|) is used as a metric for
detection.

III. DETECTION ALGORITHM

A. Statistical Modeling of |T 23|
The 2 × 2 sample averaged coherency matrix containing the

term |T 23| is written as

T =
1

n

n∑
i=1

[
|k2(i)|2 k2(i)k3(i)

∗

k2(i)
∗k3(i) |k3(i)|2

]

=

[
T 22 |T 23|ejϕ

|T 23|e−jϕ T 33

]
(6)

where n is the number of samples, k1 and k2 are the Pauli
scattering vectors, i denotes the ith sample, ϕ is the phase of
T 23, and the superscript ∗ denotes the complex conjugate.

For a homogeneous area, the distribution of |T 23| is [10]

f
(
|T 23|

)
=

4nn+1|T 23|n
Γ(n)(1− ρ2)hn+1

I0

(
2ρn|T 23|/h

1− ρ2

)

×Kn−1

(
2n|T 23|/h
1− ρ2

)
(7)

where I0(·) and Kn−1(·) are the first- and second-kind modified
Bessel functions with orders 0 and n− 1, respectively. ρ is the
correlation coefficient between k2 and k3, which is defined by

ρ=

∣∣∣∣∣
E [k2(i)k3(i)

∗]√
E [|k2(i)|2] ·

√
E [|k3(i)|2]

∣∣∣∣∣=
|R12|√

R11 ·
√
R22

=
|R12|
h

(8)

where Rij (i = 1, 2 and j = 1, 2) is the statistical average
of T ij .

It is difficult to estimate the parameters and calculate the
detection threshold of (7) because of the product of Bessel
functions. A possible way to circumvent this problem is to
approximate the product of I0(·) and Kn−1(·) with a simpler
expression. For the large argument, the asymptotic expansions
of I0(·) and Kn−1(·) are given in [11]; then, the product of I0(·)
and Kn−1(·) in (7) can be approximated by

P
(
|T 23|, h, n, ρ

)
≈ V

(
|T 23|, h, n, ρ

)

·
K∑

k=0

K∑
m=0

⎡
⎢⎣ (−1)kΓ

(
k+ 1

2

)
Γ
(
n+m− 1

2

)( (1−ρ2)

4n|T 23|/h

)k+m

Γ
(
1
2−k

)
Γ(k+1)Γ(m+1)Γ

(
n− 1

2−m
)
ρk+1/2

⎤
⎥⎦

(9)

where

V
(
|T 23|, h, n, ρ

)
=

(1−ρ2)

4n
√
ρ|T 23|/h

exp

(
−2n|T 23|/h

(1+ρ)

)
. (10)

For natural clutters, the parameter ρ is small, which makes
the arguments in I0(·) and Kn−1(·) also to be small. In
such case, the approximation error caused by the asymptotic
expansions of I0(·) and Kn−1(·) cannot be neglected; thus,
P (|T 23|, h, n, ρ) in (9) cannot be approximated by the product
of V (|T 23|, h, n, ρ) and the double sum. Instead, we check if
the quotient of P (|T 23|, h, n, ρ) divided by V (|T 23|, h, n, ρ)
[denoted as U(|T 23|, h, n, ρ)] can be approximated by a con-
stant. In the following, P (|T 23|, h, n, ρ), V (|T 23|, h, n, ρ), and
U(|T 23|, h, n, ρ) are denoted as P , V , and U for convenience.

We select two patches from the two data sets, which are
used for detection in this letter, and calculate the values of
P , V , and U numerically. Patch 1 is the sea area, shown in
the red rectangle in Fig. 3(a). Patch 2 is the vegetation area,
shown in the red rectangle in Fig. 3(b). It is too compressed
to presenting the value of all the samples of the patches. For a
better visualization, we only select an interval including 800
samples and plot the corresponding values of P , V , and U ,

T =

⎡
⎣ T11 T12μ cos 2ϕ −T12μ sin 2ϕ

T ∗
12μ cos 2ϕ T22(sin

2 2ϕ+ ω cos 4ϕ) 0.5T22(1− 2ω) sin 4ϕ
−T ∗

12μ sin 2ϕ 0.5T22(1− 2ω) sin 4ϕ T22(cos
2 2ϕ− ω cos 4ϕ)

⎤
⎦ (4)
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Fig. 1. Numerical calculation results of 800 samples from patch 1. (a)P (|T23|,
h, n, ρ). (b) V (|T 23|, h, n, ρ). (c) U(|T 23|, h, n, ρ).

Fig. 2. Numerical calculation results of 800 samples from patch 2. (a)P (|T23|,
h, n, ρ). (b) V (|T 23|, h, n, ρ). (c) U(|T 23|, h, n, ρ).

shown in Figs. 1 and 2. In both figures, it can be seen that the
variation of the P value is similar to that of U . Thus, except
that a very few points have larger U value, the value of most
pixels varies in a small scope. For the few points with large U
value, the corresponding |T 23| value is much larger. It leads to
the values of P and V of approximately zero, so the numerical
calculated value of U is singular. Such kind of singular points
causes large fluctuation in the interval; however, they are very
few in the homogeneous area and thus have little effect on the
statistical distribution of samples.

When U is considered as a constant (denoted as m0), accord-
ing to (9) and (10), (7) can be simplified as

f
(
|T 23|

)
=

4nn+1|T 23|n
Γ(n)(1− ρ2)hn+1

· V
(
|T 23|, h, n, ρ

)
·m0

=
nn

(
|T 23|/h

)n−1
m0

hΓ(n)
√
ρ

exp

(
−2n|T 23|/h

(1 + ρ)

)
. (11)

According to
∫∞
0 f(|T 23|)d|T 23| = 1, we get m0 = 2n/(1 +

ρ)n; then, (11) is written as

f
(
|T 23|

)
=

a0n
n

hΓ(n)

(
a0|T 23|/h

)n−1

× exp

(
−na0|T 23|

h

)
a0, n > 0 (12)

where a0 = 2/(1 + ρ). It can be seen that (12) is the Gamma
distribution. It should be clarified that the Gamma distribution
is just a particular case of (7). However, compared with (7), the
Gamma distribution is more tractable in the parameter estima-
tion and detection. Moreover, based on the Gamma distribution,
the statistical distribution of the heterogeneous area can be
easily derived and is also easy to implement in CFAR detection,
as is presented in Section III-B and C.

To further validate the feasibility of the Gamma distribution
in the statistical modeling of |T 23|, the fitting results of (12)
for the two patches are shown in Fig. 4(a) and (b). In Fig. 4(a),
the Gamma distribution (marked as the blue solid line) is fitted
well with the histogram (marked as the black dots) in patch 1.
Even in patch 2, the fitting result is also acceptable. The
corresponding values of the Kullback–Leibler (KL) distance

TABLE I
VALUES OF THE KL DISTANCE, KS TEST,

AND MSE IN THE TWO PATCHES

[12], Kolmogorov–Smirnov (KS) test [12], and mean-square
error (mse) [12] (listed in Table I) are also small. According
to the aforementioned results, it can be seen that the variation
of U in a small scope has minor effect in the statistical modeling
of clutter. Therefore, the Gamma distribution seems to be
reasonable in modeling |T 23| in the homogeneous area.

For heterogeneous regions, the radar cross section (RCS)
is often modeled by the Gamma distribution. Then, grounded
on the product model, |T 23| follows the K distribution [13].
For highly heterogeneous regions, the RCS is often modeled
by the reciprocal of Gamma distribution [13]. In such case,
|T 23| follows the G0 distribution. It is also a kind of Fisher
distribution [12] and is written as

f
(
|T 23|

)
=

a0n
nΓ(n− α)

hλαΓ(n)Γ(−α)

(
a0|T 23|/h

)n−1

(
λ+ na0|T 23|/h

)n−α (13)

where a0 = 2/(1 + ρ) and n, α, and λ are the effective number
of looks, the shape parameter, and the scale parameter, respec-
tively.

Both the K and G0 distributions have more extensive mod-
eling capacity than the Gamma distribution. However, com-
pared with the K distribution, the G0 distribution does not
contain the Bessel function; thus, it is easier for parameter es-
timation and calculating the accumulated distribution function
[13]. Therefore, we only use the G0 distribution for CFAR
detection. The parameter estimation and the solution for the
detection threshold of the G0 distribution are presented in
Sections III-B and C.

B. Parameter Estimation for the G0 Distribution

For a homogeneous area, the parameter ρ is often estimated
using the following formula [5]:

ρ̂=

∣∣∣∑N
k=1 k2(k)k3(k)

∗
∣∣∣√∑N

k=1 |k2(k)|2
∑N

k=1 |k3(k)|2
=

T 12√
T 11 ·

√
T 22

(14)

where N is the number of samples. Equation (14) has been
proved to be asymptotic unbiased [5]. It is still valid for a
heterogeneous area since the statistical average of the RCS can
be factored and canceled out of the numerator and denominator.

The parameter h is estimated in the homogeneous area.
According to the multivariate statistical analysis theory, the
principal diagonal elements T 11 and T 22 in (6) are the unbiased
estimation of the elements R11 and R22 in (8), respectively.
Then, the parameter h is estimated by

ĥ =

√
R̂11 ·

√
R̂22 =

√
T 11 ·

√
T 22. (15)

The other parameters of the G0 distribution are estimated
using the “second-kind statistics” method [12]. Such method
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yields a very simple parameter estimation expression for the
G0 distribution, as is derived as

⎧⎪⎪⎨
⎪⎪⎩

ˆ̃c1=ln(λ̂ĥ/(â0n̂)+Ψ(n̂)−Ψ(−α̂)= 1
N

N∑
i=1

[ln(xi)]

ˆ̃ck=Ψ(k, n̂)+(−1)kΨ(k,−α̂)= 1
N

N∑
i=1

[
(ln(xk)−ˆ̃c1)

k
]

(16)

where xi is the ith sample. c̃k is the kth logarithmic cumulant of
the sample; Ψ(k) (k = 1, 2, . . .) denotes the digamma function.
Ψ(k, ·) denotes the polygamma function of kth order. −α̂, λ̂,
and n̂ are the estimated parameters.

C. Solution for the CFAR Detection Threshold

For the G0 distribution, the CFAR detection threshold T is
obtained by solving the following equation:

1− fa =
Γ(n− α)

Γ(n)Γ(−α)

(a0n
λh

)n

×
T∫

0

|T 23|n−1(
1 + a0n|T 23|/λh

)n−α d|T 23| (17)

where fa is the false alarm rate. According to the integral
equation in [14]

u∫
0

xμ−1/(1 + βx)vdx = (uμ/μ)2F1(v, μ; 1 + μ;−βu) (18)

(17) is derived as

(λh)nΓ(n)Γ(−α)(1− fa)− an0n
n−1Γ(n− α)

· 2F1 (n− α, n;n+ 1;−(a0n/λh)T )T
n = 0 (19)

where 2F1(a, b; c; d) is the Gauss hypergeometric function. The
threshold T in (19) is solved numerically.

IV. EXPERIMENTAL RESULT

The proposed detection method is evaluated using two
POLSAR data sets acquired by RADARSAT-2, with a reso-
lution of 12 m × 12 m in the range and azimuth. Data set
1 is the sea area of San Francisco, CA. The image size is
850 × 408 pixels. The Pauli color composite image is shown
in Fig. 3(a) with HH + VV (blue), HH − VV (red), and 2HV
(green), where the ship targets are indicated by the blue ellipses.
Data set 2 was acquired in Vancouver, BC, Canada. The image
size is 415 × 388 pixels. The Pauli color composite image is
shown in Fig. 3(b), where the targets are mainly the buildings
indicated by the blue ellipses and the oil stores indicated by
the yellow ellipses, and the clutter is mainly the vegetation
area composed of trees. The optical image of data set 2 is also
presented as an approximation to the ground truth, as is shown
in Fig. 3(c). Before data analysis, the spatial average is applied
to the data using a 7 × 7 window over the pixels.

Fig. 3. (a) Pauli color composite image of data set 1. (b) Pauli RGB image of
data set 2. (c) Optical image of data set 2 (Google Earth).

Fig. 4. Fitting results of the three distributions for the two labeled patches.
(a) Results in patch 1. (b) Results in patch 2.

Fig. 5. (a) |T 23|. (b) |ρHHHV |. (c) |ρRRLL|. (d) Detection result of |T 23|.
(e) Detection result of |ρHHHV |. (f) Detection result of |ρRRLL|.

A. Goodness of Fit Results

Fig. 4 shows the fitting results of the Gamma, K, and G0 dis-
tributions for the histograms of |T 23| in the two labeled patches,
which have been described in Section III-A. It can be seen that
the results of the Gamma distribution are worse than those of
the K and G0 distributions in the two patches, particularly in
patch 2. The fitting results of the K and G0 distributions are
comparable in both patches. The KL distance, KS test, and mse
values in Table I also validate the aforementioned conclusion.
However, the K distribution contains the Bessel function; thus,
it is more difficult to be applied in CFAR detection.

B. Detection Results and Analysis

Fig. 5(a) shows the metric |T 23| of data set 1. It can be
observed that the contrast between the ships and sea is very
distinct, i.e., the pixels of the ships are much brighter and the
pixels of the sea are much darker. The absolute value of the
linear polarimetric correlation coefficient between HH and HV
channels (denoted as |ρHHHV |) is shown in Fig. 5(b). It can
be seen that the |ρHHHV | value between the ships and sea
is not so distinct as |T 23|. The absolute value of the circular
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Fig. 6. (a) |T 23|. (b) |ρHHHV |. (c) |ρRRLL|. (d) Detection result of |T 23|.
(e) Detection result of |ρHHHV |. (f) Detection result of |ρRRLL|.

polarimetric correlation coefficient in [6] (denoted as |ρRRLL|)
is shown in Fig. 5(c). It can be seen that the |ρRRLL| value
between the ships and sea does not present large differences.
The reason is that the sea is dominated by the surface scattering
and the ships are dominated by the double-bounce scattering.
The double-bounce scattering and the surface scattering all have
large |ρRRLL| value [6].

The CFAR detection result of |T 23| is shown in Fig. 5(d) with
the false alarm rate fa = 0.001. It can be seen that the regions
of interest (ROIs) of the ships are all detected; moreover, there
are almost no false alarms in the analyzed area. |ρHHHV | and
|ρRRLL| are detected by selecting the appropriate threshold,
shown in Fig. 5(e) and (f). In Fig. 5(e), the ROIs of the ships
are not so completed as those in Fig. 5(d); moreover, there exist
many false alarms. The result in Fig. 5(f) is much worse than
those in Fig. 5(d) and (e) due to the minor difference between
the |ρRRLL| values of the ship and sea pixels.

Fig. 6(a)–(c) shows |T 23|, |ρHHHV |, and |ρRRLL| of data
set 2. In Fig. 6(a), it can be seen that the buildings and oil
stores are brighter than the vegetation area. In Fig. 6(b), the
|ρHHHV | value between the targets and vegetation area does
not present large differences. In Fig. 6(c), the buildings and oil
stores are much brighter than the vegetation area. It is because
the buildings and oil stores are dominated by the even- and
odd-bounce scattering and the vegetation area is dominated
by the volume scattering. The |ρRRLL| value of the volume
scattering is much less than that of the even- and odd-bounce
scattering [6].

The CFAR detection result of |T 23| is shown in Fig. 6(d)
with fa = 10−3, and the detection results of |ρHHHV | and
|ρRRLL| are shown in Fig. 6(e) and (f), respectively. By visual
inspection, most of the detected buildings in the three figures
are marked by the red rectangles, and most of the detected
oil stores are marked by the yellow ellipses. Among the three
figures, it can be seen that the detection result of |ρHHHV | is
worst, represented by the most false alarms and least detected
targets, and the result of |T 23| is a little worse than that of
|ρRRLL|. The false alarms in Fig. 6(d) are mainly caused
by slopes in the vegetation area, which make the reflection
symmetry to no longer hold.

V. CONCLUSION

In this letter, the magnitude of the (2, 3) term in the sam-
ple averaged coherency matrix has been used to detect the
nonreflection symmetric targets. After visual inspection of the
detection masks, it can be concluded that such term is better
than the linear and circular polarimetric correlation coefficients
to discriminate between the ships and sea and is a little worse
than the circular polarimetric correlation coefficient in detecting
the urban structures. However, it is easy for realizing the auto-
matic detection by implementing the CFAR scheme; thus, it is
applicable for detecting the nonreflection symmetric targets. It
should be pointed out that the detection results are just a visual
inspection. Further validations with ground truth will be carried
out in the future. Moreover, in order to improve the robustness
of the proposed method, the detection in the land area needs to
be developed more in the future.
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