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ABSTRACT

In this paper, we investigate an interesting problem, i.e., un-
supervised cross-corpus speech emotion recognition (SER),
in which the training and testing speech signals come from
two different speech emotion corpora. Meanwhile, the train-
ing speech signals are labeled, while the label information
of the testing speech signals is entirely unknown. Due to
this setting, the training (source) and testing (target) speech
signals may have different feature distributions and there-
fore lots of existing SER methods would not work. To deal
with this problem, we propose a domain-adaptive subspace
learning (DoSL) method for learning a projection matrix
with which we can transform the source and target speech
signals from the original feature space to the label space.
The transformed source and target speech signals in the label
space would have similar feature distributions. Consequently,
the classifier learned on the labeled source speech signals
can effectively predict the emotional states of the unlabeled
target speech signals. To evaluate the performance of the
proposed DoSL method, we carry out extensive cross-corpus
SER experiments on three speech emotion corpora including
EmoDB, eNTERFACE, and AFEW 4.0. Compared with re-
cent state-of-the-art cross-corpus SER methods, the proposed
DoSL can achieve more satisfactory overall results.

Index Terms— Cross-corpus evaluation, speech emotion
recognition, domain adaptation, subspace learning

1. INTRODUCTION

Speech emotion recognition (SER) aims at providing com-
puters the ability to recognize the human beings’ emotional
states such as happy, fear, and disgust from their speech sig-
nals [1]. It has become a very hot research topic among affec-
tive computing, pattern recognition, and human-computer in-
teraction (HCI). Generally speaking, a conventional SER task
is to learn a classifier based on the labeled training speech
signals and then predict the emotion labels of the unlabeled
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testing samples via the learned classifier while the training
and testing samples come from a same corpus. In the practi-
cal scenarios, however, the training and testing samples may
belong to different speech corpora. For example, they are
recorded by different equipments or collected under different
environments. This thus creates a more difficult yet interest-
ing problem than conventional SER, i.e., unsupervised cross-
corpus SER. To distinguish the training and testing speech
corpora in cross-corpus SER problem, these two corpora can
be referred as source corpus and target corpus, respectively. In
this paper, we will investigate the unsupervised case of cross-
corpus SER, in which the training and testing speech sig-
nals come from two different speech emotion corpora. Mean-
while, the training speech signals are labeled, while the label
information of the testing speech signals is entirely unknown.
Due to this setting, the training and testing speech signals may
have different feature distributions.

In recent years, many researchers have focused on this
challenging problem and proposed lots of effective methods.
Schuller et al. [2] attempted to use various normalization
schemes to deal with cross-corpus SER problem, which may
be the first research about cross-corpus SER. Subsequently,
more diverse cross-corpus SER methods are in sequence pro-
posed. For example, Deng et al. [3–5] proposed an autoen-
coder based domain adaptation framework to cope with cross-
corpus SER, in which autoencoder networks are used to learn
the new representations for source and target speech samples.
In the work of [6], Hassan et al. proposed an importance-
weighted support vector machine (IW-SVM) for cross-corpus
SER tasks. IW-SVM leverages three domain adaptation
methods, i.e., kernel mean matching (KMM) [7], Kullback-
Leibler importance estimation procedure (KLIEP) [8], and
unconstrained least-squares importance fitting (uLSIF) [9], to
learn a set of importance weights for target speech samples
such that the feature distribution mismatch between source
and target speech samples is relieved. Recently, a transfer
non-negative matrix factorization (TNNMF) method is pro-
posed by Song et al. [10] for cross-corpus SER tasks. In
TNNMF, the maximum mean discrepancy (MMD) [11] is
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used to balance the feature distribution difference between
the originally distinct source and target speech signals. More
recently, Zong et al. [12,13] proposed a novel domain adapta-
tion method called domain-adaptive least squares regression
(DALSR) model to handle cross-corpus SER. DALSR aims
at learning a regression coefficient matrix to bridge the source
and target speech corpora.

In this paper, we propose a novel method called domain-
adaptive subspace learning (DoSL) to deal with the unsuper-
vised cross-corpus SER problem. The basic idea of DoSL is
to learn a projection matrix which transforms the source and
target speech signals from the original feature space to a com-
mon subspace. In such common space, the source and target
speech signals are enforced to obey the similar feature distri-
butions and hence we can train a classifier, e.g., support vector
machine (SVM), based on the labeled source speech signals
such that it can accurately predict the emotional states of the
target speech signals. Motivated by the works of [12, 13], we
construct a label space based on the label information pro-
vided by the source speech corpora to serve as the predefined
common subspace for DoSL.

2. PROPOSED METHOD

2.1. DoSL model

Suppose we have two different speech corpora to serve as
source and target corpus, respectively. Their corresponding
feature matrices are denoted by Xs ∈ Rd×Ns and Xt ∈
Rd×Nt , where d is the dimension of the speech feature vec-
tor and Ns and Nt are the numbers of the source and target
speech signals, respectively. Since the label information of
source speech signals is available for us in the unsupervised
case of cross-corpus SER, we denote their label information
as the vector form, which is followed by the works of [12,13].
Specifically, let Ls ∈ Rc×Ns be the label matrix correspond-
ing to the source feature matrix Xs, where c is the number
of speech emotion states, and the jth element li,j of its ith

column lsi is defined as:

li,j =

{
1, if xsi belongs to the jth emotion states;
0, otherwise.

By using these source label vectors, we are thus able to
construct a new subspace as the predefined common sub-
space. Note that our DoSL aims at learning a projection
matrix U to project the source speech feature matrix Xs

from the original feature space to such common subspace
spanned by the columns of Ls, which can be formulated as
the following optimization problem:

min
U
‖Ls −UTXs‖2F , (1)

Meanwhile, with the projection matrix U, the target
speech feature matrix Xt can also be mapped to the pre-
defined common subspace, where the projected source and

target speech features will be enforced to share the similar
distributions. To achieve this goal, following the works of
MMD criterion [11] and TNNMF [10], we minimize the
distance difference between mean projected source speech
feature vectors and mean projected target speech feature vec-
tors, which is formulated as follows:

min
U
‖ 1

Ns

Ns∑
i=1

UTxsi −
1

Nt

Nt∑
i=1

UTxti‖2, (2)

By minimizing the combination of the above objective
functions in Eqs. (1) and (2), we can arrive at the new op-
timization problem as the following formulation:

min
U
‖Ls −UTXs‖2F

+λ1‖
1

Ns

Ns∑
i=1

UTxsi −
1

Nt

Nt∑
i=1

UTxti‖2 + λ2‖UT ‖2,1, (3)

where λ1 and λ2 are the trade-off parameters to control the
balance among three terms in the objective functions. It
should be also noted that besides previously described com-
bination, we introduce a L2,1 norm term with respect to the
transpose matrix of U to serve as the regularization to select
the important features contributing to SER [12] during the
feature projection. Eq. (3) is namely our DoSL model.

2.2. Optimization

DoSL model is solved by using inexact augmented Lagrange
multiplier (IALM) method [14]. More specifically, by intro-
ducing a auxiliary variable Q which satisfies U = Q, we
convert the optimization problem of DoSL to a constrained
one which can be expressed as:

min
U,Q
‖Ls −QTXs‖2F

+λ1‖
1

Ns

Ns∑
i=1

QTxsi −
1

Nt

Nt∑
i=1

QTxti‖2 + λ2‖UT ‖2,1,

s.t. U = Q. (4)

Subsequently, the Lagrange function of Eq. (4) can be ob-
tained as follows:

L(U,Q,T, µ) = ‖Ls −QTXs‖F + λ1‖QT x̄sti ‖2

+λ2‖UT ‖2,1 + tr[TT (U−Q)] +
µ

2
‖U−Q‖2F , (5)

where x̄sti = 1
Ns

∑Ns
i=1 x

s
i − 1

Nt

∑Nt
i=1 x

t
i, T is the Lagrange

multiplier, and µ > 0 is the regularization parameter.
Finally, to achieve the optimal solution of U, we only

need to iteratively minimize the Lagrange function of Eq. (2)
with respect to one of the variables fixing the others until con-
vergence. More specifically, perform the following four steps:
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1. Update Q: In this case, the optimization problem
would become as below:

min
Q
‖Ls −QTXs‖2F + λ1‖QT x̄sti ‖2 + tr[TT (U−Q)]

+
µ

2
‖U−Q‖2F ,

which results in

Q = (
XXT

µ
+

1

2
I)−1(

2XsLsT + T

µ
+ U),

where X = [Xs,
√
λ1x̄

st
i ].

2. Update U: The optimization problem can be rewritten
as the following formulation:

min
U

λ2
µ
‖UT ‖2,1 +

1

2
‖UT − (QT − TT

µ
)‖2F .

According to Lemma 4.1 in [15], the optimal U can be
obtained as follows:

ui =


‖qi−

ti
µ ‖−

λ2
µ

‖qi−
ti
µ ‖

(qi + ti
µ ), if λ2 < ‖qi − ti

µ ‖;
0, otherwise.

where qi, ti, and ui are the ith row of Q, T, and U,
respectively.

3. Update T and µ:
T = T + µ(U−Q), µ = max(µmax, ρµ),
where ρ is a scaled parameter.

4. Check convergence: ‖U−Q‖∞ < ε

2.3. Cross-corpus SER using DoSL

By using the above solving method in Section 2.2 to learn the
optimal U∗, we have following method to predict the emotion
states of the target speech samples. It is to assign the emo-
tion labels to the target speech signals according to the cri-
terion: emotion labels = arg mink{[UT

∗X
t](k, :)}, where

[UT
∗X

t](k, j) means the kth element of the jth column (tar-
get speech signal) of the projected matrix UT

∗X
t.

3. EXPERIMENTS AND DISCUSSION

In this section, we conduct extensive cross-corpus SER ex-
periments to evaluate the performance of the proposed DoSL
method. Three popular speech emotion corpora including
EmoDB [16], the audio dataset of eNTERFACE [17], and
the audio dataset of AFEW 4.0 [18] are employed. EmoDB
covers seven emotion categories: Anger, Disgust, Fear, Hap-
piness, Neutral, Sadness and Suprise. 10 (5f) professional
actors speak 10 German emotionally undefined sentences.
The eNTERFACE database is composed of 1287 emotion

videos from 43 subjects and they are categorized into six ba-
sic emotions including Anger, Disgust, Fear, Happy, Sadness,
and Surprise. The AFEW 4.0 dataset include three subsets:
Train(578 samples), Val(383 samples) and Test(407 samples).
Following the experimental protocol of [12], we select any
two datasets of three speech corpora each time and select
the samples belonging to the common emotion states from
these two datasets (e.g., Angry, Disgust, Fear, Joy/Happy
and Sad, EmoDB versus eNTERFACE), which are served as
source and target corpus, alternatively. Therefore, there are
finally six groups of experiments. For convenience, these six
experiments are denoted by No.1, No.2, · · · , No.6, respec-
tively, whose detailed source and target speech corpora are
illustrated in following Tables 1, 2, and 3.

We use the INTERSPEECH 2009 feature set that con-
sists of 384 elements, i.e., 32 acoustic low-level descriptors
(LLDs) and their 12 functions [19], as speech feature rep-
resentation. As to the evaluation metrics, we employ the
weighted average recall (WAR) and the unweighted average
recall (UAR) [2] to report the performance of all the method,
where WAR is the normal recognition accuracy, while UAR
is the mean accuracy of each class. The comparison meth-
ods in the experiments are SVM without domain adaptation,
KMM [7], KLIEP [8], uLSIF [9], and DALSR [12]. Note that
their experimental results are directly taken from Tables I, II,
and III in [12] since our experiment setting is exactly same as
that of [12]. Finally, the parameters (λ1, λ2) of our DoSL are
empirically fixed at (1, 5), (63, 29), (4, 18), (9, 6), (14, 4), and
(2, 8) for No.1, No.2, · · · , No.6 experiments, respectively.
Meanwhile, we use the method described in Section 2.3 for
DoSL to predict the emotion labels of target speech samples.

The experimental results in terms of UAR and WAR of all
the methods for all six experiments are depicted in Tables 1, 2,
and 3.The normal numbers are the recognition rate and the
subscript numbers are the relative rank of UAR and WAR in
each method. From the results, something interesting can be
obtained.

Firstly, it can be found that our DoSL achieves both best
UAR and WAR among all the methods in No.1 and No.4 ex-
periments.

Secondly, our DoSL outperforms all the other methods in
term of WAR in No.3 experiment and in term of UAR in No.5
experiment. Despite of this, it is clear to see that the UAR
of DoSL in No.3 experiment and the WAR of DoSL in No.5
experiment are very competitive against the highest results
in respective experiments, which is shown in the comparison
between KMM and DoSL in No.3 experiment (30.39% v.s.
29.10%) and the comparison between DALSR and DoSL in
No.5 experiment (26.70% v.s. 26.20%).

Finally, although in the remaining experiments (No.2 and
No.6), our DoSL does not perform best in terms of both
UAR and WAR among all the methods, we can from the
results achieved by DoSL and DALSR (highest), observe that
their differences of UAR and WAR are actually not large. In
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Table 1. Results of the No.1 and No.2 cross-corpus speech emotion recognition experiments in terms of UAR and WAR, where
the common emotion states (5 classes) are Angry, Disgust, Fear, Joy/Happy and Sad.

# Source Corpus Target Corpus
SVM KMM KLIEP uLSIF DALSR DoSL

UAR WAR UAR WAR UAR WAR UAR WAR UAR WAR UAR WAR

1 EmoDB eNTERFACE 30.063 30.083 23.085 23.145 21.796 21.826 25.754 25.754 36.362 36.402 37.491 37.511

2 eNTERFACE EmoDB 27.836 24.276 40.184 44.693 28.585 27.015 40.423 42.274 44.411 52.271 44.252 52.002

Table 2. Results of No.3 and No.4 cross-corpus speech emotion recognition experiments in terms of UAR and WAR, where the
common emotion states (6 classes) are Angry, Disgust, Fear, Joy/Happy, Neutral and Sad.

# Source Corpus Target Corpus
SVM KMM KLIEP uLSIF DALSR DoSL

UAR WAR UAR WAR UAR WAR UAR WAR UAR WAR UAR WAR

3 EmoDB AFEW 4.0 26.074 25.994 30.391 29.783 25.476 25.576 25.755 25.935 27.513 30.192 29.102 31.001

4 AFEW 4.0 EmoDB 29.875 35.025 38.172 46.813 27.416 31.376 36.254 44.384 37.333 47.802 39.661 50.001

Table 3. Results of No.5 and No.6 cross-corpus speech emotion recognition experiments in terms of UAR and WAR, where the
common emotion states (6 classes) are Angry, Disgust, Fear, Happy, Sad and Surprise.

# Source Corpus Target Corpus
SVM KMM KLIEP uLSIF DALSR DoSL

UAR WAR UAR WAR UAR WAR UAR WAR UAR WAR UAR WAR

5 eNTERFACE AFEW 4.0 20.805 18.396 23.793 25.723 18.666 18.605 22.614 21.214 24.672 26.701 24.831 26.202
6 AFEW 4.0 eNTERFACE 18.684 18.724 19.753 19.753 17.486 17.476 18.105 18.115 21.931 21.961 21.642 21.662

these two cases, the UAR and WAR of DALSR are (44.41%,
52.27%) and (21.93%, 21.96%), while the results of our
DoSL are (44.25%, 52.00%) and (21.64%, 21.66%). Addi-
tonally, based on our results, it is convincing that the limited
label information provided by a small number of samples
in source database will lead to low recongtion rate, the data
imbalance between source and target databases is an impor-
tant factor which will affect the cross-cropus speech emotion
recognition tasks.

4. CONCLUSIONS

In this paper, we have proposed a domain-adaptive subspace
learning (DoSL) model to deal with the unsupervised cross-
corpus speech emotion recognition (SER) problem. By using
DoSL model, we can learn a projection matrix to transform
the source and target speech samples from the original fea-
ture space, in which the feature distributions of the source
and target speech samples have large difference, into the label
space, where the transformed source and target speech sam-
ples would obey the similar feature distributions. Therefore,
the classifier learned based on the transformed labeled source
speech samples are then utilized to predict the speech emo-
tion category of the unlabeled target speech samples. Exten-
sive cross-corpus SER experiments based on various speech
emotion corpora are conducted to evaluate the performance of
the proposed DoSL method. Experimental results show that
our DoSL achieves more overall promising results than recent
state-of-the-art cross-corpus SER methods. Since the addi-
tion of neural networks is desirable in cross-corpus speech
emotion recognition tasks, we will introduce the convolution

neutral network into our DoSL method in the future.
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