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ABSTRACT

This paper explores the combining of powerful local texture descrip-
tors and the advantages over single descriptors for texture classifi-
cation. The proposed system is composed of three components: (i)
highly discriminative and robust sorted random projections (SRP)
features; (ii) a global Bag-of-Words (BoW) model; and (iii) the
use of multiple kernel Support Vector Machines (SVMs) combining
multiple features. The proposed system is also very simple, stem-
ming from (1) the effortless extraction of the SRP features, (2) the
simple orderless histogramming in the BoW model, (3) a strategy
with low computational complexity for multiple kernel SVMs.

We have tested our texture classification system on three popular
and challenging texture databases and find that the SVMs combin-
ing of SRP features produces outstanding classification results, out-
performing the state-of-the-art for CUReT (99.37%) and KTH-TIPS
(99.29%), and with highly competitive results for UIUC (98.56%).

Index Terms— Texture classification, random projection, com-
pressed sensing, rotation invariance, support vector machines, kernel
methods.

1. INTRODUCTION

Texture is a fundamental characteristic of the appearance of virtu-
ally all natural surfaces and is a powerful visual cue. The classifi-
cation of textures is a fundamental human ability and an important,
yet elusive, goal for computer vision research. The basic building
components in the design of robust texture classification systems are
(i) local highly discriminative and robust texture features, (ii) non-
local statistical representations of local features, (iii) the design of a
distance/similarity measure, and (iv) the choice of classifier.

Recent years have seen significant interest in the paradigm of a
Bag-of-Words approach which enjoys the advantage of powerful lo-
cal texture descriptors, but representing textures non-locally by the
distribution of local textons [1, 2, 3, 4, 5, 6]. Undoubtedly, discrim-
inative and robust texture features are a crucial factor in superior
texture classification; a variety of local texture descriptors have been
proposed recently [1, 2, 3, 4, 5, 6]. However, no method significantly
outperforms the others, so some sort of feature combining seems rel-
evant.

Of the possible features to combine, the Random Projections
(RP) [2, 3] and SRP of Liu et al. are attractive – universal,
information-preserving, dimensionality-reducing. They claim that
the performance achieved by these random features, despite the use
of a relatively simple nearest-neighbor classifier, can outperform the
state-of-the-art in patch features, LBP and various filter bank-based
methods.

Therefore motivated by the excellent classification results re-
ported in [2, 3], this paper seeks to build on those results by coupling

the random features with a more substantial classification scheme:
1. The use of SVMs rather than nearest neighbor, and
2. The combining of multiple features.
Combining descriptors has been explored in [1, 4] in texture

classification and texture material categorization. The works in [1,
4] are sparse approaches, and a fixed combination of different re-
gion detectors and region descriptors is tried. The method of Varma
and Ray [10] is based on multiple kernel learning (MKL), where
they attempted to learn optimal combinations of local texture fea-
tures. They demonstrated better classification performance can be
obtained, however their approach increases the classifier complexity
significantly.

2. BACKGROUND

A BoW approach represents an image as a collection of regions de-
scribed by some local descriptors, spatially possibly sparse [1, 4] or
dense [3, 5, 6, 7, 8]. An interesting alternative, the so-called MFS-
based approach, was proposed by Xu et.al. [17, 18] where, as op-
posed to sparse and dense approaches, the MFS approach charac-
terizes the marginal histogram bins of the extracted features using
fractal geometry, and this characterization encodes the spatial distri-
bution of the image pixels in the bin.

Rather than a specialized feature extractor, tuned to a particu-
lar texture database, random projection (RP) [14] refers to the tech-
nique of projecting a set of points from a high-dimensional space
to a randomly chosen low-dimensional subspace. The technique
has been used for combinatorial optimization, information retrieval,
face recognition and machine learning. Random features represent
a computationally simple and efficient means of preserving texture
structure without introducing significant distortion.

The information-preserving and dimensionality reduction power
of RP is firmly demonstrated by the theory of compressed sensing
(CS) [11, 12], which states that for sparse and compressible signals,
a small number of nonadaptive linear measurements in the form of
random projections can capture most of the salient information in
the signal. Moreover, RP also provides a feasible solution to the
well-known Johnson-Lindenstrauss (JL) lemma [14], which states
that a point set in a high-dimensional Euclidean space can be mapped
down onto a space of dimension logarithmic in the number of points
with the distances between the points approximately preserved. RP
plays an important role in both JL embedding and CS

3. PROPOSED TEXTURE CLASSIFICATION

3.1. A Review of Sorted Random Features

The simple and efficient SRP features were proposed by Liu et al. [3]
for rotation-invariant texture classification. In this paper we use
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Fig. 1. Three sorting schemes on a local image patch of size 7 × 7:
sorting pixels (a) or sorting pixel differences (b, c).

three different SRP features, illustrated in Fig. 1. The SRP takes
the sorted raw pixel intensities or intensity differences in a circular
neighborhood to form a feature vector x, which is then transformed
to a lower-dimensional vector by a random projection matrix Φ, i.e.
yCirc = ΦxCirc.

According to the results reported in [3], of the three proposed
SRP methods the Radial-Diff approach consistently performs the
best, most likely because differences capture more meaningful im-
age patterns than individual pixels, and that differences fall within
a narrower range than pixel values, consequently providing a more
compact description of texture.

Since the intensity-based SRP feature and difference-based SRP
features are somewhat similar to the SPIN and RIFT descriptors,
motivated by the work of Lazebnik et al. [1] and Zhang et al. [4]
who proposed combining descriptors capturing complementary in-
formation, we intend to combine the three SRP descriptors for tex-
ture classification, with the expectation that combined SRP features
would be richer and more robust than a single one.

3.2. Single SRP Feature

Textures are modeled by the joint distribution of a given SRP fea-
ture. This distribution is then represented by texton frequencies, and
textons and texture models are learned from training images (details
in [2, 3]). Classification of a novel image proceeds by mapping the
image to a texton distribution and comparing this distribution to the
learnt models. More specifically, the texture classification frame-
work includes the following steps:

1. Universal texton dictionary learning stage, in which a univer-
sal texton dictionary is learned by clustering one of the SRP
features aggregated over training images from the same tex-
ture class.

2. Histogram of textons learning stage, in which a histogram h
of textons is learnt for each particular training sample by la-
beling each of its pixels with the closest texton. Each texture

class then is represented by a set of models {h} correspond-
ing to the training samples of that class.

3. The classification stage, where the process to compute the
normalized histogram of textons hnew for a novel image is the
same as for each training sample. The calculated model hnew

is classified into one of the known classes, based on a his-
togram distance metric, such as the χ2 statistic: χ2(h1, h2) =
1
2

∑
k=1

[h1(k)−h2(k)]
2

h1(k)+h2(k)

3.3. Combining SRP Features

The benefits of SVMs for histogram-based classification is clearly
demonstrated in [4, 8]. Although SVMs were originally designed
for binary classification, texture classification is multi-class, so we
use the one-against-one technique, which trains a classifier for each
possible pair of classes.

Recent approaches to texture classification [1, 4, 10] have
demonstrated that combining several types of descriptors in a single
classifier can significantly boost the classification performance. Fur-
thermore, [1, 4] suggest the use of multiple complementary features,
features providing orthogonal information. In [10], Varma and Ray
combine many local descriptors in a kernel SVMs framework, and
showed that the learned kernel yields superior classification results.

Since the descriptors in this paper (especially SRP Rad-Diff) are,
on their own, already very discriminative, there may be limitations to
applying MKL; furthermore, simple kernel combination methods are
capable of reaching the same classification accuracy as MKL. There-
fore, we propose to combine kernels in a pre-defined deterministic
way and subsequently use the resulting kernel for SVMs training.

To incorporate the χ2 distance into the SVMs framework, we
use the kernel K(hi, hj) = exp(−γχ2(hi, hj). In our case, when
multiple descriptor types are used, we represent each texture sample
using F Bag-of-Words histograms derived from F feature descrip-
tors. The multiple kernel method we consider is to combine several
kernels by multiplication. Richer representations can be achieved
in such case, since taking products of kernels corresponds to taking
a tensor product of their feature spaces, leading to a much higher
dimensional feature representation and corresponding SVMs kernel
K∗(hi, hj) =

∏F
l=1 Kl(hi, hj).

4. EXPERIMENTAL RESULTS

To make the comparisons as meaningful as possible, we use the same
experimental settings as in [2, 3]. Each sample is normalized to be
zero mean and unit standard deviation, and the extracted SRP vec-
tor is normalized via Weber’s law. All results are reported over 50
random partitions of training and testing. The kernel parameters are
found by cross-validation within the training set. The values of the
parameters and of SVMs are specified using a grid search scheme.
In this work, the publicly available LibSVM library is employed.
The parameters C and γ are searched exponentially in the ranges
of

[
2−5, 218

]
and

[
2−15, 28

]
, respectively, with a step size of 21 to

probe the highest classification rate.
To compare the performance single features with that of combi-

nations of features, we consider the three SPR descriptors. A first
test examined by overall performance of the product and average
kernels, with the product kernel performing slightly better, thus we
have decided against showing results for the average kernel in this
paper.

Fig. 2(a,b) and Table 2 show results for four datasets, comparing
the combined descriptors with the best single one (SRP Radial-Diff).
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Table 1. Summary of texture datasets used in classification.
Texture
Dataset

Dataset
Notation

Image
Rotation

Controlled
Illumination

Scale
Variation

Significant
Viewpoint

Texture
Classes

Sample
Size

Samples
per class

Samples
in Total

CUReT DC √ √
61 200 × 200 92 5612

CUReTRot DCRot √ √
61 140 × 140 92 5612

UIUC DUIUC √ √ √
25 640 × 480 40 1000

KTH-TIPS DKT √ √
10 200 × 200 81 810

Table 2. A comparison of single and combined SRP results, with
combinations of Radial-Diff (R), Circular (C) and Angular-Diff (A),
applied to four datasets: DC, DKT, DUIUC and DCRot. The tested
patch sizes are 13×13 (DC and DKT), 17×17 (DUIUC), and 11×11
(DCRot).

(a) CUReT (92 samples per class in total)
Features Number of training samples per class
D C A 2 10 18 26 34 38 46√ √ √

68.07% 91.77% 97.45% 98.31% 98.98% 99.31% 99.37%√ √
66.33% 91.44% 96.97% 98.13% 98.78% 99.13% 99.28%√
64.88% 91.30% 95.71% 97.57% 98.22% 98.53% 99.05%

(b) KTHTIPS (81 samples per class in total)
Features Number of training samples per class
D C A 5 10 20 25 30 35 40√ √ √

81.18% 88.99% 96.10% 97.74% 98.38% 98.71% 99.06%√ √
80.90% 89.49% 96.40% 97.32% 98.40% 99.07% 99.29%√
79.72% 88.93% 95.81% 97.45% 98.22% 98.62% 99.01%

(c) UIUC (40 samples per class in total)
Features Number of training samples per class
D C A 1 5 10 13 15 18 20√ √ √

61.82% 90.84% 96.61% 97.42% 97.89% 98.30% 98.56%√ √
61.62% 90.96% 96.00% 97.14% 97.59% 98.13% 98.42%√ √
58.15% 89.55% 95.53% 96.53% 97.10% 97.72% 98.08%√
59.00% 89.84% 95.67% 96.69% 97.31% 97.75% 98.30%

(a) CUReTRot (92 samples per class in total)
Features Number of training samples per class
D C A 2 10 18 26 34 38 46√ √ √

66.64% 89.43% 95.75% 96.75% 97.93% 98.28% 98.62%√ √
65.05% 88.87% 95.36% 96.61% 97.67% 98.13% 98.49%√
62.28% 87.78% 92.99% 94.98% 95.95% 96.57% 96.87%

What is clear from both the table and the figure is that, uniformly
across all datasets and across all degrees of training data, the com-
bined classifiers outperform the single one.

Fig. 2 (c,d) compares our approach with the state-of-the-art of
Zhang et al. [4] and Lazebnik et al. [1], who have attempted to com-
bine local RIFT, SIFT and SPIN descriptors. Our method improves
on the state-of-the-art on DUIUC when sufficient training data is avail-
able. For DKT our approach significantly outperforms competing
methods.

Table 3 gives a comprehensive summary of the results for our
proposed approach against 12 recent state-of-the-art results. We can
observe that our approach scores very well across all three com-
monly used datasets, producing what we believe to be the best re-
ported result on the CUReT and KTH-TIPS databases, and very
nearly meeting the best reported result for UIUC. It needs to be em-
phasized that our method is universal and achieved this state-of-the-
art performance without any database-specific parameter tuning.

5. CONCLUSION AND FUTURE WORK

This paper explored the combination of SRP features using multi-
ple kernel SVMs for texture classification. Combing SRP features is
found to produce consistently better classification performance than

Table 3. A comparison of the proposed combined SRP features with
12 state-of-the-art approaches on DC, DKT and DUIUC. The number
of training images per class for all results in the table are 46 for
DC, 40 for DKT and 20 for DUIUC. Scores are as originally reported,
except for those marked (∗) which are taken from Zhang et al. [4].

DC DKT DUIUC

SRP Radial-Diff
√ √ √

SRP Circular
√ √ √

SRP Angular-Diff
√ √

1. Our Results 99.37% 99.29% 98.56%
2. Varma and Zisserman-MR8 [6] 97.43%
3. Varma and Zisserman-Patch [5] 98.03% 92.4%(∗) 97.83%
4. Hayman et al. [8] 98.46% 94.8%(∗) 92.0%(∗)
5. Lazebnik et al. [1] 72.5%(∗) 91.3%(∗) 96.03%
6. Mellor et al. [15] 89.71%
7. Zhang et al. [4] 95.3% 96.1% 98.7%
8. Brodhurst [16] 99.22%
9. Varma and Ray [9] 98.76%
10. Crosier and Griffin [7] 98.6% 98.5% 98.8%
11. Xu-OTF et al. [17] 97.40%
12. Xu-WMFS et al. [18] 98.60%
13. Liu et al. [3] 98.52% 97.71% 96.27%

a single SRP feature. We have tested our texture classification sys-
tem on three popular and challenging texture databases, and the ex-
perimental results yield the best classification rates of which we are
aware of 99.37% for CUReT and 99.29% for KTH-TIPS.

6. REFERENCES

[1] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture repre-
sentation using local affine regions,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 8, pp. 1265-1278, August 2005.

[2] L. Liu, and P. Fieguth, “Texture classification from random fea-
tures,” IEEE Trans. Pattern Anal. Mach. Intell., under second
review.

[3] L. Liu and P. Fieguth, and G. Kuang, “Compressed sensing
for robust texture classification,” in Asian Conf. on Computer
Vision (ACCV), 2010.

[4] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local
features and kernels for classification of texture and object cat-
egories: a comprehensive study,” Int. J. Comput. Vision, vol.
73, no. 2, pp. 213-238, 2007.

[5] M. Varma, and A. Zisserman, “A statistical approach to ma-
terial classification using image patches,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 11, pp. 2032-2047, November.
2009.

2011 18th IEEE International Conference on Image Processing

851



Fig. 2. Classification rate vs. number of training samples on datasets DKT and DUIUC: the left image compares single and combined classifiers,
and the right image compares our proposed classifier with two state-of-the-art approaches from [4] and [1].

[6] M. Varma, and A. Zisserman, “A statistical approach to texture
classification from single images,” Int. J. Comput. Vision, vol.
62, no. 1-2, pp. 61-81, 2005.

[7] M. Crosier, and L. D. Griffin, “Using basic image features for
texture classification,” Int. J. Comput. Vision, vol. 88, no. 3, pp.
447-460, 2010.

[8] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh, “On the
significance of real-world conditions for material classifica-
tion,” in European Conf. on Computer Vision (ECCV), 2004,
vol. 4, pp. 253-266.

[9] M. Varma and R. Garg, “Locally invariant fractal features for
statistical texture classification,” in IEEE Int. Conf. on Com-
puter Vision (ICCV), 2007, pp. 1-8.

[10] M. Varma, and R. Garg, “Locally invariant fractal features for
statistical texture classification,” in IEEE Int. Conf. on Com-
puter Vision (ICCV), 2007, pp. 14-21. ICCV , 2007.

[11] E. Candès, and T. Tao, “Near-optimal signal recovery from ran-
dom projections: universal encoding stratigies?” IEEE Trans.
Inform. Theory, vol. 52, no. 12, pp. 5406-5425, December,
2006.

[12] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform.
Theory, vol. 52, no. 4, pp. 1289-1306, April, 2006.

[13] W. B. Johnson, and J. Lindenstrauss, “Extensions of lipschitz
mappings into a Hilbert space,” in Conf. in Modern Analysis
and Probability, 1984, pp. 189-206.

[14] S. Dasgupta, and A. Gupta, “An elementary proof of a theorem
of Johnson and Lindenstrauss,” Random Structures and Algo-
rithms, vol. 22, no. 1, pp. 60-65, 2003.

[15] M. Mellor, B.-W. Hong, and M. Brady, “Locally rotation, con-
trast, and scale invariant descriptors for texture analysis,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 1, pp. 52-61,
January, 2008.

[16] R. E. Broadhurst, “Statistical estimation of histogram varia-
tion for texture classification,” in Proceedings of the fourth in-
ternaltional workshop on texture analysis and synthesis, 2005,
pp. 1597-1604.

[17] Y. Xu, S. Huang, H. Ji, and C. Fermüller, “Combining powerful
local and global statistics for texture description,” in IEEE Int.
Conf. of Computer Vision and Pattern Recognition (CVPR),
2009, pp. 573-580.

[18] Y. Xu, X. Yang, H. Ling and H. Ji, “A new texture descriptor
using multifractal analysis in multi-orientation wavelet pyrad-
mid,” in IEEE Int. Conf. of Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 161-168.

2011 18th IEEE International Conference on Image Processing

852


