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Median Robust Extended Local Binary Pattern
for Texture Classification
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Abstract— Local binary patterns (LBP) are considered among
the most computationally efficient high-performance texture
features. However, the LBP method is very sensitive to image
noise and is unable to capture macrostructure information.
To best address these disadvantages, in this paper, we introduce
a novel descriptor for texture classification, the median robust
extended LBP (MRELBP). Different from the traditional
LBP and many LBP variants, MRELBP compares regional
image medians rather than raw image intensities. A multiscale
LBP type descriptor is computed by efficiently comparing image
medians over a novel sampling scheme, which can capture
both microstructure and macrostructure texture information.
A comprehensive evaluation on benchmark data sets reveals
MRELBP’s high performance—robust to gray scale variations,
rotation changes and noise—but at a low computational cost.
MRELBP produces the best classification scores of 99.82%,
99.38%, and 99.77% on three popular Outex test suites. More
importantly, MRELBP is shown to be highly robust to image
noise, including Gaussian noise, Gaussian blur, salt-and-pepper
noise, and random pixel corruption.

Index Terms— Texture descriptors, rotation invariance, local
binary pattern (LBP), feature extraction, texture analysis.

I. INTRODUCTION

TEXTURE is an important characteristic of many types of
images, ranging from large-scale multispectral remotely

sensed data to microscopy. Texture classification, as one of the
major problems in texture analysis, has been a long-standing
research topic due to its significance both in understanding
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how the texture recognition process works in humans as
well as in the important role it plays in the wide variety of
applications of computer vision and image analysis [1], [2].
The many applications of texture classification include medical
image analysis and understanding, object recognition, biomet-
rics, content-based image retrieval, remote sensing, industrial
inspection, and document classification.

As a classical pattern recognition problem, texture classifi-
cation primarily consists of two critical subproblems: feature
extraction and classifier designation [1], [2]. It is generally
agreed that the extraction of powerful texture features plays a
relatively more important role, since if poor features are used
even the best classifier will fail to achieve good recognition
results. Consequently, most research in texture classification
focuses on the feature extraction part and numerous texture
feature extraction methods have been developed, with excellent
surveys given in [1]–[5]. Most existing methods have not,
however, been capable of performing sufficiently well for
real-world applications, which have demanding requirements
including database size, nonideal environmental conditions,
and running in real-time.

The inherent difficulty in extracting powerful texture fea-
tures lies in balancing two competing goals: high-quality
description and low computational complexity. High quality
descriptors have to manage the tradeoff between distinctive-
ness, due to the wide range of texture classes, and robustness,
due to large intraclass variations caused by variations in illu-
mination, rotation, scale, blur, noise and occlusion. High speed
descriptors and low dimensionality representation enable the
entire application task to run in real-time. Many research
efforts have been made to achieve either strict quality require-
ments or low computational speed.

Local Binary Patterns (LBP) [6] have emerged as one of
the most prominent texture descriptors, attracting significant
attention in the field of computer vision and image analysis
due to their outstanding advantages:

1) ease of implementation,
2) invariance to monotonic illumination changes, and
3) low computational complexity.

Although originally proposed for texture analysis, the
LBP method has been successfully applied to many diverse
problems including dynamic texture recognition, remote sens-
ing, fingerprint matching, visual inspection, image retrieval,
biomedical image analysis, face image analysis, motion analy-
sis, edge detection, and environment modeling [1], [7]–[11].
A large number of LBP variants [2] have been developed
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to improve its robustness, discriminative power, and
applicability.

With regards to discriminativeness, important examples
include the Completed Local Binary Pattern (CLBP) [12],
Extended Local Binary Pattern (ELBP) [10], Discrimi-
native Completed Local Binary Pattern (disCLBP) [34],
Pairwise Rotation Invariant Cooccurrence Local Binary
Pattern (PRICoLBP) [11] and the combination of Dominant
Local Binary Pattern (DLBP) and Gabor filtering features [14].
However, despite the increase in discriminativeness, these
LBP variants suffer in terms of robustness as they have
minimal tolerance to image blur and noise corruption, and
their feature dimensionality leads to increased computational
complexity.

Similarly, the sensitivity of LBP to image degradation
caused by blurring and noise has led to efforts includ-
ing the Local Ternary Pattern (LTP) [15], Median Binary
Pattern (MBP) [16], Local Phase Quantization (LPQ) [17],
Fuzzy Local Binary Pattern (FLBP) [18], Noise Tolerant
Local Binary Pattern (NTLBP) [19], Robust Local Binary
Pattern (RLBP) [20] and Noise Resistant Local Binary
Pattern (NRLBP) [21]. Although being more robust to
image noise than traditional LBP, as has been remarked by
others [1], [11], [21], [22] and observed in the experiments
reports in this paper, the noise tolerance capability of these
methods remains unsatisfactory.

Our recent ELBP approach [10] proposed four LBP-
like descriptors — Center Intensity based LBP (ELBP_CI),
Neighborhood Intensity based LBP (ELBP_NI), Radial
Difference based LBP (ELBP_RD) and Angular Difference
based LBP (ELBP_AD).1 In that work the joint proba-
bility distribution of ELBP_CI, ELBP_NI and ELBP_RD
(collectively referred as ELBP) produced good texture clas-
sification performance, however there remain some significant
disadvantages:

1) Sensitivity to image blur and noise,
2) Failing to capture texture macrostructure, and
3) High feature dimensionality.

In order to overcome these shortcomings, in this paper we pro-
pose a conceptually simple, high-quality, and computationally
efficient approach, the Median Robust Extended Local Binary
Pattern (MRELBP), based on combining a median filter with
multiresolution support. The key contributions of the proposed
method are highlighted as follows:

• We introduce a novel sampling scheme which can
encapsulate both microstructure and macrostructure infor-
mation, inspired by DAISY [23], BRISK [24] and
FREAK [25].

• We find that combining local medians with our novel
sampling scheme proves to be very powerful texture
feature.

• We evaluate the proposed method comprehensively on
benchmark texture datasets from several different per-
spectives, including sampling parameters, encoding strat-
egy, illumination invariance, rotation invariance, speed,
discriminative power, and noise robustness.

1In the original work [10], ELBP_CI, ELBP_NI, ELBP_RD and ELBP_AD
are referred to as CI-LBP, NI-LBP, RD-LBP and AD-LBP respectively.

Fig. 1. (a) A typical (r, p) neighborhood used to derive an LBP-like operator:
central pixel c and its p circularly and evenly spaced neighbors on a circle
of radius r . (a) Original Pattern. (b) Binary Pattern. (c) Weights. (d) Decimal
Value.

• The proposed method offers gray scale invariance, rota-
tion invariance, no pretraining or parameter tuning, and
offers exceptional discriminativeness and noise robustness
when compared against eleven recent state-of-the-art LBP
variants on ten benchmark texture datasets.

The remainder of this paper is organized as follows. Section II
briefly discusses the related work. The derivation of the
proposed approach operators and the classification framework
are described in Section III. Experimental results are presented
in Section IV. A preliminary version of this work appeared
in [26].

II. RELATED WORK

A. Local Binary Pattern (LBP)
The LBP operator proposed by Ojala et al. [6] characterizes

the spatial structure of a local image patch by encoding the
differences between the pixel value of the central point and
those of its neighbors, considering only the signs to form a
binary pattern. The resulting decimal value of the generated
binary pattern is then used to label the given pixel. Formally,
as illustrated in Fig. 1, given a pixel xc in the image, the
LBP response is calculated by comparing its value with those
of its p neighboring pixels {xr,p,n}p−1

n=0 , evenly distributed in
angle on a circle of radius r centered on xc as

LBPr,p(xc) =
p−1∑

n=0

s(xr,p,n − xc)2n, s(x) =
{

1 x ≥ 0

0 x < 0
(1)

where s() is the sign function. If the coordinates of xc

are (0, 0), then the coordinates of xr,p,n are given by
(−r sin(2πn/p), r cos(2πn/p)). The gray values xr,p,n of
neighbors which do not fall exactly in the center of pixels
are estimated by interpolation.

A texture image can thus be characterized by the probability
distribution of the 2p LBP patterns. The LBP operator was
extended to multiscale analysis to allow any radius and number
of pixels in the neighborhood by varying parameters (r, p).

To enhance the robustness to image rotation, a rotation
invariant version LBPri

r,p was proposed by grouping together
all the binary patterns that are actually rotated versions of the
same pattern [6]:

LBPri
r,p = min{RO R(LBPr,p, i)|i = 0, 1, . . . , p − 1} (2)

where RO R(x, i) performs an i -step circular bit-wise right
shift on x . Keeping only those rotationally-unique patterns
leads to a significant reduction in feature dimensionality.

Ojala et al. [6] observed that certain LBP patterns represent
the fundamental texture microstructures, and named these
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Fig. 2. Illustration for the proposed RELBP descriptor. The key difference between the ELBP [10] and the RELBP is that the only single pixel values are
used in the ELBP, as opposed to a windowed or averaged approach in the RELBP.

patterns uniform patterns, those which have a U value of at
most two:

U(LBPr,p) =
p−1∑

n=0

|s(xr,p,n − xc) − s(xr,p,mod(n+1,p) − xc)|,

such that U(LBPr,p) counts the bitwise transitions from 0 to 1
or vice versa. The uniform descriptor, LBPu2

r,p , has p(p −
1) + 3 categories consisting of p(p − 1) + 2 distinct uniform
patterns and one nonuniform group containing all nonuniform
patterns. Ojala et al. [6] proposed to further group the uniform
patterns into p + 1 different rotation invariant categories,
leading to the rotation invariant uniform descriptor LBPriu2

r,p
with a much lower dimensionality of p + 2:

LBPriu2
r,p =

{∑p−1
n=0 s(xr,p,n − xc), if U(LBPr,p) ≤ 2

p + 1, otherwise
(3)

B. Extended Local Binary Pattern (ELBP)

Whereas LBP encodes only the relationship between a
central point and its neighbors, ELBP is designed to encode
distinctive spatial relationships in a local region and therefore
contains more spatial information. ELBP [10] consist of three
LBP-like descriptors ELBP_CI, ELBP_NI and ELBP_RD
which explore information from the intensity of the center
pixel, of its neighboring pixels, and radial differences,
respectively.

The ELBP strategy is similar to the original LBP. The
central pixel’s intensity is thresholded

ELBP_CI(xc) = s(xc − β) (4)

against β, the mean of the whole image.
Instead of using the gray value of the center pixel as

the thresholding value, as used in LBP, ELBP_NI utilizes the
average of the neighboring pixels’ intensities to generate the
binary pattern. As shown in the left panel of Fig. 2, ELBP_NI
is defined as

ELBP_NIr,p(xc) =
p−1∑

n=0

s(xr,p,n − βr,p)2n (5)

thresholded against the local mean βr,p = 1
p

∑p−1
n=0 xr,p,n .

In parallel to the intensity-based descriptors ELBP_NI and
ELBP_CI, the ELBP_RD is derived from pixel differences in
radial directions:

ELBP_RDr,r−1,p(xc) =
p−1∑

n=0

s(xr,p,n − xr−1,p,n)2n. (6)

Similar to LBP, the grouping strategies for obtaining LBPri
r,p ,

LBPu2
r,p and LBPriu2

r,p can apply to ELBP_NI and ELBP_RD.
Liu et al. [10] found that the ELBPriu2

r,p led to good texture
classification performance.

C. LBP Variants

Many extensions and modifications of LBP have been
developed with an aim to increase its robustness and discrim-
inativeness, with surveys given in [1], [27], and [28].

Changed Neighborhood Topology and Sampling:
Orjuela-Vargas et al. [29] proposed Geometrical Local
Textural Patterns (GLTP) which explores intensity changes
on oriented neighborhoods. Nanni et al. [30] investigated
the use of different neighborhood topologies (circle, ellipse,
parabola, hyperbola and Archimedean spiral) and encodings
in their research on LBP variants for medical image
texture analysis. Hussain and Triggs [31] proposed Local
Quantized Patterns (LQP) where a selection of possible
geometries2 are evaluated. These LBP variants aim to explore
anisotropic information, not designed for rotation invariance.
Wolf et al. [32] proposed Three Patch LBP (TPLBP) and
Four Patch LBP (FPLBP) using averaged patch difference
magnitudes.

Increasing Discriminative Power: There are three pri-
mary strategies to improve discriminative power: reclassify-
ing the original LBP patterns to form more discriminative
clusters, exploring cooccurrences, and combining with other
texture descriptors. Yang and Wang [33] proposed Ham-
ming LBP, which regroups nonuniform patterns based on

2Including horizontal, vertical, diagonal and antidiagonal strips of pixels,
combinations of these like horizontal-vertical, diagonal-antidiagonal and
horizontal-vertical-diagonal-antidiagonal, and traditional circular and disk-
shaped regions.



LIU et al.: MEDIAN ROBUST EXTENDED LBP FOR TEXTURE CLASSIFICATION 1371

Hamming distance instead of collecting them into a single
bin. Guo et al. [34] proposed to learn discriminative rotation
invariant patterns. Qi et al. [11] introduced Pairwise Rotation
Invariant Cooccurrence LBP (PRICoLBP) which makes use
of the cooccurrences of pairs of LBPs at certain relative
displacements. Later on, Qi et al. proposed MultiScale Joint
LBP (MSJLBP) [35] which also considers cooccurrences
of LBPs, but from different scales. Ojala et al. [6] pro-
posed a local contrast descriptor VAR to combine with LBP.
Liao et al. [14] suggested the combination of Gabor filters
and LBP. Ahonen et al. proposed an effective LBP Fourier
histogram (LBPHF) to achieve global rotation invariance.
Guo et al. [12] presented Completed LBP (CLBP) where
the local differences are decomposed into signs and mag-
nitudes. Wang et al. [36] proposed to combine LBP and a
new descriptor called Local Neighboring Intensity Relation-
ship Pattern (LNIRP) based on a sampling structure which
combines pixel and patch to mimic the retinal sampling
grid. LNIRP is similar to the descriptor AD-LBP presented
in [10], but is based on second-order derivatives in the circular
direction.

Enhancing Noise Robustness: Ahonen and Pietikänen intro-
duced Soft LBP (SLBP) histograms [37], which enhances
robustness by incorporating fuzzy membership in the represen-
tation of local texture primitives, and Iakovidis et al. [18] intro-
duced Fuzzy LBP (FLBP), which allows multiple local binary
patterns to be generated at each pixel position, both methods
with a significant computational complexity. Ren et al. [21]
proposed a much more efficient variant, the Noise Resistant
LBP (NRLBP).

Tan and Triggs [15] introduced Local Ternary
Patterns (LTP), which is more resistant to noise than LBP,
but no longer strictly invariant to gray scale changes, and
the selection of additional threshold values is not so simple.
Liao et al. [14] introduced Dominant LBP (DLBP) to learn
the most frequently occurred patterns to capture descriptive
textural information, but which requires pretraining.
Hafiane et al. [16] proposed Median Binary Pattern (MBP),
where local binary patterns are determined by a localized
thresholding against the local median. Ojansivu et al. [17]
proposed Local Phase Quantization (LPQ), claiming
robustness to image blur. Fathi and Naghsh-Nilchi [19]
proposed Noise Tolerant LBP (NTLBP) where a circular
majority voting filter and a new encoding strategy that
regroups the nonuniform LBP patterns are presented, and
Chen et al. [20] proposed Robust LBP (RLBP) [20] by
changing the coding bit of LBP.

III. ROBUST EXTENDED LOCAL BINARY PATTERN

A. The Proposed RELBP

One drawback of the ELBP [10] is that it is very vulnerable
to image noise, therefore the first strategy is to replace
individual pixel intensities at a point with some representation
over a region.

Notable methods along these lines include BRIEF [38],
BRISK [24] and FREAK [25], where in all cases a binary
descriptor vector is obtained by comparing the intensities of a

number of pairs of pixels after applying a Gaussian smoothing
to reduce the noise sensitivity. However these approaches are
based on keypoint detection, followed by a characterization of
each keypoint. The rotation and scale invariance property of
BRISK and FREAK depends on the detection of local regions
of interest and the estimation of the dominant orientations.
Thus the methods are used in a sparse approach, like that
of Lazebnik et al. [39] and Zhang et al. [40], where salient
regions are described with multiple descriptors such as SIFT,
RIFT and SPIN. However, such sparse approaches have been
demonstrated to be very complex and have been shown to be
outperformed by dense approaches [41]–[43], upon which we
are building in this paper.

We wish to consider the effect of replacing individ-
ual pixel gray values at sampled points with simple filter
responses derived from source image patches centered on the
sampling locations. The ELBP descriptor is now modified
so that individual pixel intensities are replaced by a filter
response φ(), as illustrated in Fig. 2. However for comparison
purposes the surrounding experimental context is held con-
sistent between RELBP and ELBP: Images are normalized
to zero mean and unit variance; the standard (riu2) encod-
ing scheme can be used; and the joint histogramming of

RELBP_CI, RELBP_NIriu2
r,p and RELBP_NIriu2

r,p is used to
represent a texture image. This new descriptor is referred to
as RELBPriu2

r,p .
Formally, given a center pixel xc and a patch filter φ,

the RELBP_CI, RELBP_NI and RELBP_RD descriptors are
defined as follows:

1) Center pixel representation:

RELBP_CI(xc) = s(φ(Xc,w) − μw) (7)

the result of applying filter φ() to Xc,w , the local patch
of size w × w centered at the center pixel xc, and μw

denoting the mean of φ(Xc,w) over the whole image.
2) Neighbor representation:

RELBP_NIr,p(xc) =
p−1∑

n=0

s(φ(Xr,p,wr ,n) − μr,p,wr )2
n

μr,p,wr = 1

p

p−1∑

n=0

φ(Xr,p,wr ,n) (8)

where Xr,p,wr ,n denotes a patch of size wr ×wr centered
on xr,p,n .

3) Radial difference representation:

RELBP_RDr,r−1,p,wr ,wr−1 (xc)

=
p−1∑

n=0

s(φ(Xr,p,wr ,n) − φ(Xr−1,p,wr−1,n))2n (9)

where Xr,p,wr ,n and Xr−1,p,wr−1,n denote the patches
centered at the neighboring pixels xr,p,n and xr−1,p,n

respectively. {xr,p,n}p
n=0 represents the circularly and

evenly spaced neighbors of the center pixel xc at
radius r .
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Fig. 3. Overview of the proposed multiscale RELBP descriptor. An example for illustrating RELBP sampling pattern is given with their corresponding
support areas. Each solid circle represents a support area over which a corresponding filter response is computed to replace the gray value of a single sampled
point. While this pattern resembles DAISY [23], BRISK [24] and FREAK [25], it is important to note that its use in the proposed MRELBP is different, as
DAISY [23] was built specifically for dense matching, and BRISK [24] and FREAK [25] were designed for image matching.

In our proposed RELBP,3 we considered three basic choices
for φ():

• Gaussian RELBP (GRELBP): sampling after Gaussian
smoothing,

• Averaging RELBP (ARELBP): regional mean, and
• Median RELBP (MRELBP): regional median.

Clearly both the Gaussian and Averaged perform spatial
averaging, and therefore noise reduction, however these meth-
ods are both linear, and therefore of only limited robustness,
and will exhibit sensitivity to noise, particularly salt-and-
pepper or corrupted-pixel noise. Our preference is therefore
with the robust, nonlinear choice to apply a median filter
as φ(), to maximize the robustness of the representation to
noise.

B. Encoding Scheme

In many LBP applications the rotation invariant uniform
riu2 encoding scheme, defined in (3), has become stan-
dard. LBPriu2

r,p classifies all of the uniform LBPs into p + 1
rotation invariant groups and places all remaining nonuni-
form patterns into one single group. The rationale behind

LBPriu2
r,p is that the uniform patterns occur much more fre-

quently than nonuniform patterns in natural images [6], [7].
Bianconi and Fernández [44] presented a theoretical study on
the relative occurrence of LBP patterns and argued that the
high probability of occurrence of uniform patterns is likely
to be a consequence of the mathematical structure of the
LBP method rather than an intrinsic property of real textures.

However, the widespread use of LBPriu2
r,p has been chal-

lenged [13], [14], [19], [21], [45], with the claim that
the uniform LBPs do not necessarily represent the most
significant pattern features for certain classes of textured
images, and that grouping all nonuniform patterns into
one group may unnecessarily result in a loss of informa-
tion. As a result, different encoding methods have been

3For simplicity, we use RELBP to refer to any of the three descriptors
GRELBP, ARELBP and MRELBP when we can do so unambiguously.

proposed [13], [14], [19], [21], [45] that attempt to explore
additional information present in the nonuniform LBP patterns.
To test the information relevance of the encoding schemes
for texture classification, we will compare several different
encoding schemes, including a new one proposed in this paper:

1) RELBPriu2
r,p : The traditional rotation invariant uniform

encoding scheme defined in (3).
2) RELBPri

r,p : The traditional rotation invariant encoding

method defined in (2).
3) RELBPham

r,p : The encoding approach proposed by
Zhou et al. [45], in which some nonuniform patterns
are reclassified by minimizing a Hamming distance.

4) RELBP f aith
r,p : The encoding scheme proposed by

Fathi and Naghsh-Nilchi [19], where all nonuniform
patterns with four bitwise transitions (i.e. U = 4 in (3))
are classified based on the number of ones in the pattern,
and the nonuniform patterns with U > 4 are grouped
by U value.

5) RELBPcount
r,p : The method of [13], where all the

LBP patterns are grouped into p + 1 different groups
based on counting the number of ones.

Based on our observations we propose a new scheme
RELBPnum

r,p , first dividing all LBPs into uniform and nonuni-
form according to the uniformity measure. Then as in LBPriu2

r,p
the uniform patterns are divided into p + 1 rotation invariant

groups. Finally, as opposed to LBPriu2
r,p , we group the nonuni-

form pattern into p − 3 different groups based on the number
of ones in the pattern. An example illustrating our approach
is presented in Fig. 4.

C. MultiScale Analysis and Classification

Like most other LBP variants, by altering r and p we can
realize operators for any quantization of the angular space
and for any spatial resolution. A multiresolution analysis can
therefore readily be accomplished by concatenating binary
histograms from multiple resolutions into a single histogram.

We are proposing a multiscale sampling scheme, as illus-
trated in Fig. 3. The assumption of independence between
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TABLE I

SUMMARY OF TEXTURE DATASETS USED IN OUR EXPERIMENTS.
�1 = {5°, 10°, 15°, 30°, 45°, 60°, 75°, 90°}, �2 = {0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90°}

Fig. 4. LBPnum
r,8 : Filled and empty circles correspond to bit values of 0 and 1

in lbpr,8 operator. The numbers inside each pattern correspond to their unique
category labels. The 14 categories in the number LBP scheme partitions the
uniform patterns into 9 rotation-invariant groups and the nonuniform patterns
into 5 different groups according to the O value (i.e. the number of 1s in the
pattern).

texture features from different scales does not hold, however
the estimation of large joint probabilities is also not feasible
due to the computational complexity of large multidimensional
histograms. Therefore we propose to generate the histogram
feature as the concatenation over multiple scales.

While this pattern resembles the DAISY [23], BRISK [24]
and FREAK [25], it is important to note that its use in
MRELBP is entirely different, as they all applied Gaussian
smoothing, DAISY [23] was built specifically for dense match-
ing, and BRISK [24] and FREAK [25] were designed for
image matching. Finally, the parameters controlling the shape
of such sampling pattern are different for all three descriptors
RELBP, BRISK and FREAK.

IV. EXPERIMENTAL EVALUATION

For the overall framework of the proposed approach, the
actual classification is performed via the simple Nearest
Neighbor Classifier (NNC), applied to the normalized
MRELBP histogram feature vectors, using the χ2 distance
metric as in [12], [43], and [46]. Furthermore, results
obtained with a more sophisticated classifier — support vector
machines (SVM) [47], are also provided.

A. Image Data and Experimental Setup

We demonstrate the performance of our approach with three
different problems of robust texture classification by conduct-
ing extensive experiments on a number of publicly available
datasets, summarized in Table I, derived from the four most
commonly used texture sources: Outex [48], CUReT [41],
UMD [49], KTHTIPS2b [50] and ALOT [51].

Experiment #1: Experiment #1 tests robustness to gray
scale and rotation variations. Outex [48] contains a large
collection of surface textures captured under different condi-
tions, which facilitates construction of a wide range of texture
analysis problems. By selecting 24 different homogeneous
texture classes from the Outex database, Ojala et al. [6]
created three test suites Outex_TC10, Outex_TC12_000
and Outex_TC12_001 (summarized in Table I) which have
been widely used as benchmark datasets for the evaluation
of rotation and illumination invariant texture classification
approaches. In addition, we selected 108 different texture
classes, shown in Fig.5, to create two more challenging test
suites Outex_TC36_000 and Outex_TC36_001.

Experiment #2: Experiment #2 tests robustness to random
noise corruption, including Gaussian noise, image blurring,
salt-and-pepper noise, and random pixel corruption, the same
noise types tested in [52]. We use only the noise-free texture
images for training and test on the noisy data, as summarized

Administrator
矩形
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Fig. 5. The 108 texture classes from the Outex_TC36 datasets.

in Table I. The test suites are based on Outex_TC11n and
Outex_TC23n, which have 24 and 68 texture classes, respec-
tively. The noise parameters include Gaussian noise standard
deviation σ , Gaussian blur standard deviation σ , Salt-and-
Pepper noise density ρ, and pixel corruption density υ.

Experiment # 3: Experiment #3 is carried out to measure
robustness to more complex environment changes, includ-
ing variations in viewpoint, scaling, illumination and rota-
tion, based on the CUReT, UMD, KTHTIPS2b and ALOT
databases.

For the CUReT database we use the same subset of images
which has been previously used in [12], [13], [41], [43]:
61 texture classes each with 92 images under varying illu-
mination direction but at a constant scale. It has been
argued [41], [53], [54] that this scale constancy is a major
drawback of CUReT, leading to KTHTIPS2b [50], [54],
with 3 viewing angles, 4 illuminants, and 9 different scales.
The UMD database [49] consists of high resolution images,
with arbitrary rotations, significant viewpoint changes and
scale differences present. The ALOT dataset [51] consists
of 250 classes each of which has 100 samples. We resize
images in ALOT to obtain lower resolution (384 × 256).
ALOT is challenging as it represents a significantly larger
number of classes (250) compared to UMD (25) and has
very strong illumination change (8 levels of illumination). The
viewpoint change is however less dramatic compared to UMD.
For CUReT, UMD and ALOT, half of the class samples were
selected at random for training and the remaining half for
testing. For KTHTIPS2b, we follow the training and testing
scheme of [54]: training on three samples and testing on the
remainder.

B. Methods in Comparison and Implementation Details

We will be performing comprehensive experimental
comparisons of our approach with eleven recent
state-of-the-art LBP variants. Unless otherwise specified the
riu2 encoding and (r, p) parameters (1, 8) + (2, 16) + (3, 24)
are used, which is the setting recommended by nearly all of
the comparison methods.

1) ELBP [10]: The joint histogram of ELBP_CI,
ELBP_NIriu2

r,p and ELBP_RDriu2
r,p .

2) LBP [6]: The traditional rotation invariant uniform
feature LBPriu2

r,p proposed by Ojala et al. [6].

3) CLBP [12]: The joint histogram of CLBP_C,
CLBP_Sriu2

r,p and CLBP_Mriu2
r,p .

4) LTP [15]: The recommended LTPriu2
r,p is used. LTP is

claimed to be more robust to noise than LBP.
5) disCLBP [34]: Due to the high dimensionality of the

descriptor at larger scales, we use a three-scale descrip-
tor dis(S+M)ri

r,p as recommended by the authors.
6) MBP [16]: We implemented a multiscale MBPriu2

r,p
descriptor ((1, 8) + (2, 16) + (3, 24)), although
Hafiane et al. [16] only examined the first scale
(r, p) = (1, 8) in their original paper.

7) NRLBP [21]: We implemented a multiresolution
NRLBPriu2

r,p descriptor, although Ren et al. [21] only
evaluated the first scale in their original paper. The
number of neighboring points p is held fixed at 8 for
each radius r , because the extraction of the NRLBP
feature requires a large lookup table of size 3p.

8) NTLBPfaith
r,p,k [19]: Implemented in a multiscale form

NTLBPfaith
r,p,k

4 as suggested by the authors. Parameter k

acts as the size of kernel in the filter, controlling the
number of noisy bits that should be filtered, which is
set to 1, 3 and 4 for p = 8, 16 and 24, respectively,
as suggested in [19].

9) PRICoLBP [11]: The multiscale and multiorientation
PRICoLBPg descriptor is used, with parameters as rec-
ommended by the authors.

10) MSJLBP [35]: The multiscale joint encoding of LBP
proposed in [35], similar to PRICoLBP. Following the
authors, (r, p) of (1, 8), (2, 8), (3, 8) is used.

11) COV-LBPD [22]: The approach by combining LBP
difference and feature correlation.

Each texture sample is preprocessed, normalized to zero
mean and unit standard deviation. For the CUReT, UMD
and KTHTIPS2b databases, all results are reported over
100 random partitionings of training and testing sets. For
SVM classification, we use the publicly available LibSVM
library [47]. The parameters C and γ are searched exponen-
tially in the ranges of

[
2−5, 218

]
and

[
2−15, 28

]
, respectively,

4NTLBPfaith
1,8,1 + NTLBPfaith

2,16,3 + NTLBPfaith
3,24,4.
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TABLE II

RESULTS (%) ON THREE BENCHMARK OUTEX TEST SUITES. THE PARAMETERS wc AND wr INVOLVED
IN RELBP ARE SET AS wc = 3 AND wr = (3, 3, 5, 7)

with a step size of 21 to probe the highest classification rate;
in our experiments setting C = 106 and γ = 0.01 give
very good performance. For ELBP, LBP, CLBP, disCLBP,
PRICoLBPg and COV-LBPD, we use the code provided by
the original authors.

C. Experimental Tests

We wish to test the proposed method from seven differ-
ent perspectives: gray scale invariance, rotation invariance,
multiscale analysis, template setting, discriminative power,
noise robustness, and encoding strategy.

1) Regional vs. Pointwise: Table II presents the results
for the three test suites Outex_TC10, Outex_TC12_000 and
Outex_TC12_001 in detail, comparing the proposed regional/
multiscale MRELBP with pointwise ELBP. The results of
LBP are included as a baseline.

Firstly, the proposed MRELBP_RDriu2
r,8 improves the perfor-

mance over ELBP_RDriu2
r,8 considerably, with the lone excep-

tion at (1, 8), where the drop of performance may be due to too
much overlapping of the sampling pattern near the center. The
proposed MRELBP_NIriu2

r,8 also improved the performance
in general, but not so significantly as MRELBP_RDriu2

r,8 .
The joint descriptor MRELBPriu2

r,8 proved to be much more
powerful and significantly outperformed ELBPriu2

r,8 .
Secondly, the use of multiscale offers significant improve-

ments over single-scale analysis. The striking performance
of multiscale MRELBPriu2

r,p for the classification of texture
with great illumination and rotation changes clearly demon-
strates that the concatenated marginal joint distributions of
MRELBP_CI, MRELBP_NIriu2

r,p and MRELBP_RDriu2
r,p turns

out to be a very powerful representation of image texture
and to be robust to gray scale and rotation variations. These
results firmly demonstrate that the approach is making effec-
tive use of microstructure and the interactions between more

distant pixels. Therefore, in all further experiments we will
only report multiscale results.

Table III presents the multiscale results for all three
proposed descriptors GRELBP, ARELBP and MRELBP,
in comparison with ELBP and LBP. For the parameter
pair (r, p), we tested the commonly employed (1,8), (3,16),
(5,24), (7,24) [6], [12], [34] versus a fixed p = 8 at all scales.
Although the higher dimensionality of the former scheme
offered improved results for some of the individual descriptors,
the joint descriptors all perform similarly under both settings,
and all give very high classification scores on the three Outex
test suites.

However because the feature dimensionality of the proposed
RELBPriu2

r,p at a single resolution is 2(p + 2)(p + 2),

the former, higher-dimensional scheme results in a feature
dimensionality of 3552, whereas a fixed p = 8 corresponds
to a much lower dimensionality of only 800. Therefore,
considering the similar classification performance given by
the two schemes, we propose to fix the the number of
sampling neighbors to p = 8 at each scale in our remaining
experiments.

2) GRELBP vs. ARELBP vs. MRELBP: Table IV shows
the noise robustness performance given the four noise types
described in Section IV-A. It is very clear that the nonlinear,
robust behaviour of the median filter leads MRELBP to be
the clear winner in noise robustness, particularly in the cases
of Salt-and-Pepper noise and random pixel corruption. The
classification results are particularly impressive keeping in
mind that the training images were all noise–free.

Based on the striking noise robustness results, the MRELBP
strategy performs by far the best, and therefore it is our
proposed choice for further evaluation.

3) Template Setting: The main parameters involved in the
proposed MRELBP descriptor are the sampling radii r , the size
of the center patch wc × wc, and the size of the neighboring
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TABLE III

CLASSIFICATION SCORES (%) ON Outex_TC10, Outex_TC12000 AND Outex_TC12001 TEST SUITES. THE PARAMETERS wc AND wr
INVOLVED IN RELBP ARE SET AS wc = 3 AND wr = (3, 3, 5, 7)

TABLE IV

CLASSIFICATION SCORES (%) ON Outex_TC11n (GAUSSIAN NOISE), Outex_TC11b (GAUSSIAN BLUR), Outex_TC23n AND Outex_TC23b. PROPOSED
RELBP IS OBTAINED BY (1, 8) + (3, 8) + (5, 8) + (7, 8), wc = 3 AND wr = (3, 3, 5, 7)

patches wr × wr associated with radius r . We refer to a
multiscale sampling scheme for MRELBP as a template, and
we will examine the performance of MRELBP under different
template settings.

We present the nine templates settings and the correspond-
ing results in Table V. The nine templates were chosen
following the methods of BRISK [24] and FREAK [25].
Template 1 is the default, as was the parameter choice used
in previous experiments.

In order to avoid aliasing effects when sampling the image,
the patch size wr × wr associated with the median operator

is set to be proportional to radius r . Template 2, with a
slight increase in radius over template 1, produces the highest
classification score in noise-free situations and gives high clas-
sification accuracies in noisy situations. The larger scales have
much to offer, since the more local sampling of Template 4
performs the worst; clearly there is a limit to the utility of
nonlocal information, since template 5 at 8 scales does not
offer any improvement.

Templates 6 through 9 assess the choice of parameter wr .
It is fairly clear from Table V that larger patches lead
to improved noise robustness, but at a cost of reduced
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TABLE V

PARAMETER EVALUATION (%); p IS ALWAYS 8

TABLE VI

RESULTS (%) FOR EVALUATION OF DIFFERENT ENCODING METHODS
WITH wc = 3, r = (2, 4, 6, 8), p = (8, 8, 8, 8), wr = (3, 5, 7, 9)

performance in noise-free contexts. Furthermore using larger
patches increases the algorithm’s computational complexity.
We would maintain that the results in Table V argue in favour
of Template 2, which we will use in the remainder of our
experiments.

4) Encoding Methods: Six different encoding strategies
were discussed in Section III-B; the corresponding experi-
mental results are listed in Table VI. All six methods show
relatively similar performance, with slightly higher perfor-
mance from MRELBP f aith , our proposed MRELBPnum , and
MRELBPriu2. Because of the rather higher dimensionality of
faith over num, and the poorer performance of riu2 in noisy
settings, we have a preference for the num encoding, but will
continue to test the riu2 encoding for consistency with other
proposed approaches.

D. Comparative Evaluation

In this section, to avoid tuning parameters and to preserve
consistency, all results for the proposed MRELBPriu2

r,p and
MRELBPnum

r,p are obtained with the four-scale Template 2 from
Table V).

1) Results for Experiment #1: Table VII compares the
classification performance of the proposed MRELBPriu2

r,p and
MRELBPnum

r,p descriptor with those of fifteen recent state of

the art LBP variants on the three Outex benchmark test
suites. We can observe that our MRELBP approach performs
significantly and consistently better than all 15 methods in
comparison. The striking performance of MRELBP clearly
demonstrates that the concatenated joint distributions of
the proposed MRELBP_CI, MRELBP_NI and MRELBP_RD
codes and the novel sampling scheme turns out to be a very
powerful representation of image texture, making effective use

TABLE VII

COMPARING THE CLASSIFICATION SCORES (%) ACHIEVED BY THE
PROPOSED APPROACH WITH THOSE ACHIEVED BY RECENT

STATE-OF-THE-ART TEXTURE CLASSIFICATION METHODS

ON THE THREE OUTEX TEST SUITES. SCORES ARE AS

ORIGINALLY REPORTED, EXCEPT THOSE MARKED (�)
WHICH ARE TAKEN FROM THE WORK BY GUO et al. [12]

AND THOSE MARKED (�) WHICH ARE OBTAINED

ACCORDING OUR OWN IMPLEMENTATION. FOR
CLBP, LBPD AND PRICoLBPg , WE USED

THE CODES PROVIDED BY THE AUTHORS

TABLE VIII

COMPARING THE CLASSIFICATION SCORES (%) ACHIEVED BY THE

PROPOSED APPROACH WITH THOSE ACHIEVED BY RECENT
STATE-OF-THE-ART TEXTURE CLASSIFICATION METHODS

ON THE THREE Outex_TC36 TEST SUITES

of both micro- and macrostructures. To the best of our knowl-
edge, the near perfect classification scores of 99.87%, 99.49%
and 99.77% for our proposed approach are the best reported
for Outex_TC10, Outex_TC12_000 and Outex_TC12_001.
Keeping in mind the variations in gray scale and rotation
present in the three test suites, the results in Table VII firmly
demonstrate the gray-scale and rotation invariance claimed of
the MRELBP approach. Table VII also compares the feature
dimensionality of the methods, where we can observe the
modest feature dimensionality of the proposed approach, with
corresponding savings in computational time and memory
storage.

Table VIII tests the performance of our proposed descrip-
tors on the more challenging test suites Outex_TC36_000
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TABLE IX

CLASSIFICATION SCORES (%) FOR VARIOUS METHODS ON Outex_TC11n, Outex_TC11b, Outex_TC23n AND Outex_TC23b.
ALL RESULTS (INCLUDING RESULTS IN TABLES X, XI AND XII) ARE OBTAINED WITH A NNC CLASSIFIER

TABLE X

CLASSIFICATION SCORES (%) FOR VARIOUS METHODS ON Outex_TC11s AND Outex_TC23s

TABLE XI

CLASSIFICATION SCORES (%) FOR VARIOUS METHODS ON Outex_TC11c AND Outex_TC23c

and Outex_TC36_001, which have 108 texture classes. We can
observe that our proposed MRELBP descriptors outperform all
other state of the art methods.

2) Results for Experiment #2: We conducted extensive
experiments to test the noise robustness of our approach,
using the test suites we described in Section IV-A. The test
results are shown in Tables IX, X, and XI. The results are
all consistently strong: the proposed MRELBP descriptors
have exceptional noise tolerance that could not be matched
by any of the state of the art LBP variants. There are difficult

noise levels where the proposed approach still offers strong
performance, but where not a single state-of-the-art method
delivers acceptable results.

Finally, Table XII illustrates the effect of introducing
a median preprocessing filter, contrasting results with and
without preprocessing. It is clearly observed that our proposed
MRELBP outperforms all other LBP variants consistently and
significantly, no matter with or without preprocessing. The
results in Table XII show that preprocessing (with a median
filter here) does not necessarily improve the noise robustness.
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TABLE XII

COMPARING THE CLASSIFICATION SCORES (%) OF LBP VARIANTS
AGAINST DIFFERENT NOISE TYPES IN TWO SITUATIONS:

WITH OR WITHOUT PREPROCESSING WITH A

MEDIAN FILTERING APPROACH

TABLE XIII

COMPARING THE CLASSIFICATION SCORES (%) ACHIEVED BY THE

PROPOSED APPROACH WITH THOSE ACHIEVED BY RECENT

STATE-OF-THE-ART METHODS ON THE KTHTIPS2b
DATABASE. ALL SCORES ARE OBTAINED WITH

NNC CLASSIFICATION, UNLESS

OTHERWISE STATED

For instance, preprocessing always decreases the performance
in the case of Gaussian blur. Therefore, the noise robustness
inherent in our proposed MRELBP is clearly an attractive
advantage.

Results in Table XII further confirm the noise robustness of
the proposed MRELBP, emphasizing that no pre-smoothing
is necessary. The absence of spatial smoothing is a signif-
icant advantage for MRELBP, as local spatial information
is important for texture recognition, whereas pre-smoothing
can suppress important local texture information, a serious
drawback for texture recognition in low-noise situations.

3) Results for Experiment #3: A final experiment tests
the generalizability of MRELBP to textures other than
those present in the Outex database. The datasets we tested
include CUReT, UMD, KTHTIPS2b and ALOT, discussed in
Section IV-A, with results shown in Tables XIII (KTHTIPS2b),
XV (CUReT), XIV (UMD) and XVI (ALOT).

The CUReT database has only small rotation variations,
whereas our proposed MRELBP has a strong rotation invari-
ance property, nevertheless from Table XV we can see that
the proposed MRELBP with SVM produces the highest clas-
sification score on CUReT despite the fact that we have no
pretraining step, in contrast to [39]–[41], [43], and [53].

TABLE XIV

COMPARING THE CLASSIFICATION SCORES (%) ACHIEVED BY THE
PROPOSED APPROACH WITH THOSE ACHIEVED BY RECENT

STATE-OF-THE-ART METHODS ON THE UMD DATABASE

TABLE XV

COMPARING THE SCORES (%) ACHIEVED BY THE PROPOSED APPROACH

WITH THOSE ACHIEVED BY RECENT STATE OF THE ART METHODS ON

THE CUReT DATABASE. SCORES ARE AS ORIGINALLY
REPORTED, EXCEPT (∗) FROM [40]

TABLE XVI

COMPARING THE CLASSIFICATION SCORES (%) OF VARIOUS

LBP VARIANTS ON THE ALOT DATABASE. ALL RESULTS

ARE OBTAINED WITH A NNC CLASSIFIER

Table XIV lists the results on the UMD database, which
contains significant variations in scale and rotation. We can
observe that our MRELBP performs very well, producing
the highest score. Similarly the results in Table XIII reveal
that MRELBP significantly outperforms many state of the
art methods on the difficult KTHTIPS2b database. Finally,
the results on the large scale ALOT dataset, listed in XVI,
demonstrate that MRELBP performs the best. We would like
to mention that a recent LBP based approach named Pattern
Fractal Spectrum (PFS) proposed by Quan et al. [55] gives
97.5% classification accuracy with RBF kernel SVM classifier
on ALOT. Our MRELBP can produce 99.08% on ALOT with
SVM classifier.
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Finally, the proposed MRELBP descriptor has a modest
computational cost. In comparison with the traditional mul-
tiscale LBPriu2

r,p , our MRELBP is somewhat slower. However,

the computational complexity of MRELBP is much lower than
many existing LBP variants. As a matter of fact, in the feature
extraction stage MRELBP has a similar computational cost
as traditional multiscale LBP, except for the computation of
local medians in MRELBP, which is fast, however in practice
we use fewer neighbors for MRELBP than in many other
LBP variants. In the classification stage, the feature dimension-
ality of MRELBP (800) is moderate compared with various
LBP variants, so MRELBP is efficient as a texture descriptor.

V. CONCLUSIONS

We have presented a novel MRELBP descriptor to enhance
the performance of current LBP variants. It outperforms recent
state of the art LBP type descriptors in noise free situations
and demonstrates striking robustness to image noise including
Gaussian white noise, Gaussian blur, Salt-and-Pepper and
pixel corruption. The proposed MRELBP has attractive prop-
erties of strong discriminativeness, gray scale and rotation
invariance, no need for a pretraining, no tuning of parameters,
and computational efficiency. As future work, we wish to
investigate high–level applications such as image patching and
object recognition.
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