
1
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Abstract—Tracking multiple persons is a challenging task
especially when persons move in groups and occlude one an-
other. Existing research have investigated the problems of group
division and segmentation; however, lacking overall person-group
topology modeling limits the ability to handle complex person and
group dynamics. We propose a Graphical Social Topology (GST)
model in the RGB-D data domain, and estimate object group
dynamics by jointly modeling the group structure and states
of persons using RGB-D topological representation. With our
topology representation, moving persons are not only assigned to
groups, but also dynamically connected with each other, which
enables in-group individuals to be correctively associated and the
cohesion of each group to be precisely modeled. Using the learned
typical topology pattern and group online update modules, we
infer the birth/death and merging/splitting of dynamic groups.
With the GST model, the proposed multi-person tracker can
naturally facilitate the occlusion problem by treating the occluded
object and other in-group members as a whole, while leveraging
overall state transition. Experiments on different RGB-D and
RGB datasets confirm that the proposed multi-person tracker
improves the state-of-the-arts.

Index Terms—RGB-D Multi-Person tracking, topology model,
group behavior analysis

I. INTRODUCTION

MUlti-object Tracking (MOT) is a fundamental problem
in computer vision and contributes to many applica-

tions, including video surveillance [1]–[5], intelligent vehicles
[6], [7], and robotics [8], [9]. MOT has received increasing
attention and many approaches [10], [11], have been proposed
to tackle this problem with considerable progress. However,
this problem is far from being solved due to factors such as
complex dynamics, abrupt appearance changes, and severe ob-
ject occlusions, especially when the target objects are moving
persons. In this paper, we mainly focus on Multiple Person
Tracking (MPT), which is a task of predicting trajectories of
all person instances in a video. Conventional RGB-based MPT
methods that optimally link person detections with respect to
their appearance, motion, and time gap, have been intensively
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Fig. 1. The motivation of using a GST model. The groups G1, G2, and G3

are identical if considered as a node set of indices, where each node represents
one person. But from the view of topology configuration, G1 contains more
edges than G2 and G3, which means a stronger connection and a similar
movement among persons. In tracking process, G2 and G3 structures are
more likely to split than G1. The GST model with topology changes thus
allows propagating more information than a set of indices. In this paper, we
aim to investigate the topology changes in and out groups, and bridge the gap
between the group and individual tracking.

investigated [10], [11]; however, modeling complex dynamics
and target occlusions are often beyond the scope of their
confines and capabilities.

To address the occlusion problem, depth information ob-
tained from stereo cameras has been widely used in MPT [6],
[12]. In [6], [12], Ess et al. proposed a joint estimation ap-
proach based on a tracking-by-detection framework for multi-
person tracking in busy environments from a synchronized
camera pair. Depth estimation provided by the stereo pair
allows stereo-based methods to achieve good results in chal-
lenging scenarios, but if considering time of depth estimation
and person detection, the stereo-based MPT algorithms are not
efficient. The long time consumption makes stereo cameras
hard, if not impossible, to become an efficient end-to-end
detection and tracking system.

There are two kinds of acquisition sets which provide the
depth data directly. The first one is the RGB-D sensor which
utilizes reliable and affordable RGB-D sensors, such as Mi-
crosoft Kinect and Intel RealSense, thereby enabling reliable
RGB-D data acquisition with low cost, high efficiency, and
high quality, thus further advancing RGB-D related research
in computer vision [13], [14]. The second one is LIDAR
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(e.g., Velodyne), which provides an accurate dense 3D point
cloud, replacing the Kinect in outdoor driving platforms. New
registration methods [7], [15] combine dense point clouds and
RGB images, interpolate a sparse set of pixels, and provide a
dense map where each pixel has an associated depth value.

With RGB-D sensors, the occlusion problem in sparsely
populated scenes has been rectified. In crowded scenes where
objects have complex dynamics; however, the MPT problem
remains unsolved. To model persons’ dynamics in a crowd,
social behavior analysis [16]–[18] has recently been explored.
Sociologists observe that about 70% of the persons walk in
the form of the group. Persons within the same group has
a similar motion and to be close to one another, perhaps
subconsciously encouraging group interaction. The group-level
MPT methods [19]–[23], as opposed to conventional MPT,
aim to detect and track groups of persons that share spatial-
temporal characteristics (i.e., velocity, range, and geographical
goal). In crowded scenes, however, the number and structure
of groups vary over time as persons might enter or leave a
scene, randomly. Groups can also split, merge, be relatively
close to one another or move independently through a crowd,
which highlights the complexity involved in developing this
analytical framework. The group-level MPT methods are rea-
sonably competent for characterizing, detecting, and tracking
groups, although, few [20]–[23] comprehensively model group
dynamics from the dynamic group structures or evolving
topographical perspective.

Towards constructing a general multi-person tracker appli-
cable for both RGB and depth data, we propose a novel GST
model to quantify group dynamics in an RGB-D domain,
aiming to track in- and out-group movement accurately. We
statistically infer which persons move in formation or have
common movement, as well as modelling behaviors, within
and between groups. This information accompanies MPT ap-
plications where the goal is to differentiate in-group members
from out-group persons, or to predict the intention, destination,
and future manoeuvres of objects. The motivation for GST
(cf. Fig. 1) lays with the possibility of using common group
information to improve the tracking of individual persons as
well as using topology configurations to infer the birth/death
and merging/splitting of dynamic groups.

To sum up, the main contributions of this study to the field
are, as follows:

• A GST model. The social affinity in natural crowds
is quantified according to topological modelling. This
topology relations analysis is formulated using strong
contextual information to infer group and individual
states.

• An RGB-D based group learning strategy. This strategy
integrates birth, update, merge, and split modules to
topologize group dynamics. Aggregated with the trained
typical topology patterns, this learning strategy facilitates
the description of topology transformation.

• A unified group and individual joint tracking framework.
This fills the gap between group modeling and MPT
by simultaneously identifying the group and individuals
within.
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Fig. 2. The framework of the proposed graphical social topology model. First,
we group the clusters based on confident tracklets using the social affinity
matrix. The grouping is then aggregated with the topology management with
the movement of persons, in which a joint group and individual tracking
method is proposed to solve the data association problem. Finally, we use
linear programming to solve the individual tracking and output the complete
trajectories.

By integrating the proposed GST model with the classical
data association method, we develop an MPT algorithm can
be applied directly to both RGB and RGB-D data.

II. RELATED WORK

In this section, we review the most relevant tasks of the
group and individual tracking in computer vision, including
multiple person tracking, RGB-D tracking, group modeling,
and group tracking.

Recently, CNN-based MOT methods [24]–[28] have attract-
ed increasing attentions. The CNNs architecture has been used
for modeling appearance. The high-level feature is extracted
by CNNs trained for a specific task. Sadeghian et al. [25]
designed a recurrent neural network combining the deep
features to track the unreliable detections; Chu et al. [24] used
the attention mechanism to track the long trajectory; Hilke et
al. [26] performed the detection and tracking in a single neural
network architecture instead of heuristic decisions over the
track lifetime; Bae et al. [27] combined online transfer learn-
ing to improve appearance discriminability by adapting the
pre-trained deep model during online tracking. In general, deep
networks can be designed as on-line appearance classifiers to
discriminate targets from backgrounds. The deep appearance
learning methods learn discriminative appearance models from
large training datasets, since the conventional appearance
learning methods do not provide a rich representation that can
distinguish multiple persons with large appearance variations.
However, in the RGB-D domain, the RGB-D appearance
feature is not in the scope of the above CNN-based methods.
In this paper, our graphical social topology model is based on
the social context information among the objects, exploring
the social forced impact in RGB-D multiple person tracking.

RGB-D tracking aims at achieving real-time tracking inte-
grated with the RGB-D detection. In [29], an SVM classifier
is trained using HOG features extracted in color and depth
frames, large displacement optical flow is integrated, and
occlusion is handled by assuming that the target is the closest
object in the bounding box when there is no occlusion. In [30],
Munaro et al. used a depth-based sub-clustering method for
tracking people within groups or near the background and a
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joint likelihood for decrease drifts and ID switches problem.
In [7], [31], Gao et al. proposed real-time graph models to
infer multiple objects according to the RGB, motion, and depth
domains. In [8], Linder et al. proposed a fully integrated real-
time multi-modal RGB-D people tracking system for moving
platforms in crowded environments. These works present real-
time single and/or multi-object tracking systems. Nevertheless,
few of them considers the interaction between objects, and
therefore lack a strong social context of moving objects.

Social context has been studied intensively in this decade.
Researchers target to find a stable and accurate clustering way
to describe movement in the form of groups. These studies
provide the trajectory-level analysis to model and discovery
groups in crowded and semi-crowed scenes. These group
modeling methods, together with social behavior research,
formulated as social force models [16], [32], are used as
high-level constraints and have attracted increasing attention
in the MPT framework. Pellegrini et al. [19] proposed an
effective dynamic group model, considering nearby pedestri-
ans’ positions. Qin and Shelton [33] used a dual optimization
framework and a linear programming solution to model the
social group behavior as a high-level clue. Bazzani et al.
[34] assumed a tight relation of mutual support between the
modeling of individuals and groups, promoting the idea that
groups are better modeled if individuals are considered, and
vice versa. These group-based tracking methods confirm that
the group model in MPT framework could be a strong and
effective constraint. The proposed GST model uses a topology
graph to represent the group update, merge, and split flexibly,
nevertheless, it is not pure energy or cost optimization manner
solved in a local search manner.

In order to create a feasible comparison to [23], [33], [35],
we propose to utilize social grouping information as natural
and flexible high-level constraints (cf. Fig. 2). Our study
therefore, mainly focuses on dashed rectangles and how to
design and use effective topolographical information to garner
insight into group and individual dynamics from a social forces
perspective. Accordingly, our work focuses on using analytical
social groups to maintain individual identities by the group and
individual tracking in the RGB-D domain.

III. OVERVIEW

The proposed method falls into the tracking-by-detection
framework. Suppose, a set of tracklets L = (n1, · · · , nn) is
generated through a video sequence and each tracklet (ni)
is either a consecutive sequence of detection responses or
interpolated responses which contains the same person. Given
certain spatial-temporal constraints, the goal of the MPT is
to determine which tracklets correspond to that person. The
RGB tracking methods calculate tracklet affinity, solely within
the RGB domain. Our MPT model is based on these RGB-D
tracklets.

First, we propose an RGB-D tracklet generation method
to associate the detection results (the detection results come
from an RGB-D detector, also, could be provided within
datasets). In each frame f , the tracklet nfi , corresponding
to the person i, is represented by a set of state variables

TABLE I
NOTATIONS OF THE VARIABLES

Symbol Description
T social affinity matrix [Tij ]
ni node/tracklet, ni = (ai, Xi, vi, oi)
li motion vector of ni, li = (Xi, vi)
Xi location vector of ni, Xi = (xi, yi, zi)
G group {Gk}
E edge set in G
Nk the size of group Gk: number of nodes in Gk

gk the center of group Gk

πi topological representation of ni in group, πi = (ri, θi)
Dk

ni
degree of node ni in Gk

C sampling matrix in individuals
B sampling matrix in group
Lij co-existing period between ni and nj

Aij appearance affinity between ni and nj

Ψij location affinity between ni and nj

M binary association matrix, M = [Mij ]
α weighting factor (Eq. 3)
λ distance threshold (Eq. 4)
l co-existing period threshold (Eq. 5)
τ edge weight threshold (Sec. IV-E)

nfi = (afi , X
f
i , v

f
i , o

f
i ), where afi , Xf

i , vfi , and ofi denotes
the appearance, position, speed, and orientation, respectively.
We calculate the tracklets social affinity, as a social topology
matrix based on the tracklets, to estimate group dynamics and
spatial topology, which supports learning typical topographical
group patterns in the sequence found within groups of people.
These learned group patterns are regarded as the reference
group during the initialization of group tracking. Further,
we design the birth, death, merging, and splitting modules
to reflect group evolution processes during tracking. Finally,
joint group-individual tracking is proposed to identify the
same groups in the sequence and associate individuals within
groups. The proposed model is provided in Fig. 2, with
pertinent notations for the model, described in Table I.

IV. RGB-D GRAPHICAL SOCIAL TOPOLOGY MODEL

A. RGB-D Tracklet Generation

We extract the RGB-D feature for the object appearance.
Given a video with depth data, the combined features in the
Region Of Interest (ROI) is extracted to describe the object’s
appearance and 3D position. Assuming that each object is an
isolated 3D bounding box, a set of RGB-D based features
is extracted, including Histograms of Oriented Gradient and
Color (HOGC) features [36], and Histogram of Oriented Depth
(HOD) features [9], [37]) to discriminate objects from the
background.

RGB-D data project onto the X-Y and the Y-Z planes. The
Y-Z plane is an auxiliary plane, where the average depth value
is calculated for one object. We define this object and the
corresponding background seeds as a set of pixels inside the
ROI. To obtain object seeds in the projected 2D bounding
box, we remove these pixels corresponding to the background
seeds. In addition, we utilize an online adaptive feature pool,
the 14*7 HOGC [23] feature. In the X-Z plane, we extract 9*5
variation feature bins [37] on the point clouds locations. There
are totally 143 bins of RGB-D features ai in total to represent
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Fig. 3. RGB-D feature extraction [23]. Best viewed in color.

an objects ni. Then the appearance affinity Aij between ni
and nj is defined as

Aij = exp(−1/c2 · L2(ni, nj)
2), (1)

L2(ni, nj) = ‖ai − aj‖22 , (2)

where L2 computes the square of the L2 norm, and c is a
normalization factor.

In the initialization of the RGB-D tracklets generation, a
set of tracklets is generated after a low-level association in
an overlapping manner. Targets on each frame are detected
using a pre-trained detector [30], [38]. Similar to [7], [31], a
nearest neighbor detection association method is adopted to
generate the initial tracklets. For each unassociated detection,
a Kalman filter based tracker is initialized with position and
velocity states. A detection A is associated with a detection
B in the next frame if B has the minimum distance to the
predicted location and overlaps at least 50% (measured as
size(A ∩ B)/size(A ∪ B) in size with detection A. The
corresponding Kalman filter is then updated with the newly
associated detection. The tracklets generation terminates if no
association is found for more than two consecutive frames, or
one detection is associated by multiple tracklets.

B. Social Topology Matrix
Based on the RGB-D tracklets, we define a social affinity

matrix T = [Tij ] to measure the social affinity between
tracklets ni and nj . Note that only confident tracklets are
considered for grouping analysis, as there might be false
alarms and incorrect associations in the input tracklets. We
define a tracklet as a confident one if it is long enough (more
than l frames) since most false tracklets are short. The social
affinity Tij between two confident tracklets is then given by

T = αdTd + αtTt + αvTv + αoTo, (3)

where Td, Tt, Tv , and To are the social affinities based on
distance, time, speed, and orientation at frame f 1. αd, αt, αv ,
and αo are weighting factors.

1The superscript f is omitted for simplicity.

Distance. Social behavior analysis shows that pedestrians
tend to unconsciously organize the space around them in
particular configurations with different degrees of intimacy
[18]. The shorter the distance between two persons, the higher
the degree of intimacy. We adopt different distance measure
strategies according to the states of objects in datasets. In
RGB-D datasets with the real-world depth information, dij
denotes the world-coordinate average distance between two
persons. In RGB datasets, dij denotes the pixel distance
between the center points of the persons’ bounding boxes in
the images. The distance affinity is defined as

Td(ni, nj) =
λ

2dij
. (4)

Here, we define a distance threshold λ = wi + wj , where wi
and wj are the width of the person i, and j, respectively. λ
is learned on training datasets, which will be detailed in Sec.
IV-F.

Time. It is observed that members in the same group usually
appear and disappear at a similar time. The time term indicates
how long two tracklets ni and nj perform similar movement
and stay close to each other. Let Lij denote the length of the
co-existing period. The time affinity between a pairwise of
tracklets is defined as

Tt(ni, nj) =
2Lij
Lij + l

, (5)

where l is the co-existing period threshold of two tracklets.
This threshold guarantees that two tracklets ni and nj last for
at least l frames.

Speed. Persons in a group tend to have the same speed. Let
vi and vj denote the speeds of tracklets ni and nj respectively.
The speed affinity between ni and nj is defined as

Tv(ni, nj) = N (‖vi − vj‖), (6)

where N (·) is a min-max normalization operator applied
independently for each pairwise tracklets to linearly scale their
speed differences into the range [0, 1].

Orientation. We adopt an improved Potts model similar to
[39] to define the affinity among different moving orientations
as

To(ni, nj) =
1 + cos(oi − oj)

2
, (7)

where ob = 2πqb
q and b = i, j. The person’s moving orien-

tations are quantified into q bins. Here we use q = 8, which
means a resolution of 45◦ from ‘0’ to ‘7’ between neighboring
orientation bins. Additional ‘8’ means that the person stands
still. It is the neighbor bin of any orientation bin. qb is the
moving orientation.

We calculate the speed and orientation factors in two
terms. This enables the effectiveness of the social affinity
against poor detections. Especially, the ‘8’ orientation bin is
assigned to a stationary object, which causes the stationary
pairwise tracklets to keep a stable social affinity. The social
topology matrix can also be employed as a tool to describe
the group dynamics for different applications. We apply the
social topology matrix to group and individual tracking in this
paper.
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Fig. 4. Representation of objects in different measurements. (a) objects in
bounding boxes; (b) objects in tracklets; (c) objects in a topological group; (d)
social affinity matrix among objects in a group; (e) edge connection among
objects in a group; (f) topological description of objects.

C. Topological Representation

Given a social affinity matrix T , a graph is defined as
G = ({n1, · · · , nN}, E(Tij)), wherein N objects constitute
the set of nodes {n1, · · · , nN} linked by edge set E, and
each node ni is associated with the tracklet of one object (one
tracklet equals one node in graph). For instance, using this
definition, the Groups G1, G2 and G3 in Fig. 1 can be denoted
as G1 = ({n1, n2, n3, n4} , {T12, T13, T14, T23, T24, T34}),
G2 = ({n1, n2, n3, n4} , {T12, T23, T24, T34}) and
G3 = ({n1, n2, n3, n4} , {T12, T23, T34}), respectively.
As the weight of the edge set E is measured by the dynamic
social topology affinity matrix T (Eq. 3), G is a dynamic
topological graph representing the structure of the in-group
members. Fig. 4 visualizes objects in different measurements;
(a)-(c) show the objects in the image, as tracklets, and in the
group. The edge connection relation in (c) is decided by the
social affinity matrix in (d). If Tij is larger than the threshold
τ , there is an edge between them and the according element
in (e) is 1, and vice versa.

In order to describe the group in a whole moving unity,
we record a virtual group center gk = 1

Nk

∑
Xi, where

Xi ∈ Gk. The center and the covariance matrix of each group
can be characterized differently, e.g., based on a mixture of
Gaussian components. We represent the topology of a group
as πi = (ri, θi), where ri represents the distance between a
node and the virtual center. θi = tan−1 |zi−zk||xi−xk| denotes the
topology orientation bin within a group, which is quantified
in the interval [0,7] and θi ∈ Z (see in Fig. 4(f)). With the
affinity matrix T and the topology relation π, G is flexible to
update the group structure and model the interaction among
group members.

D. Social Topology Property

We introduce two properties, i.e., compactness and con-
sistency, of a social topology. The compactness property
quantifies the spatial structure of the topology. The consistency
property describes the temporal and spatial evolvement of
the in-topology members. Such properties enable the social

topology to handle group management flexibly, including
splitting and merging.

Compactness. In graph theory, the degree of a node in
a graph is the number of connections (or edges) it has to
other nodes. Here we adopt the ‘degree’ to define the group
compactness to measure the edge density in a group. Let Dni

record the number of edges incident to ni, and Dk the total
degree of all the nodes in Gk. The compactness constraints
are defined as {

I : Dk > 2(Nk − 1),
II : maxDni

= Nk − 1,
(8)

where Nk is the size of a graph recording the number of the
nodes in the graph. Constraint I guarantees that the topology
has a high edge density. This can exclude the groups with
a ‘line-like’ topology, such as G3 in Fig. 1(c). Constraint
II guarantees a compact structure. This enables the in-group
members to distribute around a center member, i.e., a ‘star-
like’ topology. A qualified topology configuration of a group
should satisfy at least one of the above two compactness
constraints. (Fig. 5 visualizes the typical group topologies
satisfying constraints I and/or II.)

Consistency. We define topology consistency to represent in-
group spatial evolvement in sequences. When tracking target
groups, each node ni is characterized by the correspond-
ing motion vector li = (xi; x̃i; yi; ỹi; zi; z̃i)

T , where Xi =
(xi; yi; zi) represents the vector position and vi = (x̃i; ỹi; z̃i)
the vector velocity. Here, each target is considered a specific
point and its motion is assumed to be positioned along the
horizontal X-Z plane. So, the motion vector is calculated as
li = (xi; x̃i; zi; z̃i)

T , and the state of the ith target is given
by:

lfi = Clf−Fi + Γϕf−F , (9)

where
C = diag(C1, C1),

C1 =

(
1 F
0 1

)
,

Γ =

(
F/2 1 0 0

0 1 F/2 1

)T
.

Here, F is the time interval between two groups, and ϕ
is the system dynamics noise. Considering the nonlinear
motion, especially the abrupt speed and orientation varia-
tion in the tracking, the system dynamics noise ϕ is rep-
resented as a sum of two Gaussian components p(ϕ) =
ηG (0, Q1)+(1− η)G (0, Q2), where Q1 = diag(σ2, σ2

1) and
Q2=diag(σ2, σ2

2). σ is a standard deviation assumed to be
constant for x and y. σ1 � σ2 are standard deviations allowing
smooth and abrupt changes in the velocity, respectively. The
coefficient η has values in the interval [0, 1] (we set η = 0.7 in
the experiments). C and Γ control the motion state of a target,
where C defines the motion update interval and Γ controls
the noise update. More sophisticated models can be adopted
to model the targets interactions in each group, such as the
developed in [40].
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Fig. 5. The learned basic topology patterns. N and D record the size and total degree of a topology pattern, [·] denotes which compactness constraint the
topology pattern satisfies in Eq. 8. The frequency of each topology pattern in the training datasets is shown above each pattern.

E. Group Update

We formulate the topology online update process by four
submodules: Birth, State Update, Merge, and Split, as de-
scribed in Algorithm 1. Compared with other clustering and
inference methods, the proposed model is able to automatically
discover the number of groups and perform updating, merging,
and splitting with the dynamic social topology.

Birth. Initially, the edge set is empty, E = {∅}, and the
social affinity Tij is used as the edge weight. There is an edge
between ni and nj if Tij > τ , where τ is the edge threshold,
the learning of which is introduced in Sec. IV-F. We then
group the connected nodes according to eight typical topology
patterns, as shown in Fig. 5 (cf. Sec. IV-F). If the topology
of the connected nodes matches one of the typical topology
patterns, we merge them as one group. In the Birth-Module,
we do not initialize groups with a large size. This avoids the
large-size topology with a false tight structure because large-
size groups might easily split up in the following frames.
Conversely, small groups are assembled in the Merge-Module
when they perform a high social affinity.

State Update. The topology structure of a group is related
to the social affinity in tracking, so the existing edges should
be updated by the social affinity Tij . Further, when Tij
between two nodes from different groups is more than the
edge threshold τ , the management goes to the Merge-Module.
When Tij between in-group members is less than the edge
threshold τ , the management goes to the Split-Module. Each
edge by Tij between the pairwise nodes is updated by the state
transition matrix C in this topology. Moreover, the Update-
Module is utilized to solve the self-occlusion problem inside
a group (details in Sec. V-B).

Merge. When two groups move close to each other and the
states last for l frames, they are merged into a big group. It
should be noticed that not all the groups moving close (Tij >
τ ) can be merged together. The reasons are that the topology
of merged group is expected to be as compact as possible,
and the new group should satisfy the compactness constraint
defined in Eq. 8. The total degree of the merged group is
D = DG1 + DG2 + Dnew, where Dnew is the added degree
generated by new edges between two groups. We define the
merging constraint as

Dnew > min(N1, N2), (10)

3
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Fig. 6. An example for the false and correct merging case. G3 and G4

are new groups consisting of G1 and G2. The dash lines are new edges.
Only G4 satisfies the merging constraint: the Dnew of G4 is larger than
min(N1, N2) = 2, according to Eq. 10.

where N1 and N2 are the size of G1 and G2, respectively.
Dnew should be larger than the size of the smaller group, i.e.
min(N1, N2). An example is shown in Fig. 6.

Split. When the members inside a group move at different
velocities and/or orientations, this group is considered to split
into small groups. Under this circumstance, the edge weights
between members increase largely, and the edge is removed
when Tij is lower than the threshold τ .

The above group management scheme has the following
advantages. First, one can redesign and debug individual com-
ponents effectively. Second, the modular framework makes it
easy to replace each module or to insert a new one. Third,
it enables separate training of each module, speeding up the
model training.

F. Topology Pattern Learning

We investigate spatial organization of walking pedestrian
topology to determine whether there are typical patterns within
spatial topological configuration. Such topology patterns are
used in groups initialization and update.

Given a set of detections and the corresponding Ground
Truth (GT) in the training sequence, the GT IDs are first
assigned to each person as complete trajectories. Assuming
there are N people (i.e., trajectories) in one frame and the co-
existing times are longer than l frames. We therefore calculate
the N×N social topology matrix T according to Eqs. 3-7 and
achieve a fully connected graph, where edge weights are the
social topology affinity Tij . In clips of the sequences (which
have groups of people within), we use a semi-unsupervised
method to identify the basic group pattern and the optimal
parameter settings. We give an augmented group a numerical
value N ∈ {2, 3, 4} in order to identify a typical group
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Algorithm 1: Group update

• Birth
Input: E = {∅}
Output: G = {Gk}
Step-1:

Calculate T = [Tij ] in Eq. 3;
For each connection Tij ;

IF Tij > τ , E = E ∪ {(ni, nj)};
End for

Step-2:
Cluster E and generate the coarse group set {Gk};
For each group Gk

IF Dk dissatisfies Eq. 8, GOTO Split-Module;
Regulate the topology by typical topology patterns in Fig. 5;

End for

• State Update
Input: Gf−1 =

{
Gf−1

k

}
, T f = [T f

ij ]

Output: Gf =
{
Gk

f
}

For each group Gf−1
k

Step-1:
Update edge weights by Tij , i, j ∈ Gk;

Step-2:
IF group size Nf

k < Nf−1
k , ADD virtual nodes (Sec. V-C);

IF edges connect with other groups Tij > τ , GOTO Merge-Module;
IF the compactness Dk dissatisfies Eq. 8, GOTO Split-Module;

End for

• Merge
Input: Gk1, Gk2

Calculate the compactness Dnew of group Gk1 ∪Gk2;
If Dnew > min(Nk1, Nk2)

Output: Gnew = Gk1 ∪Gk2;
Else

Output: Gk1 and Gk2;

• Split
Input: Gk , T
Output:

{
G

′
k

}
While Dk dissatisfies compactness constraints in Eq. 8

Cut the edge with the lowest Tij ;
G

′
k = Gk1 +Gk2, Dk = Dk1 +Dk2 +Dnew;

End while

pattern according the size of {2, 3, 4}. We further calculate the
number of groups and times periods in which people switched
between groups in the sequences. We define the error function
as argmin εs + εg , where εs is target switching error and
εg is the group number error (NG − Ngt)

2. Ngt represents
the number of tracks in GT. We search optimal parameters
for the large group with the lowest switching error εs. The
error function essentially guarantees that the learned group
pattern is universal and movement is stable. To find an optimal
set of parameters, we solve it with gradient descent, starting
from multiple random initializations. Fig. 5 summarizes eight
types of typical topology pattern, which are the most frequent
configurations identified in group sizes, ranging from two to
four.

V. GST FOR TRACKING

In this section, we present an RGB-D MPT method based
on the proposed GST model, including identifying the same
groups in the sequence and associating individuals within
groups.

A. Group Tracking
Typically, a group is easier to track than an individual

object. The whole group usually occupies a larger region than
a single person, which means that groups are less likely to get
lost or drift. This observation is exploited in our framework,
where the group configuration at one-time step can be used
as a reference for the next one. Some grouping results are
interrupted by false object detection results. Hence, we link
the groups of the same topology through the time span of
the ‘poor detection’. Recall that a group is modeled as a set
of nodes and edges in a graph Gk. We use the consistency
property in Eq. 9 to estimate the virtual center state of a group
as

ĝf+Fk = gfk +

N∑
ni∈Gk

(Blfi ) + Γϕf , (11)

where
B = diag(B1, B1),

B1 =

(
0 F/Nk
0 0

)
,

gk and ĝk are the center and virtual center of the group,
respectively. B and Γ are the parameters controlling the status
variation of the group, where B defines the motions of all
members in Gk, and Γ controls the noise update. F is the
time interval between two groups in the sequence. We measure
the motion affinity of two groups by the motion smoothness
between the group mean trajectories of the two corresponding
groups ĝf+Fi and gf+Fj .

B. Individual Tracking
Individual persons in the group should also be identified,

when we obtain the group tracking results. Given the group
relation G = ({n1, · · · , nN}, E), we adopt a linear pro-
gramming framework [41] to solve the in-group association
problem. Compared with the global group association, the
in-group matching is a subgraph searching problem in the
grouping context. We define a binary indicator matrix Mij

to describe the association relation among the tracklets, which
decides whether the tracklets ni and nj belong to the same
person or not. If connected, Mij = 1; otherwise, Mij = 0.
The optimal tracklets connections in the groups are solved by

arg max
M

∑
i,j

(Aij + Ψij)Mij , (12)

with the constraints that
∑
iMij ≤ 1 and

∑
jMij ≤ 1. Aij

denotes the appearance affinity between the nodes ni and
nj , detailed in Sec. IV-A. Ψij denotes the position affinity
(πi = (ri, θi)) between node ni and nj , according to the group
center, given as gk.

The linear programming problem in Eq. 12 can be solved by
the Hungarian algorithm [41] and the iterative approximation
method [42], or can be interpreted by a network flow method
and solved by the successive shortest paths [10], [11]. Here,
since the grouping results provide a fix time interval for
individual tracking, the computational cost is greatly reduced,
compared with the global association methods. We adopt the
Hungarian algorithm to solve Eq. 12 in polynomial time.
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C. Joint Group-individual Occlusion Handling

The proposed model relies on a fixed set of detections
as input. This has the drawback that much of the image
information is discarded during the non-maxima suppression
step built into any detector, potentially ignoring spatially
occluded persons. The group members often occlude each
other.

To address this issue, we add virtual nodes to the groups
when a group does not contain any appropriate detection.
Multiple persons moving together usually causes occlusion.
Particularly, persons can be partially or totally occluded. In this
case, even the best detector is not able to discover the persons
without context information. Generally, group management
identifies such two groups of different sizes as different groups.
Nevertheless, in our model, the centers of two groups with
different sizes could also be linked by Eq. 11. Virtual nodes
{n̂i} are added to a specific group when the size of the
group is less than that it ought to be. We then, consider
adding virtual nodes to such groups and inferred positions of
the occluded people through topological configurations. The
spatial positions of the virtual nodes are estimated as

l̂fo = lf−Fo
o +

N∑
ni∈Gk

(Blfi ) + Γϕf , (13)

where Fo is the occluding time of the estimated person lo, and
{li} denote the motion vectors of other members in group Gk.
The definition of B and Γ are the same as those in Eq. 11.

D. Single instance consistency

When persons do not move in a group, these tracklets need
to be connected as a long trajectory without the grouping
information. We promote the objective function in Eq. 12 as

arg max
M

∑
i,j

(Aij + Ψ̂ij + T̂ij)Mij , (14)

where
∑
iMij ≤ 1 and

∑
jMij ≤ 1. We drop the position

affinity Ψij in Eq. 12, instead adding the estimated position
affinity Ψ̂ij and the motion affinity T̂ij . The affinity Ψ̂ij is
calculated between the start position of tracklet ni with the
estimated position of n̂i as

Ψ̂ij = G
(
Xi − X̂i,

∑
X

)
G
(
Xj − X̂j ,

∑
X

)
, (15)

where X̂i and X̂j are estimated by the individual consistency
property in Eq. 9. G(·) is the Gaussian function ranging in
[0, 1], where the mean value is Xi−X̂i and the variation is∑
X . The motion affinity in Eq. 3 is modified as T̂ij =

Tv (n̂i, nj)+To (n̂i, nj). The estimated position of node n̂i is
calculated by l̂fi = Clf−Fi + Γϕf−F , which is detailed in Eq.
9. This assignment problem in Eq. 14, similar to Eq. 12, can
be solved optimally by the Hungarian algorithm in polynomial
time.

VI. EXPERIMENTS

We evaluate the performance of the proposed GST model
against state-of-the-art methods on several challenging RGB-
D and RGB datasets. We then conduct group discovery and

TABLE II
THE PARAMETERS USED IN THE EXPERIMENTS

Parameter αt αd αv αo l τ λ
RGB-D 0.4 0.2 0.2 0.2 5 0.5 1.2[m]

RGB 0.4 0.2 0.2 0.2 5 0.5 50[px]

TABLE III
TRACKING RESULT COMPARISON ON RGB-D PEOPLE DATASETS

Method MOTA↑ MOTP↑ FP↓ FN↓ IDS↓
DP [10] 62.3% 71.1% 13.4% 38.7% 48
OC [30] 71.8% 73.7% 7.7% 20.0% 19

MHT [22] 78.0% N/A 4.5% 16.8% 32
DSA [31] 75.8% 73.7% 7.2% 18.5% 24
LGM [7] 78.3% 75.5% 4.9% 27.7% 16
PHD [48] 75.1% 74.6% 1.5% 23.3% 7

Ours 81.2% 75.6% 3.9% 12.7% 9

model ablation in different complex sequences. Experimental
results clearly show the benefits of utilizing social topology in
the RGB-D MPT application.

Datasets and Evaluation Metrics. The proposed method
is tested on three kinds of public datasets, including RGB-
D indoor datasets [9], [43], RGB-D outdoor datasets [31],
[44], [45], and RGB tracking datasets (MOT Benchmark
[46]). We adopt the commonly used CLEAR MOT track-
ing metrics [46], [47] to evaluate the tracking performance.
Recall and Precision (Prec.) are two basic metrics. Multi-
Object Tracking Accuracy (MOTA) and Multi-Object Tracking
Precision (MOTP) reflect the general performance. The ratio
of correctly identified detections over the average number of
ground-truth and computed detections (IDF1). Mostly Tracked
(MT) and Mostly Lost (ML) scores are computed on the
entire trajectories and measure how many Ground Truth (GT)
trajectories are successfully tracked (tracked for at least 80%),
and lost (tracked for less than 20%). Fragment (Frag.) and
ID Switch (IDS) record how many times the GT trajectory is
interrupted and switched by a false ID. False Positive (FP) and
False Negative (FN) rates record the number of false positives
and negatives (missed objects), respectively.

A. Training

Training datasets include three parts: 1) 2D MOT bench-
mark from the MOT training sets (i.e., the available camera
calibration parameters); 2) eth & hotel [19] (i.e., 650 tracks
including top-view, desired speed and direction are provided),
and 3) SDL-Campus RGB-D datasets (i.e., 500 tracks which
include depth values derived from depth sensors). We set the
confident tracklet threshold as l = 10 during the training
stage. Then during optimization, we set the distance threshold
parameter λ as the searching field [0, 3]. An overview of
typical settings for all parameters is provided in Table II.
These parameters have been chosen conservatively and are
not specified for any particular dataset. This demonstrates the
robustness of the proposed model in a variety of scenarios.

B. Results on RGB-D Indoor Datasets

We apply our tracker to a publicly available dataset, the
RGB-D people dataset [9], [43], which contains a sequence
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of over 3000 RGB-D frames captured through three vertically
mounted Microsoft Kinect sensors. The sensor configuration
is placed in a busy university hall at approximately 1m height.
For all the compared trackers in Table III, we use the same
tracking input generated by a people detector [30], that is
available in the Point Cloud Library (PCL 1.7) [49]. Table II
shows the parameters we used in the experiments. In order to
verify the accuracy and efficiency of the proposed method, we
compare outputs with the following state-of-the-art methods:
• DP [10]: RGB + Dynamic Programming;
• OC [30]: RGB-D + Online Clustering;
• MHT [22]: RGB-D + Multi-model Hypothesis Tracking;
• DSA [31]: RGB-D + Depth Structure;
• LGM [7]: RGB-D + Layered Graphical Model;
• PHD [48]: RGB-D + Flow Network.

DP [10] is a dynamic programming method based on a
globally-optimal but greedy solution in the RGB domain. It
is not technically a grouping method, and all tracklets are
considered individuals during whole tracking. OC [30] is an
online grouping method based on clustering, assuming a fixed
number of groups in the scene which is different from our
proposed method. Our GST model is able to add and remove
tracking targets according to the social affinity matrix. MHT
[22] is an RGB-D tracking model based multiple hypotheses.
A very large amount of hypotheses are added in the tracking
process with the number of targets increasing, so the solution
is more complex. DSA [31] and LGM [7] are online RGB-
D grouping methods based on depth structure and layered
graph, respectively. For both these methods, depth information
is considered a strong constraint in the grouping, but not in
the social context. Consequently, there is presently no flexible
way to add and remove members in evolving groups. PHD
[48] is an RGB-D data association method based on multiple
probabilistic hypotheses. Different from the MHT method,
PHD adopts a global network flow solution, which can avoid
the hypothesis explosion problem observed with the MHT
method.

Table III shows the experimental results of our approach
and other state-of-the-art methods by comparison. DP is a
baseline method in our experiments. We observe that our
model achieves the best MOTA, MOTP, and FN, and at the
same time, the second-best FP and IDS metrics. Our method
improves overall performance (MOTA) by approximately 3%.
We also observe that the tracklet-level association methods
[10], [22], [30] usually fill small gaps between correct tracklet
pairs in occlusion cases, but only during grouping [7], [31],
which adds virtual nodes to the group context and can provide
better estimates for the occluded objects, especially in long-
term occlusion cases. The methods which do not implement
grouping skills [10], [30], [48] usually fail in challenging long
trajectory cases, causing fragmented trajectories in the tracking
results.

C. Results on RGB-D Outdoor Datasets

We further test the proposed model on three RGB-D outdoor
datasets: the ISR-sync dataset [45], the SDL dataset [31], and
the LIPD dataset [44]. Each video sequence has a variable

TABLE IV
TRACKING RESULT COMPARISONS ON RGB-D OUTDOOR DATASETS

Dataset Method Recall↑ Prec.↑ MT↑ ML↓ IDS↓ Frag.↓
DP [11] 67.4 72.1 15.2 31.8 287 378
SSP [10] 69.6 72.8 9.0 24.2 345 323
DCO-X [1] 73.4 78.3 19.6 19.6 89 125

ISR- SegTrack [50] 76.2 79.2 25.8 16.7 102 147
Sync DEEPCC [2] 79.3 87.4 27.2 19.6 134 153

DSA [31] 82.7 86.8 28.8 13.7 90 108
LGM [7] 85.0 89.7 27.2 19.1 121 97
Ours 87.5 92.3 31.8 21.2 102 134
DP [10] 64.6 71.3 14.1 25.0 154 166
SSP [11] 62.9 70.5 9.8 30.4 168 189
DCO-X [1] 70.4 76.4 19.6 25.0 65 74

SDL SegTrack [50] 72.3 77.8 18.4 10.8 55 71
DEEPCC [2] 76.5 82.6 21.2 12.4 87 95
DSA [31] 79.6 87.3 25.0 15.2 60 68
LGM [7] 82.4 87.3 27.6 8.7 65 57
Ours 84.6 89.0 30.4 9.8 58 71
DP [10] 73.2 77.8 18.1 28.6 305 198
SSP [11] 72.8 76.4 10.4 33.8 324 219
DCO-X [1] 78.4 78.6 19.5 22.1 92 123

LIPD SegTrack [50] 77.6 80.2 13.0 19.5 75 118
DEEPCC [2] 81.3 86.6 26.8 13.3 74 101
DSA [31] 79.6 87.3 25.0 15.2 60 68
LGM [7] 84.9 88.3 29.7 11.9 82 47
Ours 86.7 90.0 33.8 10.4 71 65

number of target objects (Car, Pedestrian, and Cyclist). The
videos are recorded at 10 FPS although these datasets are very
challenging since 1) the scenes are crowded (with occlusion
and clutter); 2) the camera is not stationary; and 3) target
objects appear in arbitrary locations with varying sizes. To
keep the same tracking input with other trackers, we adopt
the same detection results as in [7], [31].

Table IV shows the results of our model in comparison
with state-of-the-art trackers: DP [10], SSP [11], DCO-X [1],
SegTrack [50], DEEPCC [2], DSA [31], and LGM [7], where
the DP, DSA, and LGM methods are kept the same as those
adopted in the previous RGB-D people dataset. SSP is a
typical data association method searching successive shortest
paths in an association graph. DCO-X is an energy-based
model proposed in [1], where discrete- and continuous-energy
minimization is defined according to the tracklets exclusion
procedure. The SegTrack method uses joint segmentation and
tracking superpixels and targets within the RGB domain. The
DEEPCC tracker adopts CNN-based features to design a more
accurate appearance affinity. Here we use the one-camera
tracker and from the statistical outputs on the RGB-D outdoor
datasets reported in Table IV, we obtain similar findings to
those obtained from the RGB-D indoor datasets. Compared
with RGB-based trackers [2], [10], [11], [50], our method
performs more accurately with more robust results (improving
∼7% in Recall and ∼6% in Precision), and at the same time,
achieving almost all the best performance in the metrics, MT,
PL, ML. This verifies that the RGB-D based model combining
depth information shows a more discrimining ability than
the RGB-based pixel-level measurement during spatial object
association. This is integrated into our GST model as a social
context constraint, showing superior performance over RGB-
based technologies. In comparison with the RGB-D based
tracker [7], [31], our model improves on average more than
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2% in Recall and Precision on the ISR-Sync, SDL, and
LIPD datasets. This confirms that our GST model with the
initializing, merging, and splitting modules is more flexible at
describing and dividing groups than pure grouping methods
[7], [31] during tracking.

D. Results on RGB Datasets

To further assess the performance of the proposed model,
we apply it to commonly used RGB datasets: the MOT
Benchmark [46]. It consists of several kinds of evaluations.
To validate the effectiveness and robustness in the 3D and
2D domain, here we choose the 3D MOT 2015 dataset,
2D MOT 2015 dataset, MOT16 dataset, and MOT17 dataset
in the benchmark. The evaluation results in Table V are
generated from the MOTChallenge benchmark website [46].
The appearance feature used in RGB datasets is different from
that in the RGB-D datasets. For a fair comparison, we keep
the appearance feature extraction the same with that in the
MTEV method [23].

The 3D MOT 2015 dataset consists of 2 sequences for
training and 2 for testing, which is part of the 2D MOT
2015 dataset. In this 3D dataset, a pedestrian’s 3D position
is typically obtained by projecting the 2D position of the feet
of the person into the 3D world, e.g., by using a homography
between the image plane and the ground plane. The bottom
center point of the bounding box is chosen to represent the
position of the feet of the pedestrian. But by the nature
of projective geometry, even slight 2D misplacements can
cause large 3D errors. The sequences with a moving camera
show that these errors are too large for tracking purposes,
and therefore those sequences with a moving camera are not
included in the 3D MOT dataset. In the task, the calibration
files are used to compute a 2D homography between the
image plane and the ground plane. All y coordinates are set
to 0, indicating the position of the feet of the pedestrian.
Correct detection requires at most 1m offset in position. The
2D MOT 2015 dataset consists of 11 sequences for training
and 11 for testing, with a total of 11, 286 frames (∼16.5
minutes) with varying FPS. Some of the videos are recorded
using a mobile platform and the others are from surveillance
videos. We choose two difficult sequences: AVG-TownCentre
and PETS09-S2L2 sequences for test. Moreover, to validate
the effectiveness of our model in the challenge sequences, we
apply our GST model on the MOT16-03, MOT16-07, MOT17-
08, MOT17-14 sequences in MOT16 and MOT17 datasets,
which are the most crowd scenes in these two datasets. The
density of sequences varies from 24.6 to 69.7.

Evaluation on 3D MOT 2015 dataset. Table V summarizes
the tracking results of the proposed GST model and other
state-of-the-art methods on 3D MOT 2015. We compare our
model with several state-of-the-art trackers: AMIR3D [25],
DBN [51], MOANA [52], LPSFM [21], and MTEV [23]. It
is observed that our model outperforms the other trackers in
most metrics.

The DBN tracker estimates the pedestrians and unknown
targets in a probabilistic framework integrated to a dynamic
model, in which a Random Forest-algorithm based classifier

is capable of being trained incrementally so that new training
samples can be incorporated. The LPSFM tracker models the
social force as linear programming and solves it in a network
flow framework. Our previous MTEV tracker is an online data
association method integrating the social force in an energy
formulation. Both MTEV and our model infer the position
estimations of targets in a grouping manner. But our method
adopts a graphical social constraint to formulate the group’s
member, providing a flexible way to initial, merge, and remove
the members in a social context. Consequently, our results
achieve about 3% improvement in overall performance MOTA.

We observe that the proposed approach shows lower group
detection errors compared to the LPSFM and MTEV methods.
It is because our model tries to maintain the individual and
group labels consistently during the sequence by employing
a dynamic topological graph that in some cases maybe fail
to predict adequately the long-term occluded individuals. But
in most cases, it is robust to the short-term occlusion case, as
shown in Fig. 8. When the person #2 gets out of the occlusion
in frame 156, our tracker assigns the label #5 to it (in the last
row), but the MOANA tracker can maintain the label by the
ReID technique. The advantage of our tracker is recording
the group topology by the group tracking, so we can observe
that the group also consists of 4 members after getting out of
occlusion, the other 3 trackers miss the occluded person (row
1-3, frames 156 and 164).

Evaluation on 2D MOT dataset. In the result of experiments,
we observe that the proposed model is also applicable to
the 2D dataset, though real-world distances is not available.
The proposed tracker is compared with other state-of-the-art
trackers, including: motion segmentation and clustering (MSC)
based tracker (NOMT [53], JointMC [35], and JBNOT [56]),
CNN-based tracker (AM [24], AMIR2D [25] and AP-RCNN
[54] ), ReID based tracker ( TBW [57]) and a social force
(SF) based tracker (MTEV [23]). To maintain consistency
with reported numbers, we follow the exact same evaluation
protocol as all other approaches and use detection results
provided by the MOT website, as inputs.

Table V presents tracking results on challenging sequences
identified in the 2D MOT 2015 and MOT17 datasets. S-
ince pixel measurements are not entirely accurate, affinity
discrimination (i.e., distance, orientation, and speed) among
tracklets is weakened, particularly, when targets are far from
the viewpoint. Despite this fundamental weakness, we achieve
competitive results. For example, in the 2D image domain,
CNNs-based methods show potential in appearance matching.
The AM, AMIR2D, AP-RCNN, TBW, and FAMNet meth-
ods are all CNNs-based methods. Therefore, leverage deep
learning features can also achieve high matching rates with
data association. AM also uses CNN features and an attention
mechanism to track long trajectories, which, as reflected by
IDS errors, prevent track switches. Additionally, AMIR2D
presents an RNN structure which jointly reasons CNN-based
appearance, motion, and interactional cues over a temporal
window. In FAMNet designs, the network using differentiable
layers can be optimized jointly to learn discriminating features
and higher-order affinity models for tracking. TBW leverages
a novel bounding box regression method to predict target
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Fig. 7. Tracking results of our approach. (a) shows the tracking results of SDL datasets, and (b) shows the tracking results of ISR-sync dataset. The results
contain the group birth, split, and merge events. We visualize the results in depth domain of these two datasets as well.

motion, by combining the ReID and camera motion compen-
sation.

We observe that the CNN-based methods achieve the best
MOTA results. However, in crowded scenes, e.g., AVG-
TownCentre and PETS09-S2L2 sequences, these methods lose
the advantage in appearance discrimination. The reason for this
perhaps lies in that occlusions, false detections, and missed
detections deteriorate appearance matching capabilities. It is
also observed that the ReID technique can improve track-
ing accuracy because occlusion problems occur frequently
in sequences with crowded scenes. The person getting out
of occlusion could be assigned the accurate ID by ReID
technique. This is verified using the IDS metric in Table V.

E. Discussion

Model ablation. We systematically investigate the contri-
bution of different components of our social affinity matrix
by disabling components one at a time, then examining
performance changes in terms of MOTA on the PETS09-
S2L2 (3D), AVG-TownCentre (3D), 3D MOT 2015 average
performance, and 2D MOT 2015 average performance. Fig.
9 provides ablation outputs. The first column is our proposed
GST model with all social affinities in Eq. 3. We then, disable
affinity by distance (w/o Td), time (w/o Tt), speed (w/o
Tv) and orientation (w/o To), sequentially. In addition, we
combine speed and orientation terms into one term. Tv+o =
µN (‖vi − vj‖)+(1−µ)N (‖oi − oj‖), where N (·) is a min-
max normalization operator ranging [0, 1], and the other two
terms are kept as same as those in Eqs. 4 and 5 (Tv + To). In
the experiments, we use µ = 0.5.

We observe that the new social affinity T with different
disabled items decreases the performance compared with the
full affinity model. Time constraint appears to play the most
important role in social affinity since performance decreases
most on the MOTA item when this item is disabled. In other
words, when two tracklets do not appear and disappear with
simultaneous timestamps, they generally could not be divided
to a specific group. Conversely, if they appear and disappear at

Fig. 9. Model ablation study on the 3D and 2D MOT datasets.

the same time gap, even the distance between them is longer
than the social distance we defined, that is the MOTA item
increases, compared with the ‘w/o Td’. This grouping result
may be inaccurate from a theoretical grouping point of view;
however, it is accurate for the final individual tracking results.
This grouping result is also able to provide a topological
reference according to graphical configuration. Their positions
could be topological support for one another while moving
but only if they follow the same patterns. Compared to our
full tracking model including four affinities, the ‘w/o Tv’ and
‘w/o To’ model generate less accurate groups, some in-group
members are missed and some out-group targets are added into
groups, so parts of these tracks are falsely connected during
individual tracking, especially the occluded members, resulting
in a decreasing MOTA score. Here, the orientation constraint
is more effective than the speed constraint during motion
measurement which confirms that pedestrians in crowds, with
the same geometrical goal always perform the same motion
pattern [16], [17].

Parameter study. To examine the influence of parameters
(l, τ , and λ) of the GST model, we run the tracking model
and modify the corresponding parameter while keeping other
parameters fixed. In Fig. 10, of each term, the relative change
in MOTA performance is plotted against the parameter value.
During the experiments, we run the proposed model on RGB-
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TABLE V
TRACKING RESULT COMPARISONS ON TWO RGB DATASETS IN 3D/2D MOT CHALLENGE [46] WITH PUBLIC DETECTIONS

Dataset Sequence Method Setting MOTA ↑ MOTP ↑ IDF1 ↑ Density MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag. ↓
AMIR3D [25] 2D+RNN 32.2 56.2 − 22.1 2.4% 4.8% 913 4,729 891 1,018
DBN [51] 3D 57.6 63.6 − 22.1 28.6% 4.8% 805 3,049 231 245

PETS09- MOANA [52] 3D+ReID 57.6 57.0 61.3 22.1 40.5% 7.1% 1,453 2,531 107 386
S2L2 LPSFM [21] 2D+SF 41.3 55.7 − 22.1 7.1% 16.7% 640 4,776 243 271

MTEV [23] 3D+SF 55.5 61.3 59.3 22.1 21.4% 4.8% 971 3,735 206 221
Ours(3D) 3D+SF 58.7 64.8 62.2 22.1 38.1% 4.8% 791 2,673 112 189
AMIR3D [25] 2D+RNN 15.3 54.6 − 15.9 3.1% 31.9% 1,125 4,355 571 629
DBN [51] 3D 42.4 57.1 − 15.9 28.8% 20.4% 1,272 2,697 149 173

3D MOT AVG- MOANA [52] 3D+ReID 46.1 55.1 64.0 15.9 26.1% 24.8% 773 3,020 60 200
2015 TownCentre LPSFM [21] 2D+SF 28.7 51.9 − 15.9 15.0% 22.6% 1,391 3,430 277 330

MTEV [23] 3D+SF 43.2 57.2 62.3 15.9 22.1% 24.8% 938 3,380 253 229
Ours(3D) 3D+SF 46.7 58.1 66.1 15.9 29.6% 22.6% 812 2,845 181 192
AMIR3D [25] 2D+RNN 25.0 55.6 − − 3.0% 27.6% 2,038 9,084 1,462 1,647
DBN [51] 3D 51.1 61.0 − − 28.7% 17.9% 2,077 5,746 380 418

Average MOANA [52] 3D+ReID 52.7 56.3 62.4 − 28.4% 22.0% 2,226 5,551 167 586
Performance LPSFM [21] 2D+SF 35.9 54.0 − − 13.8% 21.6% 2,031 8,206 520 601

MTEV [23] 3D+SF 49.8 62.2 − − 25.7% 17.2% 1,909 7,115 459 450
Ours(3D) 3D+SF 53.8 61.4 − − 32.1% 16.8% 1,633 5,618 243 381
NOMT [53] 2D+MSC 53.4 70.5 43.6 22.1 14.3% 9.5% 884 3,465 142 208
JointMC [35] 2D+MSC 56.0 71.4 41.1 22.1 23.8% 4.8% 942 3,162 142 220
AM [24] 2D+CNN 47.7 69.2 44.3 22.1 16.7% 14.3% 718 4,206 115 356

PETS09- AMIR2D [25] 2D+RNN 47.0 70.5 36.3 22.1 11.9% 9.5% 616 4,236 254 397
S2L2 AP-RCNN [54] 2D+CNN 38.9 70.8 34.3 22.1 2.4% 9.5% 552 5,164 179 328

MTEV [23] 2D+SF 51.8 70.4 42.6 22.1 16.7% 11.9% 715 3,812 172 161
Ours(2D) 2D+SF 53.8 70.9 43.9 22.1 18.1% 7.1% 712 3,542 169 229
NOMT [53] 2D+MSC 31.6 70.1 44.6 15.9 11.1% 36.3% 681 4,060 146 233
JointMC [35] 2D+MSC 43.1 69.8 62.2 15.9 29.2% 32.3% 922 3,116 28 213
AM [24] 2D+CNN 37.5 68.1 53.9 15.9 14.2% 30.5% 645 3,742 79 332

2D MOT AVG- AMIR2D [25] 2D+RNN 36.2 69.5 52.5 15.9 26.1% 17.7% 1,448 2,882 234 389
2015 TownCentre AP-RCNN [54] 2D+CNN 28.4 66.9 44.7 15.9 4.0% 27.9% 941 4,005 169 412

MTEV [23] 2D+SF 33.7 70.2 45.1 15.9 22.1% 30.1% 942 3,756 113 163
Ours(2D) 2D+SF 37.2 70.4 57.6 15.9 27.0% 27.9% 841 3,619 128 226
NOMT [53] 2D+MSC 33.7 71.9 44.6 − 12.2% 44.0% 7,762 32,547 442 823
JointMC [35] 2D+MSC 35.6 71.9 45.1 − 23.2% 39.3% 10,580 28,508 457 969
AM [24] 2D+CNN 34.3 70.5 48.3 − 11.4% 43.4% 5,154 34,848 348 1,463

Average AP-RCNN [54] 2D+CNN 38.5 72.6 47.1 − 8.7% 37.4% 4,005 33,203 586 1,263
Performance AMIR2D [25] 2D+RNN 37.6 71.7 46.0 − 15.8% 26.8% 7,933 29,397 1,026 2,024

MTEV [23] 2D+SF 33.8 71.1 44.8 − 12.1% 34.8% 9,232 31,743 722 1,257
Ours(2D) 2D+SF 35.1 71.7 47.3 − 17.7% 36.6% 6,874 31,623 592 1,338
FAMNet [55] 2D+CNN 52.0 76.5 48.7 − 19.1% 33.4% 14,138 253,616 3,072 5,318
JBNOT [56] 2D+MSC 52.6 77.1 50.8 − 19.7% 35.8% 31,572 232,659 3,050 3,792

MOT17 Average TBW [57] 2D+CNN 53.5 78.0 52.3 − 19.5% 36.6% 12,201 248,047 2,072 4,611
(2D) performance MTEV [23] 2D+SF 49.7 77.1 50.4 − 17.0% 36.7% 21,811 258,641 3,077 4,339

Ours(2D) 2D+SF 52.7 77.5 53.7 − 20.4% 38.1% 27,032 237,539 1,703 3,147

4

0

-4

-8

4

0

-4

-8

4

0

-4

-8
 3       5       7      9      11 0.3   0.4   0.5   0.6  0.7  0.8 0.6   0.8   1.0  1.2  1.4  1.6  1.8 

M
O
TA

(a) (b) (c)

Fig. 10. The influence of parameters l, τ, λ on the RGB-D Indoor and Outdoor
datasets.

D indoor and RGB-D outdoor datasets, the average mean-
normalized value is shown along with error bars, depicting
variation between various sequences. The results shown here
are averaged across all datasets and normalized for enhanced
readability. The error bars represent standard deviation around
the mean. The parameter value used in the experiments is
marked with a circle. As can be seen, the choice of parameters

is rather conservative and does not correspond to the best
parameter setting, when compared with those in Table II.
However, this could also be an indication that the proposed
model is not over-tuned on the test datasets.

Error pattern analysis. In model training, we summarize
eight typical topology patterns, as shown in Fig. 5, which
provide evidence of grouping in the initial stages. Besides
the eight typical patterns, there are other usual patterns in the
training sets, such as a line-like topology pattern, shown in
the G3 of Fig. 1. This topology is not added to the typical
topology patterns, since it is not a compact structure and
does not satisfy Constraint II in Eq. 8. In experiments, we
investigate the influence of an unstable topology pattern. Fig.
11 provides a visual representation of two groups consisting
of four members. The first group is encoded by the topology
pattern T8 in Fig. 5. The second, is a line-like pattern and if
this pattern is adopted as a typical pattern in grouping, the
formed group would have easily split and merged, compared
to topology T8. Occlusion handling may consider the object
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Fig. 8. Tracking results in AVG-TownCentre sequence of 3D MOT 2015 dataset. The results from (a)-(d) belong to MOANA [52], DBN [51], LPFSM [21],
and Ours (3D) respectively. (e) visualizes the group topology evolving of our method.
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Fig. 11. The influence of error pattern in the MOT17-03 sequence.

in the case of occlusion, but it has already actually split from
the group, which creates IDS trajectory errors in tracking. In
addition, this increases the burden of group management and
it is observed that the first group has a stable pattern in Fig.
11.

Time analysis. The number of persons greatly affect the
computational time. We run experiments on an Intel 3.8GHz
PC with 8G memory, and implement the codes in Matlab.
Without code optimization, it achieves a tracking speed of ∼20
Hz when there are on average 10 persons to be tracked. The
target number increases to 30, it achieves an average speed of
∼7 Hz. When applied to 3D MOT 2015 dataset, calculating
one frame takes approximately 82ms on average. The results

TABLE VI
TIME COMPARISON AT DIFFERENT STEPS OF THE PROPOSED METHOD.

RESULTS ARE REPORTED WITH THE 3D MOT 2015 DATASET

Component TG STM GT IT JT ST Full
Time 5ms 9ms 39ms 21ms 5ms 3ms 82 ms

are provided in Table VI. Our method can be divided into six
steps, including:
• TG: Tracklets generation;
• STM: Social topology matrix calculating;
• GT: Group tracking;
• IT: Individual tracking;
• JT: Joint group-individual tracking;
• ST: Single object tracking.

Note that the computational time for object detection is not
included, but the tracklets generation, appearance, and motion
feature extraction are included in the above estimates of
computational time. The most time-consuming part happens
in the group tracking and individuals tracking (including the
group online updating and occluded object estimation).

From a theoretical perspective, the optimization of the
probabilistic graph-based methods [7], [33] or the energy-
based methods [1] are non-convex optimization problems. To
compute the gradient, an alternative approach involving the
Hungarian algorithm and K-means clustering is applied. Such
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clustering needs multiple initial starts to reach a reasonable
local optimum, which leads to high computational cost. Some
RGB trackers are based on a complex motion context, the
motion constraint is inferred by superpixels [50], and optical
flow [58], taking a large amount of time. Our solution,
in contrary, has a closed-form solution based only on the
deterministic Hungarian algorithm and thus can be computed
much more efficiently.

VII. CONCLUSION

We proposed the Graphical Social Topology model solve
the multi-person tracking problem in a joint group modeling
and MPT framework. The dynamics of moving objects were
formulated in a developed graph representation. We learned
the typical topology configurations in training datasets and
implemented these trained topology patterns to infer the group
structure and dynamics combining them with a social topology
matrix. Meanwhile, we solved the self-occlusion problem in
the topology update and identified the individual objects after
grouping. Experiments on both RGB-D and RGB datasets
showed that our graphical topology approach significantly
improved the MPT performance, validating that the group-
level constraint is effective for tracking in crowded scenes.

In future work, the proposed framework has several aspects
that could be extended. The group training process would
require more extensive annotated datasets, providing a more
accurate group inference. A CNN-based appearance descrip-
tor could improve the individual tracking performance. Our
approach is general enough to allow the embedding of these
methods in the presented framework separately and in our
modular fashion, towards an end-to-end RGB-D application.
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