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Abstract—Scene recognition is an important and challenging
task in computer vision. We propose an end-to-end pipeline by
combing CNNs with explicit attention model to determine several
meaningful regions of original images for scene recognition.
In the proposed pipeline, the spatial transformer network is
leveraged as the attention module, which can automatically learn
the scales and movements of centers of attention windows. As
for feature extraction, the basic CNN architecture is utilized.
Furthermore, the stronger descriptors of scenes are constructed
by feature fusion. The highlight of our proposed network is that
it is capable to localize discriminative regions from an image in
a data-driven manner without any additional supervision. We
conduct experiments on a subset of the Places205 database to
evaluate the performance of the proposed basic network and the
involved parameters. Our model achieves state-of-the-art top-
1 accuracy 82.10% on the evaluation dataset comparing with
fine-tuned PlacesCNN (80.98%). We find that our model is able
to learn informative attention regions for discriminating scene
categories.

I. INTRODUCTION

Recognizing scenes is not an easy task, which is sig-
nificantly attributed to the difficulty in representing scenes
due to their variability, ambiguity and the wide range of
illumination, where view points and scale changes may apply.
As deep learning develops, a CNN trained on ImageNet [1]
significantly outperforms the hand-crafted features in scene
recognition. In order to further improve the performance of this
task, Zhou et al. [2] introduced a large-scale database called
Places to support CNNs for scene recognition, and established
state-of-the-art results on several scene datasets. In [3], Zhou et
al. made an attempt to understand the implicit objects detectors
in CNNs. However, despite great progresses, the performance
of large-scale scene recognition is still far from satisfying, and
what contributes to discriminating scenes categories in images
is inexplicable.

The attention mechanism subtending human visual system
(HVS) is the capacity to learn and focus on distinctive samples
from what humans have seen according to given visual tasks.
When it comes to distinguishing scenes in images, humans do
not pay attention to the entire image at once. Actually, they

tend to take advantages of informative objects, regions and the
relationship between them.

We propose an end-to-end CNN framework by modeling
explicit visual attention for scene recognition in this paper. Our
method is derived from the spatial transformer network [4]
that was originally proposed to actively spatially transform
feature maps in CNN. In our model, we incorporate it as at-
tention model via detecting meaningful regions in images, then
the network generates discriminative descriptors for scenes
through feature fusion. To evaluate the performance of our
method, we do experiments on a subset of the Places205
database.

The contributions of this paper are twofold :

1. We are the first to attempt to explore explicit attention
model for scene recognition, by which the network can au-
tomatically fix its gaze on meaningful regions in images just
under supervision of image-level labels.

2. We propose to combine CNN features extracted from
local regions with those from original image to strengthen
scene representation. Experimental results demonstrate the
effectiveness of our model.

The remainder of the paper is organized as follows: related
works on scene recognition and attention modeling are briefly
reviewed in Section II. Details of our proposed method are
described in Section III. Section IV presents and evaluates
the performance of our proposed method and its variants,
and visualizes some results in experiments. Finally, Section V
concludes our work.

II. RELATED WORKS

In this section, we review prior works covering scene
recognition and visual attention modeling.

Scene Recognition: There are numerous approaches de-
voted to the scene recognition task. Ariadna Quattoni et
al. [5] proposed a model based on hand-crafted features for
indoor scene recognition. Fei-Fei Li et al. [6] built a bayesian
hierarchical model for learning natural scene categories. With
the development of CNNs, several different CNN architectures
have been applied to recognize scenes. For example, Zhou et
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Fig. 1. The overall end-to-end framework of ST-PlacesCNN. Spatial Transformer Module: the localization network is shared by all n spatial transformers
with the same input, which produce spatial transformation parameters 6; (i = 1,2,...,n). And its output is the set of detected regions. Classification
Network: it consists of two kinds of feature extracting networks. One is for regions to extract local features, while the other is for the original input to extract
global features. Afterwards, these features are fused together. Finally, there is a softmax classifier for final recognition.

al. [2] trained the classical ImageNet-CNN on a scene-centric
dataset (Places), and Wang et al. [7] trained three VGGNet
models, namely VGGNet-11, VGGNet-13, and VGGNet-16
on the large-scale Places205 dataset. Recent works on scene
recognition are mainly object-centered methods, exploring
how to utilize candidate objects or region proposals as pre-
cursors combing with CNNs at the classification stage. These
regions are often gained manually or extracted by supervised-
trained part detectors. In [8], they are generated from MCG
(Multi-scale Combination Grouping [9]). On one hand, the
main drawback of these methods is splitting the end-to-end
learning pipeline into separate steps, which may lose informa-
tion among the candidate proposals. As a consequence, these
defined parts may not be optimal for scene recognition. On the
other hand, annotating parts is significantly more challenging
than collecting image labels. Although a series of state-of-
the-art results on popular benchmark datasets (MIT Indoor
67 [5], SUN397 [10], Places205 [2]) have been achieved, CNN
features are used rudimentarily. It is difficult to figure out what
is important for scene understanding and how to produce better
scene representation.

Visual Attention Modeling: Previous works have made
some progress on visual attention modeling. Some researchers
have concentrated on specific tasks in toy or constrained
environments, such as detecting simple shapes [11] [12]. While
some others have been interested in less constrained environ-
ments, specifically the fine-grained categorization task [13].

Most recently, Ba et al. [14] have utilized visual attention to
recognize multiple objects in images. Xu et al. [15] applied
two different attention models based on LSTM to the image
caption task. Besides, Zhou et al. [16] show that the CNNs are
capable to learn a form of implicit attention somewhere they
respond more strongly to some parts of an image than others.
Jaderberg et al. [4] proposed the spatial transformer networks,
which can be regarded as spatial attention model.

In order to deal with weaknesses of recent scene recognition
approaches, our models are trained end-to-end from input-
output pairs only with image-level labels, and the attention
regions are located top-to-bottom driven by the final task
explicitly. Additionally, feature fusion is introduced to enhance
scene representations so that our model can be expected to
yield better performance.

III. OUR MODEL

The convolutional neural network combining with spatial
transformer (ST-PlacesCNN) is detailed in this section. The
architecture of the network is shown in Fig. 1. It can be split
into two parts, namely spatial transformer module regarded as
visual attention model to focus on the discriminative regions
in images and sequential classification network containing
several sSubCNNs, which extract features for feature fusion and
final scene classification. The ST-PlacesCNN can be trained
in an end-to-end way without any manual labels of attention
regions in images.
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A. Spatial Transformer Network

Spatial transformer network is initially introduced to ac-
tively spatially transform feature maps within CNN in [4]. It
consists of three parts, namely a localization network, a grid
generator and a sampler. Our method extends the work of
Jaderberg et. al. [4] for less constrained visual recognition,
specifically scene classification in images.

In our visual attention-based model, the spatial transformer
network is utilized as attention model, which is able to
learn the scales and locations of some discriminative attention
windows for informative regions and crop them out from
original images automatically. Therefore, a constrained 2D
affine transformation is used.

sy 0 tz] )

Ap = {0 5y 1ty

where s, s, denote the scales of attention windows, and ¢, ¢,
represent the movements of the centric position of attention
windows on x-axis and y-axis, respectively.

As for visual attention, the point-wise transformation is :
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where Ui are the sampling points on input feature maps
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t

in the source coordinate system, and . | are the corre-

sponding transformed points in the target zcoordinate system.
We use height and width normalized coordinates, such that
-1 <z 'yt <1

Scenes can be distinguished according to whether they
contain particular objects or regions. However, the sizes and
positions of them may vary significantly in different instances.
Besides, some other objects or regions in images are not
correlated with the scene label, which could be neglected.
Consequently, multiple spatial transformers can be used in a
parallel manner to detect the objects or regions containing in-
formation about scenes, which can reduce noises and enhance
the subsequent scene classification task.

B. Convolutional Neural Networks

The deep convolutional neural networks are used to produce
transformation parameters of visual attention windows, and
extract features of both original images and local detected
regions in our model.

1) Localisation Network: As shown in the left part of
Fig. 1, there are several parallel affine transformers, which
are utilized as attention modules in the architecture. Each
transformer learns the scales s;,s, and the movements of
centric positions (¢,,t,) of attention windows on x-axis and
y-axis, respectively. In order to make the whole learning

process more meaningful and more effective, we impose some
constrains on these parameters as follows:

Sz = Sz X sigmoid(syy)

sy = Sy x sigmoid(syy)

3
tr = Ty X tanh(t;) )
ty = Ty X tanh(ty)

in which,
Sy +T, =1
“4)
Sy+T,=1

where t;.,%1y, Si2, S1y are learned from the localization net-
work. As a result, the scales of attention windows are re-
strained within S;,S; of the image size, and the centric
positions of attention windows are limited: -7, < t, < T,
T, <t, <T,.

2) Feature Extractor: Given the original input images and
corresponding sets of attention regions, we employ the fine-
tuned PlacesCNNs with the output layer removed as feature
extractors, in which we use batch normalization [17] in
convolutional layers and fully-connected layers. The outputs
of feature extractors are with same dimension. Sequentially,
fusion layers to be introduced in IV-B and a new output layer
are appended. Note that one or more extra layers integrating
local features, and/or integrating local features with global
features during the fusion step could be added.

C. Feature Fusion

Features of global original images and local attention re-
gions are obtained through subCNN streams. In this section,
the fusion of these features is introduced to generate more
robust and enhanced representations of scenes.

For each input image, its final representation R can be
obtained:

Wo+ > Wi=1

where I, represents global features, while Fj; is local features
of Region,. The equation (5) above is formulated to calculate
the weighting sum of global features and local features of all
attention regions. The output of the fusion layer is the input
for the last softmax classification layer.

IV. EXPERIMENTS

In this section, experimental details and results analysis are
presented. We use multiple spatial transformers in parallel to
perform scene recognition and evaluate the model on a subset
of the Places205 dataset (Places20) for illustration. In our
experiments, we only use image-level labels to train models.

A. Evaluation Dataset

The Places205 dataset is released in [2] to support deep
learning methods applied to the scene recognition task, cov-
ering 205 scene categories. The train set contains 2,448,873
images, with the minimum 5,000 and the maximum 15,000
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0: classroom, 1: bedroom, 2: shoe_shop, 3: bookstore, 4: dining_room, 5: kitchen, 6: living_room, 7: music_studio, 8: art_studio, 9: office, 10: desert/sand,
11: desert/vegetation, 12:baseball field, 13:stadium/football,14: ocean, 15:rainforest, 16: underwater/coral_reef, 17: lighthouse, 18:gas station, 19: sky

Fig. 2. Instances from each scene category of Places20 dataset.

images per category. The validation set contains 100 images
per category and the test set contains 200 images per category.

Places20: To facilitate our research on learning visual
attention regions, we select 20 classes from the Places205
dataset, dubbed Places20 here. It has 276,640 training images,
2,000 validating images and 4,000 testing images,and consists
of 10 indoor scenes and 10 outdoor scenes shown in Fig. 2.
Note that we do not struggle to deal with the huge datasets.
Our aim is to declare the capability of our model discovering
discriminative objects or regions automatically when trained
just on image labels, so that they can boost the performance of
scene recognition through reducing noises irrelevant to scenes
and making the utmost of informative regions related to scenes
for classification. We use a small dataset Places20 as a start
to verify our findings.

B. Methods

We evaluate the following methods for comparison.

1. PlacesCNN fine-tuned on Places20: PlacesCNN is pre-
trained on the Places205 dataset in [2]. The architecture of
PlacesCNN is the same as the one used in the Caffe reference
network (AlexNet). Based on this pre-trained network, we
apply batch normalization [17] on ‘convl’, ‘conv3’, ‘con5’,
‘fc6’ and ‘fc7’ layers. Afterward, we replace the 205-classes
output layer with a 20-classes output layer. We fine-tune
the alternative architecture called Places20CNN on Places20
dataset. The result of fine-tuned PlacesCNN is consider as the
baseline for comparison with our proposed methods.

2. ST-placesCNN with different scales of spatial trans-
former modules: We compare different max scales (0.3, 0.5)
of attention windows to verify the conjecture that our network
can learn some salient regions of original images containing
discriminative information for scene recognition.

3. ST-placesCNN with different numbers of spatial trans-
former modules: In our model, the number of transformers
can be varied. We do experiments on networks with 1 or
2 parallel spatial transformers, which are parameterized for
visual attention and act on the input image respectively.

4. ST-placesCNN combining global features with local
features: The set of attention regions may lose some in-
formation because of the restriction to the attention process.

We propose to combine global features with local features to
generate stronger descriptors of scenes and to see if better
performance can be achieved.

C. Experimental Setup

Initially, we fine-tune placesCNN on the Places20 dataset
with batch normalization to obtain Places20CNN as the base-
line. For data preprocessing, all images are resized to 454 x 454
resolution, and then are downsampled to 227 x 227 that are
subtracted by the pixel mean as the inputs of the localization
network.

All spatial transformers share the same localization network
that is derived from Places20CNN in the following way. In or-
der to preserve spatial information, the last classification layer,
pooling layer and 2 fully-connected layers are removed. The
output of the truncated CNN has 13 x 13 spatial resolution with
256 feature channels. Sequentially, an 128D fully-connected
layer is added, and N fully-connected layers with 4D output
are used to produce transformer parameters, where N is the
number of transformers (in our experiments, N = 1 or 2).
Through the transformer layers, there are several attention
regions cropped from original images, then features of them
and input images are extracted via individual subCNN streams.
Afterwards, all the features are fused together. Finally they are
classified with a single softmax layer.

All models were trained with the adadelta algorithm. We
initialize the localization network and the feature extracting
networks with the parameters of the corresponding layers in
Places20CNN. In order to reduce overfitting, we set dropout
with 0.5 after each fully connected layer and set the weight
decay as 10~°. We evaluate two ST-PlacesCNNs with different
numbers of spatial transformers (1 or 2), two 1ST-PlacesCNNs
with different max scales of spatial transformers (0.3 or 0.5),
and a 1ST-g-PlacesCNN combining 1 spatial transformer with
a global feature extractor on Places20 dataset.

D. Results and Analysis

The top-1 accuracy on the Places20 dataset of all
methods is shown in TABLE 1. The released model
PlacesCNN only achieves 53.95% on Places20. Our pro-
posed 1ST-g-Places20CNN(1ST, scale: 0.5, global) achieves

Preprint submitted to 23rd International Conference on Pattern Recognition.
Received April 20, 2016.



CONFIDENTIAL. Limited circulation. For review only.

82.10% slightly higher than 80.98% given by the baseline
Places20CNN(bn).

TABLE I
ToP-1 ACCURACY

(Notes: ST-spatial transformer, bn-batch normalization, scale—the max
scale of attention window, global—global features of original image.)

Method Top-1 Accuracy
PlacesCNN 53.95%
Places20CNN(bn) 80.98%
2ST-Places20CNN(2ST, scale: 0.5) 74.03%
1ST-Places20CNN(1ST, scale: 0.5) 69.20%
1ST-Places20CNN(1ST, scale: 0.3) 58.15%
1ST-g-Places20CNN(1ST, scale: 0.5, global) 82.10%

We first discuss the influence of the attention window
scale. The max scales (in Equation (3) S, S,) are both set
as 0.3 or 0.5 for 1 spatial transformer for comparison. The
performance improves significantly with the increase of scales,
from 58.15% of a small scale (0.3) to 69.20% of a large
scale (0.5). In addition, it is worth noting that no matter how
large the attention window is, our model learns to focus on
the most informative regions in images. As shown in Fig. 3,
two bounding boxes almost cover the same region in positive
instances A-(a), A-(b), B-(a) and B-(b). In instance A-(c),
the model with an attention window scaled 0.5 achieves the
correct label, which detects the region containing the most
important object — bed in the bedroom scene category, while
the attention window scaled 0.3 outperform that scaled 0.5 in
B-(c) because the former focuses on majority of lighthouse in
the image. During our experiments, we find that it is difficult
to automatically learn the scales of attention windows and
the model tends to cover more area in images restricted to
constrains.

A. Bedroom

B. Lighthouse

B-(a)

Fig. 3. Classification results of three instances from the bedroom and the
lighthouse scene category, respectively. The images with a green boundary
are positive instances, while those with a red boundary are negative. Besides,
the yellow, blue bounding boxes in images are denoted as attention windows
with different scales, namely 0.5, 0.3, respectively (Best viewed in color).

Secondly, the performances of different numbers of spatial

transformers in ST-PlacesCNNs is investigated. Top-1 accu-
racy for one, two spatial transformers with attention window
scaled 0.5 are 58.15%, 74.03%, respectively, demonstrating
that two spatial transformers produce remarkably better result
than one spatial transformer only. Scene recognition benefits
more from several attention windows. Some meaningful salient
regions in images located by 2ST-Places20CNN(2ST, scale:
0.5) are shown in Fig. 4. The spatial transformers wok well
when they focus on discriminative regions of scenes. For
instance, the model fixes its gaze on bodies of lighthouse;
while for classroom images, it pays more attention to desks
and chairs. It is interesting to observe that there are some
overlaps between two regions, which may embody more
essential information of scene categories.

Finally, we find that fusing local and global CNN features
can further improve performance. The performance of 1ST-g-
PlacesCNN with global information is slightly better than that
of pure 1ST-PlacesCNN. The max scale of spatial transformer
is set to 0.5. Visualization of scene recognition performance of
1ST-g-PlacesCNN on each category is illustrated in Fig. 5. We
can make two observations: 1) It is easy to distinguish indoor
scenes from outdoor scenes. 2) Scene recognition would make
mistakes when two scenes are similar, such as, desert/sand and
desert/vegetation, which are sub-classes in the desert scene.
Our method is capable to fix its gaze on the discriminative
regions to assist fine-grained scene recognition.

Discovering discriminative attention regions containing
enough information from the original images is the key of
our proposed method to recognize scenes. It is reasonable
to believe that the classification performance increases as the
scale or the number of attention windows grows because more
information in images is utilized. Moreover, there are some
overlaps that can be observed covering important information
about scenes. With the help of visual attention, our networks
are potential to actively harvest the most meaningful and
informative regions in images and generate stronger descriptor
for scene categories in a data-driven manner without any
additional supervision.

V. CONCLUSION

In this work, we have proposed to explore explicit attention
model — spatial transformer for scene recognition task. We
have combined an CNN architecture with spatial transformers
to detect meaningful and informative regions from original
images to generate better descriptor of scenes through feature
fusion. The experimental results show that our method out-
performs the basic PlacesCNN model. Future work will focus
on improving the explicit attention modeling and applying our
models to other scene datasets.
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