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Abstract—Inspired by theories of sparse representation and compressed sensing, this paper presents a simple, novel, yet very

powerful approach for texture classification based on random projection, suitable for large texture database applications. At the feature

extraction stage, a small set of random features is extracted from local image patches. The random features are embedded into a

bag-of-words model to perform texture classification; thus, learning and classification are carried out in a compressed domain. The

proposed unconventional random feature extraction is simple, yet by leveraging the sparse nature of texture images, our approach

outperforms traditional feature extraction methods which involve careful design and complex steps. We have conducted extensive

experiments on each of the CUReT, the Brodatz, and the MSRC databases, comparing the proposed approach to four state-of-the-art

texture classification methods: Patch, Patch-MRF, MR8, and LBP. We show that our approach leads to significant improvements in

classification accuracy and reductions in feature dimensionality.

Index Terms—Texture classification, random projections, sparse representation, compressed sensing, textons, image patches,

bag of words.
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1 INTRODUCTION

TEXTURE is ubiquitous in natural images and constitutes
an important visual cue for a variety of image analysis

applications like image segmentation, image retrieval, and
shape from texture. Texture classification is a fundamental
issue in computer vision and image processing, playing a
significant role in a wide range of applications that includes
medical image analysis, remote sensing, object recognition,
content-based image retrieval, and many more. Due to its
importance, texture classification has been an active
research topic over several decades, dating back at least to
Julesz’s initial research in 1962 [1].

The design of a texture classification system essentially
involves two major steps: 1) feature extraction and
2) classification. Most research in texture classification
focuses on the feature extraction part [3], with extensive
surveys [2], [3], [4]. Early methods include Gray Level Co-
occurrence Histograms [5], Gray Level Difference Histo-
grams [6], Gray Level Run Length Histograms [6], Markov
Random Fields [7], [8], Simultaneous AutoRegressive
models [9], Fractal Models [10], among many others. A
quantum jump occurred in the 1980s when Gabor filters
[11], [12], pyramid filters [13], and Wavelets [14] were
introduced, followed by further advances when simple

statistics were replaced by multidimensional histograms
(either marginal or joint), such as Gray Level Aura
Histograms [15], Local Binary Patterns [17], and many
others [8]. All of these choose a limited subset of texture
features from local image patches. However, as Randen
and Husøy [3] concluded in their recent excellent
comparative study involving dozens of different filtering
methods: “No single approach did perform best or very
close to the best for all images; thus, no single approach
may be selected as the clear winner of this study.”

By extracting features from a local patch, most feature
extraction methods focus on local texture information,
characterized by the gray level patterns surrounding a
given pixel; however, texture is also characterized by its
global or nonlocal appearance, representing the repetition of
and the relationship among local patterns. Recently, a “Bag-
of-Words” (BoW) model, borrowed from the text literature,
opened up new prospects for texture classification [18], [19],
[20], [21], [22], [23]. The BoW model encodes both the local
texture information by using features from local patches to
form textons, and the global texture appearance by
statistically computing an orderless histogram representing
the frequency of the repetition of the textons.

There are two main ways to construct the textons:

1. detecting a sparse set of points in a given image
by detecting points of interest, and then using
local descriptors to extract features locally to each
such point [22], [23], or

2. densely extracting local features pixel by pixel over
the input image.

The success of the sparse approach largely depends on the
type of texture, some of which might not produce enough
regions for a robust representation. As a result, the dense
approach is more common and widely studied. Among the
most popular dense descriptors are the use of large support
filter banks to extract texture features at multiple scales and
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orientations [18], [20]. However, more recently, in [21] the
authors challenge the dominant role that filter banks have
been playing in texture classification, claiming that classifica-
tion based on textons directly learned from the raw image
patches outperforms textons based on filter bank responses.

The key parameter in patch-based classification is the
size of the patch. Small patch sizes cannot capture large-
scale structures that may be the dominant texture feature,
are not very robust against local changes in texture, and are
highly sensitive to noise and illumination variations.
However, a large patch size leads to a quadratic increase
in the dimension of the patch space, with the high
dimensionality posing two challenges to the clustering
algorithms used to learn textons. First, the presence of
irrelevant and noisy features can mislead the clustering
algorithm; second, in high dimensions, data may be very
sparse (the so-called curse of dimensionality), making it
difficult to represent the structure in the data.

Therefore, it is natural to ask whether high-dimensional
patch vectors can be projected into a lower dimensional
subspace without suffering great information loss. There
are many potential benefits of a low-dimensional feature
space: reduced storage requirements, reduced computa-
tional complexity, and improved classification perfor-
mance. A small salient feature set would simplify both the
pattern representation and the subsequent classifiers;
however, frequently used dimensionality reduction techni-
ques result in a loss of information.

In this paper, we seek nonadaptive, information-preserving,
universal-dimensionality reduction of texture patches, based
on two motivations. First, although an enormous volume of
literature has been devoted to data-dependent feature
extraction and dimensionality reduction, there is little
consensus about which features are better or worse, and
practitioners lack guidelines on which to use. Second, we
want to avoid the disadvantages of popular dimensionality
reduction techniques such as principle component analysis
(PCA): Its data-dependent nature, the computational
burden of eigendecompositions, and the absence of any
guarantee that distances in the original and projected spaces
are well preserved. In summary, we desire a computation-
ally simple method of dimensionality reduction that does
not introduce significant distortions.

Random projection (RP) [34], [35], [39] refers to the
technique of projecting a set of points from a high-
dimensional space to a randomly chosen low-dimensional
subspace. The technique has been used in combinatorial
optimization, information retrieval, face recognition [33],
and machine learning [38], [43]. Fig. 1 shows a simple
example, contrasting the distribution of raw pixels, filter
responses, and random features.

The information-preserving and dimensionality-reduc-
tion power of RP is firmly evidenced in the emerging theory
of compressed sensing (CS) [24], [25], [26], which states that,
for sparse and compressible signals, a small number of
nonadaptive linear measurements in the form of random
projections can capture most of the salient information in
the signal and allow for perfect reconstruction of the signal.
Moreover, RPs have also played a central role in providing
feasible solutions to the well-known Johnson-Lindenstrauss
(JL) lemma [35], which states that a point set in a high-
dimensional euclidean space can be mapped down onto a
space of dimension logarithmic in the number of points,

such that the distances between the points are approxi-
mately preserved.

When applying RP to texture classification, the key
question is therefore how much information about texture
patches can be preserved by random projections, the number
of requisite dimensions for near-lossless mapping, and
whether such a mapping leads to any advantages in
classification. Fortunately, one important reason that the
theory of sparse representation and compressed sensing has
attracted significant attention in the signal processing
community is due in part to the fact that an important variety
of signals, such as audio and natural images (including
texture images), can be well approximated by a linear
combination of a few atoms of some redundant dictionary
[25], [59]. CS theory implies that the precise choice of the
number of features should not be critical: A small number of
random features, more than some threshold, contains enough
information to preserve the underlying local texture struc-
ture and hence to correctly classify any test image.

To the best of our knowledge, this paper is the first to
investigate RP for texture classification, presenting a
comprehensive series of experiments to illustrate the
benefits of this novel technique for texture classification.
The proposed method is computationally simple, yet
exceptionally powerful. Simply by selecting a set of random
features in a bag-of-words classification context, with no
further parameter tuning, we find a texture classifier that
meets or exceeds the current state of the art!

The rest of this paper is organized as follows: Section 2
provides an in-depth review of RP, with connections to the
JL lemma and CS theory. In Section 3, we first discuss the
theoretical reasons for the proposed approach, then present
the details of the proposed features and the texture
classification framework, and provide an analysis of the
benefits and advantages of the proposed approach. In
Section 4, we test the proposed method with extensive
experiments to compare with the current state of the art.
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Fig. 1. Random projections of local patches form good shape clusters
and can distinguish texture classes. For the three Brodatz textures, left,
the panels compare the distribution and separability of (a) (b) raw pixel
values, (c) two linear filter responses, and pairs of random projections
extracted from patches of size (d) 9� 9, (e) 15� 15, and (f) 25� 25.



2 BACKGROUND AND RELATED WORK

2.1 Sparse Representation, Random Projection,
and Compressed Sensing Background

Random features are essentially equivalent to the compres-
sive measurements in the CS encoding stage. CS has been
brought to the forefront by the work of Candès and Tao [25]
and Donoho [26], who have shown that a small number of
nonadaptive linear measurements (random projections) of a
high-dimensional but sparse or compressible signal con-
tains enough information for near-perfect reconstruction
and processing. Sparsity and compressive sensing have had
a growing impact on a much broader range of fields,
including signal and image processing, pattern recognition,
computer vision, and machine learning [42], [45], [48], [49].

In CS, however, the encoder requires no a priori knowl-
edge of the signal structure. Only the decoder uses the sparse
model to reconstruct the signal. So, although the decoding
(reconstruction) process is of great importance in applica-
tions of CS, in this paper we focus on the encoder, the
random projection. Viewed from a geometric perspective,
stable CS reconstruction requires a “stable” embedding of all
the g-sparse signals in the basis � in IRm�1, such that distinct
g-sparse signals in IRn�1 remain well separated in IRm�1,
such that � is information preserving. The restricted isometry
property (RIP) [24], [25] is used to quantify this stability, and
the cost for stability is a modest logarithmic “excess”
dimensionality factor with respect to the sparsity level g.
Baraniuk et al. [42] have identified a fundamental connec-
tion between CS and the Johnson-Lindenstrauss lemma [35],
[37], [39], which is concerned with the stable embedding of a
finite point set under a random dimensionality reducing
projection, showing that the RIP can be thought of as a
straightforward consequence of the JL lemma.

2.2 Related Work

Classification using random measurements has received
only minimal treatment to date. In [52], the utility of CS
projection observations for signal classification is investi-
gated, while in [40], random measurements are exploited to
perform manifold-based image classification. One of the
most successful applications of the sparse representation
and CS in computer vision and pattern recognition has been
the SRC algorithm for face recognition [49], which uses the
whole set of training samples as the basis dictionary and
assumes that all of the samples from a class lie on a linear
subspace such that the recognition problem is cast as one of
discriminatively finding a sparse representation of the test
image as a linear combination of training images. The use of
the face image data itself as dictionary without learning is
novel. It is important to note, however, that the SRC
algorithm is based on global features, whereas texture
classification almost certainly depends on the relationship
between a pixel and its neighborhood. Second, SRC is
reconstruction based, explicitly reconstructing the sparse ����, a
computationally intensive step which we avoid.

Lazebnik and Raginsky recently introduced an elegant
dictionary learning algorithm based on Information Loss
Minimization [31]. It learns a codebook with the objective of
obtaining a quantization that does not cause high distortion
and at the same time keeps nearly all of the information about
the class of the original signal. Sparsity also has been recently
incorporated into a very interesting robust face recognition

framework by Ma et al. [49], motivated by the work on
compressed sensing and random projections. This work does
not explicitly enforce reconstruction and/or discrimination
nor does it learn adapted dictionaries.

In the field of texture classification, there are two
important threads of research. One is the sparse coding
with overcomplete dictionaries, a work based on generative
modeling [16], [44], and the other is the k-mean clustering for
textons based on discriminative modeling [18].

In the former case, the analysis of a given texture
involves the sparse coding of all of the patches of a texture
into a dictionary of atoms. Research along this line, such as
the work in [44], [45], focuses on learning nonparametric
redundant dictionaries that facilitate a sparse representa-
tion of the data [30], [46]. Since originally trained to contain
sufficient information for reconstruction, sparse represen-
tations are, from the point of view of signal classification, a
reconstructive approach. Texture classification based on
this framework is formulated in the following way:
Assume that we have sets Yc � IRn�1 of training patches,
c ¼ 1; . . . ; C, extracted from C different texture classes.
First, a texture dictionary �c 2 IRn�K of K atoms is learned
for each texture class with Yc via

min
�c;����i

XjYcj
i¼1

kyyyy
i
��c����ik

2
2 subject to k����ikl0 � g: ð1Þ

Texture classification is done by approximating each patch
yyyynew in the testing image using a constant sparsity g and the
C different dictionaries. This provides C different residual
errors, which can then be used as classification features [44],
[46]. Thus, assigning the class membership cnew for some
patch yyyynew is to write

ĉyyyynew ¼ arg min
c2f1;...;Cg

R?ðyyyynew;�cÞ; ð2Þ

where

R?ðyyyy;�Þ ¼ kyyyy������?ðyyyy;�Þk2
2

����?ðyyyy;�Þ ¼ arg min
���� 2 IRK�1

kyyyy������k2
2 s:t: k����kl0 � g:

Both the optimization problem (1) for learning the over-
complete dictionary and the reconstruction based classifica-
tion problem (2) are very time consuming, especially when
the number of texture classes C is large. In this paper, we
seek to avoid these two computationally intensive problems.

In discriminative modeling, the texton dictionary learn-
ing step almost universally employs the k-means algorithm.
There is an intriguing relation between sparse representa-
tion and clustering (i.e., vector quantization) [29], [30]. In
clustering, a set of descriptive vectors is learned, and each
sample is represented by one of those vectors, which can be
thought of as an extreme sparse representation, where only
one atom is allowed in the signal decomposition.

In this paper, we focus on image-level texture classifica-
tion, which does not necessarily aim at classifying the
individual image patch center at each pixel correctly, but
rather combining all of the patches from an image into a high-
level representation, such as a global BoW model. Our work
follows the discriminative modeling framework, proposing
to learn the overcomplete nonparametric dictionary and to
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perform the texture classification problem in the compressed
domain. In contrast with the work by Varma and Zisserman
[21], we consider linear projections of the local texture patch
as the available measurements, not the image patch itself.

Previously, random projection has been studied as a
general dimensionality reduction method for numerous
clustering problems [37], [38], [39], [43] as well as for
learning nonlinear manifolds [42], [48]. In contrast to this
previous work, the number of measurements in our work
does not depend on the number of training examples, only
on the sparsity g and a logarithmic dependence on the
dimension of the data domain n, which allows our
dimensionality reduction technique to scale well.

3 TEXTURE CLASSIFICATION USING RANDOM

PROJECTION

3.1 Sparse Modeling of Textures

The premise underlying CS is one of signal sparsity or
compressibility. The compressibility of textures is certainly
well established: Most natural images are compressible, as
extensive experience with the wavelet transform has
demonstrated [59], and textures, being roughly station-
ary/periodic, are all the more sparse [44].

The key to the universality of CS is that the sparsifying
dictionary �� does not need to be known, and that an
explicit a priori knowledge of the signal is not necessary.

Dictionary �� maps the underlying coefficient vector ���� to
the sparse domain pppp � �����; in contrast, � maps from the
sparse to the measurement domain, xxxx ¼ �pppp. Although it is
generally not possible to reconstruct a signal without
knowing its sparsity basis ��, if we are only interested in
classification and not reconstruction there is no need to
know ��.

Furthermore, from the large literature on texture classi-
fication on the basis of feature extraction from small image
patches, the degrees of freedom underlying a texture are
known to be few in number. In [53], the author first uses a
filter bank to reduce the patch space and then further reduces
the dimensionality by projecting filter marginals onto low-
dimensional manifolds by a Locally Linear Embedding
algorithm [54], showing that classification accuracy can be
increased by projecting onto a manifold of some suitable
dimension. Cula and Dana [19] first learn the histogram of
textons for a texture and then project all of the models into a
low-dimensional space using principle components analysis.
A manifold was fitted to these projected points and then
reduced by systematically discarding those points which
least affected the shape of the manifold.

3.2 Dimensionality Reduction and Information
Preservation

In this paper, we intend to use linear projections to embed a
local patch pppp 2 IRn�1 into a lower dimensional space
xxxx 2 IRm�1.

In practice, dimensionality reduction is important in
handling high-dimensional data since it mitigates the curse
of dimensionality and other undesired properties of high-
dimensional spaces. The most widely used methods are
factorial methods, such as PCA and variations; unfortu-
nately, these are computationally expensive, with no
guarantee that the distances between the original and

projected observations are well preserved. In this section,
we argue that random projections are particularly well
suited for our purposes.

We propose a dimensionality reduction

xxxx ¼ �pppp; ð3Þ

ideally where m� n. Clearly, � 2 IRm�n, m < n, loses
information in general since � has a null space, implying
the indistinguishability between pppp and ppppþ zzzz, for zzzz 2 Nð�Þ.
The challenge in identifying an effective feature extractor �
is to have the null space of � orthogonal to the low-
dimensional subspace of the sparse signal pppp.

Ideally, we wish to ensure that � is information
preserving, by which we mean that � provides a stable
embedding that approximately preserves distances between
all pairs of signals. That is, for any two patches, pppp

1
and pppp

2
,

the distance between them is approximately preserved:

1� � �
k�ðpppp

1
� pppp

2
Þk2

kpppp
1
� pppp

2
k2

� 1þ �; ð4Þ

for small � > 0. One of the key results in [24] from CS theory
is the Restricted Isometry Property, which states that (4) is
indeed satisfied with overwhelming probability by certain
random matrices. Moreover, (4) is also the direct result of
the JL lemma. It is precisely on this very strong theoretical
support that we propose to use random projections to
rethink texture classification.

The Johnson-Lindenstrauss lemma [35] is concerned
with the following problem: We are given a set D of
d points in IRn�1 with n typically large. We would like to
embed these points into a lower dimensional euclidean
space IRm while approximately preserving the relative
distances between any two of these points.

Theorem 1 (Johnson-Lindenstrauss lemma [35]). For any
0 < � < 1 and any positive integer d, let m be a positive
integer such that

m � 4ð�2=2� �3=3Þ�1 ln d: ð5Þ

Then, for any set D of d points in IRn�1, there exists a
Lipschitz mapping f : IRn�1 ! IRm�1 such that for every pair
u; v 2 D,

ð1� �Þku� vk2 � kfðuÞ � fðvÞk2 � ð1þ �Þku� vk2: ð6Þ

There are proofs of the lemma that show that (6) can be
satisfied with very high probability with f taken as a linear
mapping represented by an m� n matrix �, whose entries
are randomly drawn from certain probability distributions
[37], specifically including the Gaussian distribution [27],
[37], [42]. Furthermore, Baraniuk et al. [42] give a simple
technique for verifying the Restricted Isometry Property for
random matrices that underlies CS, and clearly illustrates
that the RIP can be thought of as a consequence of the JL
lemma, and that any distribution that yields a satisfactory
JL-embedding will also generate matrices satisfying the RIP.
As a consequence, random Gaussian projections approxi-
mately preserve pairwise distances in the data set.

3.2.1 Example 1: RP and Texture

A simple example, illustrated in Fig. 2, reconstructs a texture
patch based on random measurements. The reconstruction,
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results from different numbers of measurements, are shown
in Figs. 2b, 2c, and 2d. The reconstruction algorithm
CoSaMP [51] is used here. With a sufficiently large number
of random measurements, the original sparse texture is
perfectly reconstructed.

3.2.2 Example 2: RP and Classification

Real data are noisy, so (3) should be modified to explicitly
account for noise:

xxxx ¼ �ppppþ vvvv; ð7Þ

where vvvv 2 IRm�1 is a noise term, independent of pppp. Suppose
we wish to classify pppp based on the noise-corrupted
compressed measurementsxxxx, using a single nearest neighbor
classifier with a euclidean distance measure. Our underlying
patterns are a set of 100 sinusoids, as plotted in Fig. 3a:

fpppp
k
ðtÞg100

k¼1 ¼ fcosð!ktÞg100
k¼1: ð8Þ

Fig. 3b plots the probability of classification accuracy as a
function of the number of measurements m, averaging
over 100,000 trials, where for each trial, independent
realizations of compressed sensing measurements and
noise are generated. Note that classification was performed
directly in the compressed domain and without any
explicit sparse reconstruction.

3.3 Random Measurements and Clustering

A patch approach models textures by the joint distribution
of pixel intensities in a local patch. Let pppp 2 IRn�1 be the
pixels in a local patch of size

ffiffiffi
n
p � ffiffiffi

n
p

. Similar to [8], we
assume that there exists a “true” joint probability distribu-
tion density fðppppÞ over the image patch space. We consider
homogeneous textures; thus, fðppppÞ is stationary.

We wish to preserve both local texture information,
contained in a local image patch, and global texture
appearance, representing the repetition of and the rela-
tionship among local textures. It has been shown that a
texton-based approach is an effective local-global repre-
sentation [18], [21].

The textons are trained by adaptively partitioning the
feature space into clusters using K-means. For an input data
set X ¼ fxxxx1; . . . ; xxxxjXjg, xxxxi 2 IRm�1, and an output texton set
W ¼ fwwww1; . . . ; wwwwKg, wwwwi 2 IRm�1, the quality of a clustering
solution is measured by the average quantization error [50],
denoted as QðX ;WÞ:

QðX ;WÞ ¼ 1

jXj
XjXj
j¼1

min
1�k�K

kxxxxj � wwwwkk
2
2; ð9Þ

measuring the average squared distance from each point to
the centroid of the cluster where it belongs. However,

QðX ;WÞ goes as K�2=m for large K [61], a problem when m
is large since K is then required to be extremely large to
obtain satisfactory cluster centers, with computational and
storage complexity consequences.

On the other hand, Varma and Zisserman [21] have
shown that image patches contain sufficient information for
texture classification, arguing that the inherent loss of
information in the dimensionality reduction of feature
extraction leads to inferior classification performance.

RP addresses the dilemma between these two perspec-
tives very neatly. The high-dimensional texture patch space
has an intrinsic dimensionality that is much lower; there-
fore, RP is able to perform texture feature extraction
without information loss (Example 1), and classification is
possible in the RP compressed domain (Example 2). We
therefore claim that the RP and BoW approaches are
complementary, and will together lead to superior perfor-
mance for texture classification.

Consequently, in this paper, we propose to cluster in the
compressed domain:

X ¼ fxxxx ¼ �pppp j pppp 2 Pg; ð10Þ

where � ¼ ½�i;j	 2 IRm�n is the Gaussian measurement
matrix whose elements �i;j are independent, zero-mean,
unit-variance Gaussian random variables.

3.4 Proposed Approach

3.4.1 Patch Extraction

Since we focus on the local geometry of textures through the
extraction of local patches, we first illustrate the patch
extraction strategy used in this paper. An image I of
N-pixels is processed by extracting patches fpppp

i;j
gij of sizeffiffiffi

n
p � ffiffiffi

n
p

around each pixel position ði; jÞ except those
pixels on the image boundary. Formally, such a linear
operator that extracts all the patches (with pixels on the
boundary excluded) from an image I is denoted as follows:
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Fig. 2. Reconstruction of ideal sparse texture signals from random
measurements.

Fig. 3. Signal classification based on random features: (a) A set of 100
synthetic similar periodic signals, each of length n ¼ 400. (b) Classifica-
tion accuracy as a function of the number of random measurements for
both noisy and noise-free cases.



� : I 7�! fpppp
i;j
g; for all i; j 2 ð

ffiffiffi
n
p

=2;
ffiffiffiffiffi
N
p
�

ffiffiffi
n
p

=2	: ð11Þ

Each patch pppp
i

is handled as a vector of size n. For ease of
notation, we will use one index i instead of two i; j for a
patch.

Suppose we haveC distinct texture classes, with each class
having S samples. Let the samples of class c be represented
by an ensemble fIc;sgSs¼1 and letD ¼ ffIc;sgSs¼1g

C
c¼1 denote the

whole texture data set. A set of
ffiffiffi
n
p � ffiffiffi

n
p

image patches P ¼
fpppp

c;s;i
gi is extracted from image Ic;s via (11).

Our proposed classifier is identical to the Patch method
[21] except that, instead of using pppp, the random measure-
ments xxxx ¼ �pppp derived from pppp are used as features, where
the entries of � are sampled from independent zero-mean,
unit-variance normal distribution. The compressed domain

X ¼ fxxxx ¼ �pppp j pppp 2 Pg ð12Þ

is a compressed representation of the patch domain

P ¼ fpppp j pppp 2 IRn�1g: ð13Þ

Our texture classification system is illustrated in Fig. 4,
consisting of the following stages:

1. Compressed texton dictionary learning stage, illu-
strated in Fig. 4a, in which a universal compressed
texton dictionary W is learned directly in the
compressed domain X , not in P. For each texture
class, we learn K textons with k-means for each class.
Then, the universal compressed texton dictionaryW
is formed by concatenating the K textons of each
texture class, resulting a dictionary of size CK (i.e.,
W ¼ CK).

2. Histogram of textons learning stage, illustrated in
Fig. 4b (left): A histogram hhhhc;s of compressed textons
is learned for each training sample Ic;s by labeling
each of its extracted patches (via (11)) with the
closest texton inW. Each texture class is represented
by a set of models Hc ¼ fhhhhc;sgs.

3. The classification stage, shown in Fig. 4b (right): A

histogram hhhhnew for a given image is computing as

in step 2, and hhhhnew is classified using a nearest

neighbor classifier, where the distance between two

histograms is measured using the �2 statistic:

�2ðhhhh1; hhhh2Þ ¼ 1
2

PCK
k¼1

½hhhh1ðkÞ�hhhh2ðkÞ	
2

hhhh1ðkÞþhhhh2ðkÞ
.

4 EXPERIMENTAL EVALUATION

4.1 Methods in Comparison Study

Our specific experimental goal is to compare the proposed

approach with the state of the art
Patch [21]. Based on local patches of size

ffiffiffi
n
p
�

ffiffiffi
n
p

; both

training and testing are performed in the patch domain.
Patch-MRF [21]. A texture image is represented using a

two-dimensional histogram: one dimension for the quan-

tized bins of the patch center pixel, the other dimension for

the learned textons from the patch with the center pixel

excluded. The number of bins for the center pixel in [21] is

as large as 200, and the size of the texton dictionary is

61� 40 ¼ 2;440, resulting in an extremely high dimension-

ality of 2;440� 200 ¼ 488;000.
MR8 [20], [21]. Eight filter responses derived from the

responses of 38 filters (see Fig. 5). A complicated

anisotropic Gaussian filtering method was used to

calculate the MR8 responses.
LBP [17], [55]. The rotationally invariant, uniform

LBP texton dictionary at different scales, LBPriu2
8;1 ,

LBPriu2
8;1þ16;2, LBPriu2

8;1þ16;2þ24;3, LBPriu2
8;1þ16;2þ24;3þ24;4, a n d

LBPriu2
8;1þ16;2þ24;3þ24;4þ24;5 advocated in [56], [57]. For simpli-

city, in the remainder of this paper, these LBP textons are

denoted as 1-scale; . . . ; 5-scale, respectively.
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Fig. 4. Overview of the texture classification system proposed in this paper: (a) Texton dictionary learning in the compressed patch domain. (b) The
architecture of training and classification.

Fig. 5. The original filter bank for obtaining the MR8 filter responses:
edge and bar filters at three scales and six orientations, plus a Gaussian
and Laplacian of Gaussian.



4.2 Texture Data Sets and Experimental Setup

For our experimental evaluation, we have used three
commonly used texture data sets, summarized in Table 1:
the Brodatz album [58], the CUReT database [20], and the
MSRC database.

The Brodatz small data set Db (24 classes) was chosen to
allow a direct comparison with the state-of-the-art results
from [55]. There are 24 homogeneous texture images (shown
in Fig. 6), each of which was partitioned into 25 nonoverlap-
ping subimages of size of 128� 128 pixels, of which
13 samples for training and the remaining 12 for testing.

The Brodatz large data set DB (90 classes) is a very
challenging platform for classification due to the impressive
diversity and perceptual similarity of some textures, some
of which essentially belong to the same class but at different
scales (D1 and D6, D25 and D26), while others are so
inhomogeneous that a human observer would arguably be
unable to group their samples correctly (e.g., D43, D44, D45,
D91, and D97, as illustrated in Fig. 7). Based on these
considerations, we selected 90 texture classes from the
Brodatz album by visual inspection, excluding textures D13,
D14, D16, D21, D22, D25, D30, D32, D35, D36, D38, D43-45,
D55, D58, D59, D61, D79, D91, D96, and D97. The
partitioning of images in DB is the same as in Db.

For the Brodatz Full data setDBFull, we keep all 111 classes,
challenging due to the relatively large number of texture
classes and the small number of samples per class. To obtain
results comparable with Lazebnik et al. [22] and Zhang et al.
[23], we used a consistent approach, dividing each texture
image into nine nonoverlapping subimages, of which three
samples were for training and the remaining six for testing.

The Brodatz database has been criticized because of its lack
of intraclass variation, which motivated the development of

the CUReT database [20] which has now become a benchmark
and is widely used to assess classification performance.

For the CUReT large data set DC (61 classes), we use the
same subset of images as Varma and Zisserman [20], [21],
with 92 images for each class. These images are captured
under different illumination and viewing directions, a few
of which are plotted in Fig. 8. Half of the samples are chosen
for training and the remaining half for testing.

The CUReT small data set Dc (61 classes) preserves all
texture classes of DC ; however, each texture is represented
by only a single image, as in [55], where all of the textures
have the same illumination and imaging conditions. Each
image is partitioned into nine 106� 106 nonoverlapping
subimages, with five samples for training and the other
four for testing.

The MSRC data set DM (16 classes), used by Varma
and Zisserman [21], has 16 folded textile materials (shown
in Fig. 9). Similarly to the CUReT database, the impact of
non-Lambertian effects is very obvious. Furthermore, it is
an interesting database to analyze due to the variations in
pose and the nonrigid deformations of the textured
surface. As in Varma and Zisserman [21], 15 images were
randomly selected from each texture classes for training set
and the remaining five for testing. Textons were learned
from only three images per class randomly selected from
the training set.

In terms of the extracted RP vector, we consider three
kinds of normalization:

1. Weber’s law [21]:

xxxx xxxx
logð1þ kxxxxk2=0:03Þ

kxxxxk2

� �
: ð14Þ

2. Unit norm:

xxxx xxxx

kxxxxk2

: ð15Þ

3. No normalization.
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TABLE 1
Summary of Texture Data Sets Used in the Experiments

S1 and S2 denote the number of training and testing samples per texture
class, respectively.

Fig. 7. Five nonhomogeneous textures (D43, D44, D45, D91, and D97)
from the Brodatz database.

Fig. 8. Image examples from three different texture classes of CUReT
textures under different illuminations and viewpoints.

Fig. 9. MSRC: 16 materials in the MSRC textile database.Fig. 6. Brodatz small: 24 textures used in [55] from the Brodatz database.



4.3 Experimental Tests

4.3.1 Variability Analysis

Because RP performs random feature extraction, clearly one

of the first questions is the extent to which this randomness

is manifested in classifier variability. There are three

sources of variability present:

1. variation in learned textons from K-means,
2. variation in the random projection matrix,
3. variation in training/testing data.

The contribution of all three variations is presented in

Table 2. Although there is clearly variability present due

to the randomness of the RP matrix, it is a modest fraction

of the total variability, and therefore in no way compro-

mises the RP method as a classifier.

4.3.2 RP Parameter Choices

There are three key parameters in the RP classifier:

1. the number of textons K per class,
2. the patch size n,
3. the RP dimensionality m (m � n).

The effect of m on classification performance is shown in

Fig. 10. We can see from the results that the classification

accuracy increases rapidly, is level for a wide range of m,

and ultimately decreasing for sufficiently large m. The

decreased accuracy at large m is almost certainly the

increased difficulty of clustering in high dimensions,

consistent with our claim arguing against the high

dimensionality of the Patch method.
Fig. 12 plots classification accuracy over n and m. The

results are consistent with the preliminary test in Fig. 10:

For each value of n, the performance improves rapidly for
small m, then leveling off for m � n=3. For data set Dc
(Fig. 12a), the performance decreases with patch size n
due to the small size (limited training samples) of Dc,
insufficient to train the classifier on large patches. In
contrast, for DC (Fig. 12b) the larger training set allows for
sufficient classifier learning.

Finally, consider the choice of K, the number of textons
per class. Because of the dimensionality reduction of RP, it
is computationally feasible to consider a greater number of
textons. Since a set of textons can be thought of as
adaptively partitioning the compressed patch space into
bins, K should be sufficiently large to allow the partitioning
to meaningfully represent the space. Fig. 11 demonstrates
the impact of K on the classification accuracy, showing
performance increasing with K. In our comprehensive tests,
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Fig. 10. Classification accuracy as a function of CS dimensionality on an
11� 11 patch for data set DC with K ¼ 10.

Fig. 11. Classification results on DC as a function of the number of
compressed textons K per class, for a patch size n ¼ 11� 11 and RP
dimensionality m ¼ 40.

Fig. 12. Classification results as a function of patch size (
ffiffiffi
n
p
�

ffiffiffi
n
p

) and RP dimensionality m on data set (a) Dc and (b) DC .

TABLE 2
Classifier Variability: Standard Deviations Are Reported

from 20 Runs on DC Using 10 Textons per Class,
a Patch Size of 11� 11, Weber’s Law Normalization



reported in the next section, we will present results for both

K ¼ 10 and K ¼ 40.

4.3.3 RP versus PCA

As PCA is one of the principal approaches to dimensionality

reduction, even if not state of the art, we wish to perform an

initial comparison on data setsDC andDB, with results shown

in Fig. 13 and Table 3. At very low dimensions, the targeted

approach of PCA leads to comparable or slightly improved

performance; however, at peak performance, the RP ap-

proach outperforms PCA, almost certainly because the

second-order statistics used by PCA fail to fully characterize
the patch space.

4.4 Comparative Evaluation

In this section, we compare the proposed approach

specifically to the current state of the art [20], [21] on

the CUReT database. To make the comparison as mean-

ingful as possible, we use the same experimental settings

as Varma and Zisserman [21].
In their comprehensive study, Varma and Zisserman

[20] presented six filter banks for texton-based texture

classification on DC . They concluded that the rotationally
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TABLE 3
Classification Accuracy in Percent for the CUReT Database with a Patch Size of 15� 15, Comparing the Proposed RP with PCA

The number of training images per class is 46; the number of textons K per class is 10; unit-norm normalization is used.

Fig. 13. Classification accuracy as a function of feature dimension m, comparing the performance of RP, PCA, and the original Patch method. All
three methods use the same classifier, only the method of feature extraction varies. The number of textons used per class is K ¼ 10. Results are
reported as averages over 50 runs. (a) Results for data set DC using a patch of size 11� 11 with Weber’s law normalization. (b) Results for data set
DC using a patch of size 15� 15 with unit-norm normalization. (c) Results for data set DB using a patch of size 5� 5 with unit-norm normalization.

TABLE 4
A Comparison of Computational Complexity between RP, Patch, and Patch-MRF

Here, T counts the number of k-means iterations (typically T � 50), G denotes the number of quantized bins for the central pixel, S1 and S2 are the
number of training and testing samples per class, respectively, NI denotes the number of pixels per sample, and N0 is the number of pixels per class
for learning the textons. For DC , C ¼ 61, S ¼ 92, S1 ¼ S2 ¼ 46, NI ¼ 200� 200, N0 ¼ S1NI , G ¼ 200.

Fig. 14. Classification results on data set DC as a function of feature dimensionality. The bracketed values denote the number of textons K per class.

“Patch-VZ” and “MR8-VZ” results are quoted directly from the paper of Varma and Zisserman [21]. Classification rates obtained based on the same

patch size are shown in the same color.



invariant, multiscale, Maximum Response MR8 filter bank

yielded better results than any other filter bank. However,

in their more recent study [21], they challenged the

dominant role that filter banks have come to play in the

texture classification field and claim that their Patch

method outperforms even the MR8 filter bank.
We begin with an analysis of the computational costs,

summarized in Table 4. Between the Patch and RP methods,

it is clear that the relative complexities are determined by

the relative dimensionalities m and n, respectively. In terms

of the Patch-MRF model, the computational complexity of

classification is greatly increased by a factor of G, the

number of bins to represent the center pixel.
The best published CUReT classification performance is

98.03 percent, as reported by Varma and Zisserman [21],

achieved by Patch-MRF with G ¼ 90, K ¼ 40, resulting in a
histogram model dimensionality as high as GCK ¼ 90 �
61� 40, even higher than the 200� 200 dimensionality of
the image, violating the dimensionality reduction premise
of this paper and introducing substantial computational
and storage complexity. Our goal is to exceed this
classification performance in a much simpler, reduced-
dimensionality setting.

Fig. 14 and Table 5a present a comparison of the RP
classifier, the Patch classifier, the MR8 filter bank, and LBP.
The Patch-VZ and MR8-VZ results are taken from Varma
and Zisserman [21]; all other results are computed by us,
with the results averaged over tens of random partitions of
training and testing sets.

The proposed RP method outperforms all other meth-
ods; a clear indication that the RP matrix preserves the
salient information contained in the local patch (as
predicted by CS theory) and that performing classification
in the compressed patch space is not a disadvantage. In
contrast to the Patch method, not only does RP offer higher
classification accuracy, but also at a much lower dimen-
sional feature space, reducing storage requirements and
computation time.

Fig. 14 compares the three normalizations, together with
Tables 5a, 5b, and 5c. The results show that the proposed
approach outperforms the Patch method in all three
normalizations, and that the classification accuracy differ-
ences caused by normalization are modest.

By way of comparison, from [23] the affine adaptation
method of Lazebnik et al. [22] using nearest neighbour
classification achieves an accuracy of 72.5 percent. Even
when multiple high-dimensional descriptors are combined
with multiple detectors and an SVM classifier, the affine
adaptation results improve to only 95.30 percent [23].

To summarize the preceding figures and tables, Table 6
presents the overall best classification performance
achieved by each method for any parameter setting. The
proposed RP method gives the highest classification
accuracy of 98.52 percent, even higher than the best of
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TABLE 5
Mean (Standard Deviation) Results on DC :

(a) Weber’s Law Normalization; (b) No Normalization;
(c) Unit-Norm Normalization

The mean and standard deviation of the classification accuracy as a
function of patch size. The bracketed values denote K, the number of
textons used per class. The “VZ” results are quoted directly from the
paper of Varma and Zisserman [21]. The “PatchMRF-VZ (Best)” shows
results obtained for the best combination of texton dictionary and
number of bins for the center pixel for a particular patch size. For patch
sizes up to 11� 11, texons up to 50 per class and bins up to 200 are
tried. For 13� 13 and larger neighborhoods, the maximum number of
textons per class is restricted to 20 because of the huge computational
expense of the Patch-MRF method.

TABLE 6
Comparison of Highest Classification Performance

on DC with a Common Experimental Setup

Fig. 15. Comparison classification results on Dc for K ¼ 10 as a function of feature dimensionality for the proposed RP and Patch methods, where
color indicates patch size.



Patch-MRF in [21], despite the fact that the model
dimensionality of the Patch-MRF method is far larger than
that of the proposed RP method.

4.4.1 Results on Other Data Sets

We wish to compare to other benchmark data sets
(described in Section 4.2); however, since DC is the
definitive test for texture classification, the following
discussion is kept brief.

CUReT small Dc. Fig. 15 shows the classification
accuracy of the CS and the Patch methods on Dc. We can
observe that the proposed method performs similarly to
the Patch method but at a much lower dimensionality. As
was seen in Fig. 12, it is clear that the classification
performance goes down as the patch size is increased, quite
different from the CUReT large data set DC . Nevertheless,
this test shows that the proposed RP approach can be well
applied in this situation without loss of performance. By
comparison, from a recent LBP paper [55], the best
performance for this data set is 86.84 percent for LBP,
and 92.77 percent for the combination of LBP and NGF
with a SVM classifier, in contrast to our RP classification
accuracy of 95.85 percent.

Brodatz large DB. Tables 7, 8, and 9 show the
classification accuracy for the three Brodatz data sets DB,
Db, and DBFull, respectively. Our results outperform pub-
lished accuracies, with the exception of DBFull, where our
result of 94.2 percent is slightly worse than the rate of
94.9 percent reported in [23] using a SIFT descriptor and
Laplacian blob detector based on an SVM classifier. The
classification accuracy of 99.95 percent which is achieved by
RP on Db is so good as to leave hardly any room for
improvement. Recent published performance on Db in [55]
was 98.49 percent for LBP alone and 99.54 percent for the
combination of LBP and NGF with an SVM classifier.

MSRC DM . Table 10 shows the classification perfor-
mance of the RP and the Patch methods on data set DM .
Excellent results (as high as 99.57 percent) are obtained
using the proposed RP approach, exceeding the published
Patch results, reinforcing the broad applicability of RP.

Finally, a word about feature vector normalization.
Based on all the results presented in this paper, we can

observe that the unit norm and Weber’s Law normal-
izations perform equally well, with the former slightly
better than the latter. However, they both outperform the no
normalization case except for Dc. This may be partially
because all images in Dc has the same controlled illumina-
tion condition, while other data sets have illumination
variations (see Table 1). Nonuniform illumination can give
rise to local texture appearance change, and feature vector
normalization can enhance the intensity invariance and
leads to better classification results.

5 CONCLUSIONS

In this paper, we have described a classification method
based on representing textures as a small set of compressed,
random measurements of local texture patches, leading to
results matching or surpassing the state of the art in texture
classification, but with significant reductions in time and
storage complexity. Approximately one-third the dimen-
sionality of the original patch space is needed to preserve
the salient information contained in the original local patch;
any further increase in the number of features yields only
marginal improvements in classification performance.

There are significant distinctions between the proposed
RP approach and previous studies in texture classification:

. We demonstrated the effectiveness of random fea-
tures for texture classification and the effectiveness of
texture classification in the compressed patch domain.

. The proposed RP approach enjoys the advantage of
the Patch method in achieving high classification
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TABLE 7
Comparisons of Three Types of Feature Vector

Normalization of the Patch and Proposed RP Methods on
Brodatz Large DB with K ¼ 10 Textons per Class

Means (standard deviations) have been computed over 50 runs.

TABLE 8
As in Table 7, with Results Averaged over 100 Runs on the Small Brodatz Data Set Db

TABLE 9
As in Table 7, with Mean (Standard Deviation) Results

Averaged over 50 Runs on the Full Brodatz Data Set DBFull,
for K ¼ 10; 40

TABLE 10
Results on the MSRC Database DM ,

with Mean (Standard Deviation) Results Averaged over
1,000 Random Partitionings of the Training and Testing Sets

Results marked by ð
Þ are taken from the recent study of Varma and
Zisserman [21].



performance and that of the preselected filter banks
in its low-dimensional feature space.

. The random features assume no prior information
about the texture image, except the assumption of
sparsity in some (overcomplete) basis, in contrast to
conventional texture feature extraction methods,
which make strong assumptions about the texture
being studied.

The promising results of this paper motivate a further
examining of RP-based texture classification. First, the use
of a more sophisticated classifier, like SVM, may provide
enhanced classification performance over the nearest
neighbor classifier used here. Furthermore, the proposed
approach can be embedded into the signature/EMD

framework, as is currently being investigated in the
texture analysis community, which is considered to offer
some advantages over the histograms/�2 distance frame-
work [22], [23].
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